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Abstract. What is derived in this paper is the potential 
ow around the marine structures
in the numerical towing tank. The Green's formula and image method is employed to solve
the boundary value problem. The Green's function satis�es the Laplace equation and the
boundary conditions on the bottom, walls and free surface. The Green's function consists of
three parts. The �rst part is correlated with spatial spacing between the source and a �eld
point. The second part consists of the free surface disturbance. The radiation condition is
dealt with in the third part to ensure that the waves vanish upstream of the source. An
in�nite series is obtained for each part of the Green's function using the image method.
E�ects of the numerical towing tank's width and depth on the solution are investigated, and
the 
ow patterns due to the presence of a singularity with constant strength in the uniform

ow are computed. Uniform motion of a submerged sphere and ellipsoid are simulated
and compared with the analytical solutions and other numerical results. Wave pro�les are
computed for a sphere and an ellipsoid to show the e�ect of the tank width on the solution.

© 2013 Sharif University of Technology. All rights reserved.

1. Introduction

Hydrodynamic analysis of the marine structures in the
towing tanks is necessary for obtaining the perfect
design in ocean engineering. The towing tanks have
been widely used for various marine purposes one of
which is to determine the performance of the marine
structures in a uniform motion and the properties of

ow around the body of the structure. Motions of
structures in a harbor and the model test in the towing
tank could be a�ected by side walls and the bottom
(sea bed). Development of the Numerical Towing Tank
(NTT) can help to account for the �nite boundary
e�ects induced by the walls and bottoms of the physical
tanks and to make the test results more precise, which
would eventually reduce the test cost.
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The potential theory in computational hydrody-
namics is widely used to characterize the interactions
of 
uid-marine structures. The governing equation in
incompressible, inviscid 
uid and irrotational 
ow is
Laplace's equation whose solutions must satisfy the
various boundary conditions. NTT boundary condi-
tions consist of the free-surface boundary condition,
the impermeable boundary conditions of the body, wall
sides and the bottom, the in
ow boundary condition
and the radiation boundary condition of the out
ow
surface, to ensure that the waves vanish upstream
of the disturbance. The Boundary Elements Method
(BEM), based on the second Green's identity, has been
employed to solve the boundary value problems with
complex geometry of boundaries. The fundamental
Green's function for a towing tank can be assumed
to be the Green's function of a source with constant
strength on the NTT where the boundary conditions
are the conditions on the bottom, walls and the free
surface. The fundamental Green's function can be used
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with the body boundary condition for simulation of the

ow on the NTT with presence of the body. Other
boundary conditions are satis�ed spontaneously.

Various Green's functions were presented in com-
plex and algebraic formulations for two and three
dimensional problems by Wehausen & Laitone [1]. The
Green's function is approximated by solving the place-
Laplace equation in di�erent computational domains
and speci�ed boundary conditions. The approxima-
tion algorithm of the fundamental solution has been
based on Fourier transforms space and inverse Fourier
transforms given by Newman [2]. Evaluation of a
Principal Value (PV) integral would be unavoidable in
a computational application. The singularity in a PV
integral could be removed by Cauchy's residue theorem.
The shallow water Green's function of uniform 
ow
was modi�ed by Sahin and Hyman [3] and was used
in the 
ow simulation of the uniform motion of a
submerged body presented by Sahin et al. [4]. The
source in parallel planes and rectangular channels was
developed by the image method, a restricted domain
Green's function can be obtained by distribution of
sources along the length of a normal line to the planes
and by formal summation of the Green's functions in
the computational domain. In�nite series arising from
the application of image methods are slowly conver-
gent [2,4,5]. Di�erent remedies have been introduced
to change these series of images into rapidly convergent
formulations. The Green's function of a channel water-
wave with in�nite depth was obtained by Kashiwagi [6]
in which slowly convergent series were transformed by
a double integral over a semi-in�nite domain. The 3D
acoustic Green's function in a rectangular channel was
given by Newman [7] in which sources in two transverse
directions were distributed, and Fourier techniques
were applied to transform an in�nite series of images
into an applied Green's function. Oscillating source
problems in channels with in�nite and �nite depth were
solved by Linton [5]. For in�nite and �nite depth, the
slowly convergent series were rewritten into a rapidly
convergent series by Eigen function expansion. For
�nite depth channels, orthonormal sets of functions are
also adopted. A suitable Green's function is proposed
by Xia [8] for 3D wave-body interaction problems in
the channels. This formulation is based on the open-
sea Green's function. The in�nite series of images are
evaluated through the asymptotic analysis. Solutions
of a 3D acoustic source in parallel planes and an
in�nite open rectangular prism were expressed as a
series of images by Ismail and Elbenhady [9]. They
used the Eigen function expansions to transform slowly
convergent series into an integral representation, which
is rapidly convergent and stable.

Numerical tanks have been developed since the
past two decades to compute 
ow �eld around objects
in presence of the free surface. Potential numerical

tank has been based on boundary integral equation
and MEL (Mixed Eulerian-Lagrangian) method. Free
surface is included in boundary integral explicitly, and
its mutations have been obtained through transforming
free surface boundary condition from Eulerian form
into Lagrangian form. A 2D wave-current interaction
was investigated by Ryu et al. [10], and 3D wave-
current interaction modeling was carried out by Zhen
and Bin [11]. In these numerical tanks, 2D and 3D
acoustic Green's function are distributed over the free
surface and in
ow and out
ow boundaries to satisfy the
radiation condition in the integral equation. So, com-
putations are time-consuming with numerical errors.
Also, the description of the free surface 
uctuation is
complicated.

Dawson method has been applied in direct and
indirect BIE (Boundary Integral Equation) to study
the e�ect of free surface on 
uid 
ow around moving,

oating and submerged bodies. The performance of
moving 3D hydrofoil was examined by Xie and Vas-
salas [12]. Applying free surface boundary condition to
BIE is a little tricky and too sensitive to the size and
shape of the free surface grids. Therefore, this scheme
is not reliable for practical approaches.

An e�cient and accurate technique was proposed
by Scullen and Tuck [13] to compute a 3D fundamental
solution of uniformly and non-uniformly distribution
of moving pressure patches for far �eld and near �eld
domain. The multiple expansions were applied to the
3D free surface Green's function of oscillation source by
Borgarino et al. [14]. It is pointed out that the recently
mentioned Green's functions have been practiced in
open-sea condition. Hence, the achievement of a
practical 3D free surface Green's function of restricted
condition for an NTT could be useful.

In the present work, Green's function of a source
with constant strength in a uniform 
ow is evaluated
for a rectangular tank with arbitrary dimensions. The
boundary conditions contain linearized free-surface
conditions, impermeable boundary conditions on the
bottom and side walls, and the radiation condition.
Open-sea �nite-depth Green's function will be adopted
in the evaluation procedure. The proposed Green's
function includes the mentioned boundary conditions,
except the side walls boundary condition. Numerical
towing tank Green's function would be approximated
by distribution of images of the source on the length
of normal direction of the wall and formal summation
of the Green's functions on the computational domain.
The Green's function of a practical numerical towing
tank is aimed in this study. For this purpose, this
in�nite series will be discrete in three parts. The
�rst part includes the slowly convergent series of the
1=r term. In the second and third parts, the inte-
grals of in�nite series are approximated. The rapidly
convergent form of the �rst part can be obtained
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based on Eigen function expansions. Cauchy's integral
theorem and Poisson's summation formula combined
with a convergent geometric series are employed to
compute the principle value integrals in the series of
the second part. In the same manner, the de�nite
integral in the series of the third term is evaluated. The
dependency of the 
ow properties to width and depth
of the tank are shown and veri�ed by the modi�ed
open-sea free-surface Green's function. Modeling of a
uniform motion of a submerged sphere and ellipsoid in
a numerical towing tank are developed on the basis of
the constant panel method. Simulation of 
uid 
ow
around a sphere is compared with analytical solutions
and other numerical results. Center plane wave pro�les
of a sphere and an ellipsoid are obtained to study the
e�ects of tank width on the solution for various tank
dimensions and di�erent 
ow regimes.

2. Background

The Cartesian coordinates system is chosen with the
(x; y) plane on the undisturbed free surface, and z is
measured vertically upwards. The width of the tank
is W and its depth is h as shown in Figure 1. Fluid
is assumed to be inviscid and incompressible, and the

ow is irrotational. Therefore, the Laplace equation is
the governing equation in the computational domain
(
).

Fluid 
ow around a body that moves uniformly
in the towing tank in +x direction could be computed
by potential theory. Hence, velocity potential (�) is
composed of the uniform 
ow velocity potential in �x
direction, and perturbation velocity potential induced
by the existence of the body.

�(x; y; z) = �U:x| {z }
Uniform 
ow potential

+ �(x; y; z)| {z }
Perturbation potential

:
(1)

To compute the perturbation potential, the panel
method based on Green's second identity is applied.
The direct boundary integral equation for perturbation
potential can be written as:ZZ

S

�
�
@G
@ns
�G @�

@ns

�
dS = "(P )�(P ); (2)

Figure 1. Cartesian system and tank geometry.

where P is a �eld point positioned on the body surface,
walls, bottom or in the 
uid domain; S is the control
surface of a numerical towing tank, and ~n is the normal
vector on a control surface directed into the 
uid. The
value of " depends on the location of the �eld point.
Green's function (G) is the solution of Eq. (3) that
must satisfy the boundary conditions.

r2G = �(x� x0)�(y � y0)�(z � z0) in 
; (3)

where � is the Dirac delta function. Indeed, a constant
strength source in uniform 
ow at (x0; y0; z0) disturbs
the whole 
uid 
ow domain (x; y; z). Green's function
represents the source disturbance a�ected by a set
of boundary conditions. NTT boundary conditions
contain the following.

Free surface boundary condition: Free surface
elevation �(x; y) is measured from the calm water level.
This boundary condition is made of a combination of
dynamic and kinematics boundary conditions.

@2G
@x2 +K0

@G
@z

= 0; on z = 0; (4)

where K0 = g=U2.

Bottom condition: The tank bottom is imperme-
able and its slope is zero; therefore, the normal
derivative of the Green's function must be considered
as to be zero:

@G
@z

= 0 on z = �h: (5)

Radiation condition: To ensure that the distur-
bance wave would shrink upstream and to obtain a
unique solution for the boundary value problem, the
radiation condition is applied:

lim G
r2!1

= O(1); for x < 0;

lim G
r2!1

= 0; for x > 0; (6)

where:

r =
p

(x� x0)2 + (y � y0)2 + (z � z0)2:

Tank's wall condition: The normal derivative of
the fundamental solution must be zero, owing to the
impermeable walls of the tank:

@G
@y

= 0 on y = �W
2
: (7)

If the solution of Eq. (3) satis�es the NTT boundary
conditions, the control surface in Eq. (2) is limited to
the body surface.
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3. Formulation of Green's function

The open-sea Green's function in the �nite depth for a
constant strength source located at (0; 0; z0) given by
Wehausen and Laitone [1] can be rewritten as:

Go = �I1 +
4
�
I2 + 4I3: (8)

The term I1 represents the source and its image with
respect to the bottom. The term I2 indicates the free
surface disturbance due to the presence of the source,
and its image and the term I3 exists to satisfy the
radiation condition [15].

For K0h > 1,

I1 =
1
r1

+
1
r2
; (9)

where:

r2
1 = x2 + y2 + (z � z0)2;

r2
2 = x2 + y2 + (z + (2h+ z0))2;

and:

I2 = PV
1Z

0

�=2Z
0

F (�; k; z) cos(kx cos �)

� cos(ky sin �)d�dk; (10)

where:

F (�; k; z) =
e�kh cosh[k(h+ z0)](k +K0 sec2 �)
cosh(kh)(k �K0 sec2 � tanh(kh))

� cosh(k(h+ z));

and:

I3 =

�=2Z
0

H(�;K; z) sin(Kx cos �) cos(Ky sin �)d�;
(11)

where:

H(�;K; z) =
e�Kh cosh[K(h+ z0)](K +K0 sec2 �)
cosh(Kh)(1�K0 sec2 � sech2(Kh))

� cosh(K(z + h)):

In function F , k is integration variable and in function
H, K is the wave number which can be determined by
Eq. (12):

K �K0 sec2 � tanh(Kh) = 0: (12)

3.1. Image method
To use the image method, the walls of the tank are
removed, and the control volume becomes unbounded
in the transverse direction. Instead, an in�nite series of
the images of the source are distributed over the normal
axis to the walls of the tank, as shown in Figure 2.
According to Figure 2, the position of the images in
the y direction in an unbounded domain can be written
as:

y00 = y0 + 2nW; n = �1� � �1;
y000 = �y0 + (2n+ 1)W; n = �1� � �1: (13)

Green's function for the image of each source can
be approximated by substituting its position in
Eq. (8). Then, the Green's function of the tank can
be expressed by formal summation of these in�nite
Green's functions as:

G =�
1X

n=�1
(I 01 + I 001 )| {z }
J1

+
4
�

1X
n=�1

(I 02 + I 002 )| {z }
J2

+ 4
1X

n=�1
(I 03 + I 003 )| {z }
J3

; (14)

where J1 represents source and its images with respect
to the walls of the tank and the bottom of the tank.

J1 =
1X

n=�1

�
1
r01

+
1
r001

+
1
r02

+
1
r002

�
; (15)

in which:

r021 = (x� x0)2 + (y � y00)2 + (z � z0)2;

r0021 = (x� x0)2 + (y � y000 )2 + (z � z0)2;

r022 = (x� x0)2 + (y � y00)2 + (z + (2h+ z0))2;

r0022 = (x� x0)2 + (y � y000 )2 + (z + (2h+ z0))2:

Figure 2. Image method scheme with respect to the tank
walls.
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The second and third term (J2, J3) could be re-written
in complex space as follows:

J2 = Re

( 1X
n=�1

PV
1Z

0

dk

�=2Z
0

F (�; k; z) cos[k(x�x0) cos �]

�heik(y�y0+2nW ) sin �+eik(y+y0+W+2nW ) sin �
i
d�

)

= Re

(
PV

1Z
0

dk
1X

n=�1

�=2Z
0

[F1(�; k; x; y; z)

+ F2(�; k; x; y; z)]� eik2nW sin �d�

)
;

(16)

in which:

F1(�; k; x; y; z)

= F (�; k; z) cos[k(x� x0) cos �]eik[y�y0] sin �;

F2(�; k; x; y; z)

= F (�; k; z) cos[k(x� x0) cos �]eik[y+y0+W ] sin �;

and:

J3 = Re

( 1X
n=�1

�=2Z
0

G(�;K; z) sin[K(x� x0) cos �]

�heiK(y�y0+2nW ) sin �+eiK(y+y0+W+2nW ) sin �
i
d�

)

= Re

( 1X
n=�1

�=2Z
0

[G1(�;K; x; y; z)

+G2(�;K; x; y; z)]� eiK2nW sin �d�

)
;

(17)

where:

G1(�;K; x; y; z)

= G(�;K; z) sin[K(x� x0) cos �]eiK[y�y0] sin �;

G2(�;K; x; y; z)

=G(�;K; z) sin[K(x�x0) cos �]eiK[y+y0+W ] sin �:

3.2. Asymptotic analysis for J1
Slow convergence of the series in Eq. (15) causes
di�culties in numerical applications [2,16]. The Eigen
function expansions and their deriving approaches
given by Ismail and Elbenhady [9] are adopted to
obtain an applicable form of J1. For a singularity 1=r
in the middle of parallel planes, the Green's function
( �G) is written as [16]:

�G(�; y;�) = (�2 + y2)�1=2

+
1X

m=�1
m6=0

n�
�2 + (y �m�)2��1=2 � jm�j�1

o
; (18)

where � is the width of parallel planes, and � =p
x2 + z2. In the in�nite series in Eq. (18),
jm�j�1parameter, as a constant, is subtracted from
each term of fundamental solution to reach to the con-
vergent series. Using the Eigen function expansions can
make the Green's function be more rapidly convergent.
An alternative form of Eq. (18) is given as [16]:

�G(�; y)=�2
�
C+ln

�
2

�
+4

1X
m=1

k0(2�m�) cos(2�my);
(19)

where C = 0:577215665 is the Euler's constant given
by Gradshteyn and Ryzhik [15], and k0 is the modi�ed
Bessel function of the second kind of order zero. In
Eq. (15), the four slow convergent in�nite series of
singularities can be written for � � 2W .

S1 =
�
(x� x0)2 + (y � y0)2 + (z � z0)2��1=2

+
+1X

n=�1
n 6=0

n�
(x� x0)2 + (z � z0)2

+ (y � y0 � 2nW )2��1=2 � j2nW j�1
o
; (20)

S2 =
�
(x� x0)2 + (y � y0 �W )2 + (z � z0)2��1=2

+
+1X

n=�1
n 6=0

n�
(x� x0)2 + (z � z0)2

+ (y + y0�W�2nW )2��1=2�j2nW j�1
o
; (21)

S3 =
�
(x� x0)2 + (y � y0)2 + (z + (2h+ z0))2��1=2

+
+1X

n=�1
n 6=0

n�
(x� x0)2 + (z + (2h+ z0))2

+ (y � y0 � 2nW )2��1=2 � j2nW j�1
o
; (22)
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S4 =
�
(x�x0)2+(y+y0�W )2+(z+(2h+z0))2��1=2

+
+1X

n=�1
n 6=0

n�
(x� x0)2 + (z + (2h+ z0))2

+ (y + y0 �W � 2nW )2��1=2 � j2nW j�1
o
: (23)

By substituting Eqs. (20)-(23) into Eq. (19), four
rapidly convergent series are obtained. For example,
S1 series can be written in the following form:

S1 =� 2

 
C + ln

p
(x� x0)2 + (z � z0)2

2

!
+ 4

1X
m=1

B0

�
2�m

p
(x� x0)2 + (z � z0)2

�
cos [2�m(y � y0)] : (24)

Other series can be transformed in the same manner.
Formal summation of convergent series S1, S2, S3,
S4 makes a unique series for application in numerical
computation.

3.3. Modifying analysis for J2 and J3
Simpli�cation of J2 and J3 from the integral series
to a simpler form can be carried out by the Poisson
summation formula described in general form as:

SN =
1X

n=�1

bZ
a

E(�)einf(�)d�=
bZ
a

E(�)
1X

n=�1
e2f(�)d�;

(25)

where E(�) is an arbitrary function. Using a convergent
geometric series given by Gradshteyn and Ryzhik [15],
we have:

N�1X
n=�N

en =
eN � e�N
e� 1

; (26)

and substituting Eq. (26) into Eq. (25), we have:

SN =
bZ
a

F (�)
�
eiNf(�) � e�iNf(�)�

eif(�) � 1
d�;

when N !1; (27)

where F (�) is an arbitrary function and the integrand
has poles on �m = �2m�. Taylor expansion of f
function for � = �m + p can be written as:

f(�) = f(�m) + pf 0(�m) + p2=2f 00(�m) + � � �
� 2m� + pf 0(�m): (28)

Thus:

eif(�) � 1 = eipf
0(�m) � ipf 0(�m); as p! 0:

(29)

There might be a number of such poles at [a; b] in
Eq. (27) when N ! 1. If each pole has the vicinity
(�"; "), then Eq. (27) can be obtained as:

SN =
X
m

"Z
�"

F (�m)

h
eiNpf

0(�m) � e�iNpf 0(�m)
i

ipf 0(�m)
dp:

(30)

By substituting:

u = Npf 0(�m);

du = Nf 0(�m)dp;

R = N"f 0(�m):

Eq. (31) can be achieved.

SN =
0X
m

� F (�m)
if 0(�m)

RZ
�R

[eiu � e�iu]
u

du

�
+ f 0(�m) > 0
� f 0(�m) < 0 =

0X
m

2�F (�m)
jf 0(�m)j ; (31)

where
P0 denotes that if � = a or � = b, the term

m = 0 must be halved. In the same manner, Eqs. (16)
and (17) can be modi�ed for (0 � � � �=2), and the
modi�ed form of the equations can be written as:

J2 =Re

(
PV

1Z
0

dk
�
W

1X
m=0

0
F (�m; k; z)
k cos �m

� cos(kx cos �m)eiky sin �m

�
e�iky0 sin �m + (�1)meiky0 sin �m

�)

=
2�
W
PV

1Z
0

dk
�
W

1X
m=0

0
F (�m; k; z)
k cos �m

� cos(kx cos �m)

�
(

cos(ky sin �m) cos(ky0 sin �m)
sin(ky sin �m) sin(ky0 sin �m)

(32)
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in which cos and sin depend on the odd and even value
of m, respectively, and k sin �m = m�=W .

J3 =
2�
W

1X
m=0

0
e�Kmh(K0 +Km cos2 �m)�

1�K0h sech2(Kmh) + sin2 �m
�

� cosh(Km(z + h))
cosh(Kmh)

cosh(Km(z0 + h))

� sin(Km(x� x0) cos �m)
Km cos �m

�
(

cos(Kmy sin �m) cos(Kmy0 sin �m)
sin(Kmy sin �m) sin(Kmy0 sin �m)

(33)

Also, cos and sin depend on the odd and even value of
m, respectively, and Km sin �m = m�=W .

3.4. Evaluation of the principal value integral
in J2

In general, Cauchy principal value integral could be
introduced for the �rst order pole as follows:

I = limjxj!1

bZ
a

D(k)
k �Keid(k)xdk = ��iD(K)eid(K)x;

(34)

in which the � sign is for x < 0 and the + sign is for
x > 0. Function g is de�ned as follows:

g(k) = k �K0 sec2 �m tanh(kh) = 0: (35)

Using a derivative of function g with respect to k
and k sin �m = m�=W , the Taylor expansion of this
function can be written as:

g(k)=g0(K)(k�K)=(1�K0h sec2 �m sech2(Kh)

+ 2K0 tan2 �m sec2 �m tanh(Kh)=K)(k �K)

= sec2 �m(1�K0h sech2(Kh)+sin2 �m)(k�K):
(36)

It can be shown that K = Km for Km sin �m = m�=W .
If function D and function d are de�ned as:

D(Km) =
e�Kmh cosh[Km(h+ z0)]

(1�K0h sech2(Kmh) + sin2 �m)

� (K0 +Km cos2 �)
cos[Km(z + h)]

cosh(KmH)

� 1
Km cos �m

�
(

cos(ky sin �m) cos(ky0 sin �m)
sin(ky sin �m) sin(ky0 sin �m) (37)

d(Km) = Km cos �m; (38)

then the principal value integral, J2, can be calculated
as:

J2 =
2�
W

1X
m=0

0
fReal(I)g

=
2�
W

1X
m=0

0
f��D(Km) sin(Km(x� x0) cos �m)g

=� 2�2

W

1X
m=0

0
e�Kmh(K0 +Km cos2 �m)

(1�K0h sech2(Kmh) + sin2 �m)

� cosh(Km(z0 + h))
cosh(Kmh)

cosh(Km(z + h))

� sin(Km(x� x0) cos �m)
Km cos �m

�
(

cos(Kmy sin �m) cos(Kmy0 sin �m)
sin(Kmy sin �m) sin(Kmy0 sin �m)

(39)

4. Analysis of results

The e�cient free-surface Green's function in a nu-
merical towing tank is developed in this paper. The
open-sea Green's function and image method are em-
ployed to obtain an appropriate NTT Green's function.
Asymptotic analysis based on Eigen function expan-
sions and the Cauchy principal value integral associated
with the Poisson summation formula are applied to re-
move computational singularities (i.e. slow convergent
in�nite series in the principal value integral).

Usually, the physical towing tank is used to test
models in open-sea and restricted water conditions.
Therefore, the NTT Green's function must be tested
and be able to model the open-sea and restricted water
conditions. In the following, numerical computation
of NTT Green's function is carried out for two case
studies, i.e. uniform motion of a submerged sphere
and an ellipsoid. Added mass and the distribution of
potential over the body sphere in open-sea conditions
are calculated and compared with the analytic and
numerical solutions. The e�ect of the wall of the tank
on the free-surface disturbance induced by a sphere and
an ellipsoid motion in the tank is also investigated.

4.1. Towing tank Green's function veri�cation
The towing tanks have been widely used to determine

uid 
ow and hydrodynamic resistance for the bodies
moving in the open-sea and restricted water conditions.
Figure 3 shows the results of the proposed towing tank
Green's function and the open-sea Green's function of
a singularity located at (0; 0;�f) in the uniform 
ow
proposed by Sahin and Hyman [3]. The submergence
depth parameter of a source point is de�ned by � =
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Figure 3. Comparison of velocity coe�cient of a source in the open-sea condition.

(h� f)=h, and the depth Froude number is de�ned as
Fh = U=

p
gh. Velocity coe�cient is � = (@G=@x)h2=m

in which m is the source strength computed at (y =
0; z = �h). Velocity coe�cient is calculated in two

ow regimes (Fh = 0:5, 0:7) and di�erent submergence
depth parameters of the sources. It is worth mentioning
that the width of the towing tank is taken very large
(1000h) for the comparison of the results obtained by
the modi�ed Green's function and the results reported
by Sahin and Hyman [3].

The disturbance wave pattern can be approx-
imated through the linearized dynamic free-surface
boundary condition as below:

� = U
@G
@x

: (40)

Wave propagation in open-sea state induced by the
existence of a source point in uniform 
ow is illus-
trated over half of the domain in Figure 4 for two

di�erent 
ow regimes (di�erent depth Froude number)
and a constant submergence depth parameter. It is
shown that a wave pattern for a constant submergence
depth parameter is severely a�ected by 
ow regimes.
The amplitude of wave is increased, and waves are
propagating divergently as the uniform 
ow velocity is
increased. The wave pattern for a source point with a
constant depth Froude number (Fh) and di�erent depth
parameter (�) is illustrated in Figure 5. It shows that
when submergence depth parameter is increased, the
disturbance wave amplitude enlarges and wave pattern
diverges.

Re
ected waves from the walls of the tank are
essential for the investigation of the e�ect of walls on
the free-surface disturbance and capability of the image
method to model the tank walls boundary condition.
Figure 6 shows the wave pattern of a source point
located at a constant depth parameter under the
di�erent 
ow regimes in a towing tank. Meanwhile,
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Figure 4. Disturbance wave pattern of a source in the
di�erent 
ow regimes (depth Froude number) at � = 0:5.

Figure 5. Wave pattern comparison of a source in a
constant 
ow regime (Fh = 0:7) and various �; SL
(� = 0:7), SR (� = 0:9).

when the wave pattern is more divergent, the fully
developed re
ected wave �eld is beginning farther than
the source point.

4.2. Numerical examples
The modi�ed towing tank Green's function is applied in
a numerical computation of the motion of a sphere and
an ellipsoid in NTT. The distribution of the velocity
potential over a sphere and the surge added mass
(m11) are computed and compared with the analytical
solutions and the existing numerical results. In this
study, the direct boundary integral method is used
to compute potential 
uid 
ow. The body surface is
described by triangle panels as shown in Figure 7.

The towing tank Green's function is substituted in

Figure 6. Wave pattern of a source in the NTT with a
constant submergence depth parameter (� = 0:7) and the
tank's width 30 (m) at various 
ow regimes.

Figure 7. Triangle meshes over the body surface.

the Green's formula for modeling the uniform motion of
a 
oating or submerged body in the numerical towing
tank. The second Green's identity is written as:ZZ

Sq

�
�q
@GPq
@nq

�GPq @�@nq
�
dSq = "(P )�(P ); (41)

where P is a �eld point, q is a source point, and Sq
indicates body surface. "(P ) depends on the position
of the �eld point, which can be located on the body
surface ("(P ) = 2�) or in the control volume ("(P ) =
4�) or out of the domain ("(P ) = 0). The constant
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panel method is used in the numerical computation.
The distribution of velocity potential over the panels
is assumed to be constant, and the source point is
located at the center of each panel. On each panel,
the normal 
ux of potential (body boundary condition)
is the known value, and the potential is the unknown
value that must be calculated. Impermeable body
condition is expressed as:

@�
@n

�
Sq

= 0! @�
@n

�
Sq

= Unx; (42)

in which nx is x coordinate of body unit normal vector
directed into the 
uid. The descritized form of Eq. (41)
can be written as:

NX
j=1

264�jZZ
Sj

@Gij
@nj

dSj+2��j�ij

375=
NX
j=1

ZZ
Sj

GijU~i:~njdSj ;
(43)

where � is Kronecker delta function, and j indicates the
number of panels and i shows the �eld point. Eq. (43) is
an algebraic system of equations with unknown values
on the left hand side and the vector of known values
on the right side of equation.

The uniform motion of a sphere with radius r
and U = 1m=s in an unbounded 
uid is simulated.
Determination of perturbation potential on the sphere
body is veri�ed by computation of the surge added
mass (m11) and distribution potential over the body
surface. The added masses are de�ned as:

mij = �;
ZZ
Sq

�j
@�j
@n

dS; i; j = 1; 2; � � � 6: (44)

Table 1 shows the result of computation of the surge
added mass, using the proposed Green's function and
the exact solution. It is shown that accurate results
can be obtained by present Green's function. However,
increase in the number of panels results in decrease in
the error of computation.

The distribution of velocity potential over the
sphere is calculated in unrestricted water to prove the
simulation in this numerical towing tank. The radius of

the sphere is taken to be 1 and the unbounded uniform

ow is from�x direction with its speed U = 1m=s. The
perturbation potential along the polar angle, � = 0 deg.
to � = 90 deg., at the y plane on sphere surface are
computed and compared with the exact solution and
Kim and Shin calculations [17] in Figure 8. To compare
the results with Kim and Shin [17], the computation
is conducted for the tank with very large dimensions
(h = 100f , W = 1000h).

Furthermore, the e�ect of tank width on the surge
added mass coe�cient (m11=��r3) of this unit radius
sphere is shown in Figure 9. It was shown that surge
added mass was increased severely as tanks width was
decreased for a constant depth. The walls of the tank
restrict 
uid 
ow around the body and 
uid particles
are forced to pass the body more quickly by decreasing
the tank width.

Figure 8. Perturbation potential on the sphere surface.

Figure 9. Surge added mass coe�cient of the unite radius
sphere in the towing tank (Fh = 0:1) with various width.

Table 1. The surge added mass of a sphere.

No. of panels NTT solution of
m11=��r3

Exact solution of
m11=��r3 % of error Abs. error

512 6.7605E-01 6.6667E-01 1.4075E+00 9.3833E-03
768 6.7592E-01 6.6667E-01 1.3880E+00 9.2533E-03
1064 6.6754E-01 6.6667E-01 1.3100E-01 8.7333E-04
1565 6.6700E-01 6.6667E-01 5.0000E-02 3.3333E-04
2048 6.6698E-01 6.6667E-01 4.6499 E-02 3.1000E-04
3072 6.6701E-01 6.6667E-01 5.0999E-02 3.4000E-04
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Furthermore, Figure 10 presents a comparison of
the dimensionless wave elevation (�=h) of the center
plane in an unbounded domain for the various tanks
width -to- bodies width W=B in a constant submerged
depth parameter and a constant 
ow regime. Longitu-
dinal length of ellipsoid is 2b and transverse length in
z direction is 2a and in y direction is 2c.

Contours of wave patterns due to the presence of a

sphere and ellipsoid in open-sea conditions with various

ow velocities are presented in Figure 11. Submergence
depths of bodies are 2(m) under the free-surface.

5. Conclusion

The measuring of hydrodynamic characteristics, re-
sistance and analysis of 
uid 
ow for a body mov-

Figure 10. Comparison of calculated center plane wave pro�le in unbounded and at various W=B for a sphere and an
ellipsoid at Fh = 0:7 and � = 0:5.

Figure 11. Wave pattern comparisons due to di�erent 
ow regimes.
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ing uniformly in open-sea conditions or in restricted
water conditions are usually carried out by towing
tank experiments which could be expensive and time-
consuming. Numerical computation is a powerful tool
for simulating the motions of a body in NTT. How-
ever, accuracy of the results depends on the method
and the Green's function used in the computation.
Green's function is a fundamental solution of Laplace
equation for a constant strength source, which satis�es
speci�c boundary conditions. Free-surface boundary
conditions, impermeable bottom and walls of the tank
condition, and the radiation condition on upstream of
the source are considered in the fundamental solution of
towing tank. A modi�ed Green's function for numerical
towing tank is developed on the basis of the free
surface Green's function for unbounded domain. The
NTT Green's function contains in�nite slow convergent
series and principal value integrals whose numerical
application causes di�culties in the solutions. The
Eigen function expansions and the Poisson summation
formula combined with the Cauchy principal value
integral are employed to overcome the di�culties of
numerical computation.

Tank walls con�ne streamline 
ow around the
body, and cause the 
uid to travel the body surface
more rapidly than in the absence of the tank walls. The

ow regime and the width of the tank a�ect the 
ow
characteristics around the body in the towing tank, and
consequently change the free surface disturbance. It
could be shown that the wave amplitude was increased
when the width of the tank was decreased. Indeed, wa-
ter accumulation due to the wall and bottom boundary
results in the change in the 
ow streamlines and the
increase in water particle velocity and wave making
resistance.
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