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Abstract. Here, the higher order approximation of forced Du�ng equation is studied.
First, using the renormalization group method, the modulation equations of Du�ng
equation in the case of primary resonance is determined. The resulting modulation
equations are identical with those previously obtained by the method of multiple scales and
generalized method of averaging. Second, the periodic steady state behavior of the solutions
and the problem of spurious solutions in higher order approximation are considered.
It is shown that depending on the truncation method of original phase and amplitude
modulation equations, two types of frequency response equation may be obtained. One
possesses spurious solutions for the case of softening nonlinearity, and the other for the case
of hardening nonlinearity. Furthermore, it is shown that the truncation of the frequency
response equation do not necessarily lead to more accurate results. Finally, by application
of root classi�cation of polynomials and Descartes' rule of signs, a criterion is presented
to detect the existence of spurious solutions in any point of frequency response equation
without solving it. This method is also applicable to other nonlinear systems.
© 2013 Sharif University of Technology. All rights reserved.

1. Introduction

The perturbation methods are among the most pow-
erful methods in applied mathematics and engineer-
ing [1,2], and have been applied in diverse problems
(e.g. [3-9]). The problem of higher order approximation
of nonlinear systems, using perturbation methods, has
been studied previously by some researchers. Nayfeh
in a series of papers [10-15] applied the Method of
Multiple Scales (MSM) to obtain the higher order
approximation of some nonlinear systems. He used
the method of reconstitution [15] to determine the
modulation equation. Only the solutions which were
the continuation of �rst order solutions was considered,
and the spurious solutions were discarded. Rahman
and Burton [16,17] called this method the version
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I of MSM. They devised the version II of MSM in
an attempt to obtain higher order approximations of
nonlinear systems that are free from spurious solu-
tions. Later, di�erent types of nonlinear systems were
studied by others, using this version of MSM [18-
24]. Nayfeh [25] compared the MSM and Generalized
Method of Averaging (GMA) to determine the higher
order approximation of some nonlinear systems, and
found that these methods produce the same modu-
lation equations. Moreover, he showed that spurious
solutions are not avoidable, in general, either in version
I or in version II of the MMS. He concluded that in
Du�ng equation in the case of primary resonance, the
spurious solutions do exist for the case of hardening
nonlinearity.

In statistical mechanics and quantum �eld theory,
Renormalization Group Method (RGM) extracts the
features of system, which are insensitive to details [26].
So, this method was regarded as an asymptotic anal-
ysis [27]. The RGM, was �rst proposed by Chen et
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al. [27,28]. The RGM may be applied to a wide range
of problems, which were treated before by MSM, GMA
and WKB methods [29]. In contrast to these methods,
RGM requires neither assumptions about the structure
of perturbation series (e.g. time scales in MSM), nor
the use of asymptotic matching [28]. Nevertheless, this
method is less well-known in engineering community.
Kunihiro [30,31] formulated the RGM, based on the
classical theory of envelopes for both scalar and vector
�elds. Mudavanhu and O'malley [32] developed a
simpli�ed version of RGM to determine the higher
order approximation. This version is valid on larger
time intervals in comparison with GMA and MSM.
Chiba [33] showed that the RGM could be used to
determine the approximate center manifold and the
approximate ow on it. Furthermore, he investigated
higher order RG equations to re�ne the approximate
solutions [34]. DeVille et al. [35] concluded that the
RG method may be used to determine the normal
forms of autonomous and non-autonomous perturbed
di�erential equations. Hosseini [36] proposed a direct
method based on the RGM for determining the ana-
lytical approximation of weakly nonlinear continuous
systems. This method may be a suitable alternative
method for multiple scales method in treating nonlinear
continuous systems.

The Du�ng equation has been extensively studied
in the literature by di�erent methods (e.g. [37,38]). In
present paper, the higher order approximation of Du�-
ing equation in the case of primary resonance is studied.
The RGM is applied, and a modulation equation is
found that is identical with those obtained by MSM
and GMA in [25]. The analysis is important because
although the RGM is very powerful and versatile, there
is no use for this method in engineering problems, and
it is relatively unknown for engineers. Furthermore, a
few studies have been reported for the application of
RGM to forced nonlinear oscillators [39]. Moreover,
the present study shows that the results obtained by
RGM are identical to the results of version I of MSM
and not to the version II of MSM. On the other
hand, one will observe that the application of RGM in
higher order approximation is simpler than the other
methods. To apply the higher order MSM, the method
of reconstitution [15] is necessary, but in RGM, the
higher order approximation is direct. A discussion on
this case is presented at the end of Section 2. In Section
3, the periodic steady state behavior of these solutions
is studied. Previously, Nayfeh [25] has concluded that
in Du�ng equation in the case of primary resonance,
the spurious solutions exist for the case of softening
nonlinearity. It is shown that this result is not always
true. It is shown that depending on the truncation
method of original phase and amplitude modulation
equations, two types of frequency response equation
may be obtained. One possesses spurious solutions

for the case of softening nonlinearity and the other for
the case of hardening nonlinearity. Furthermore, it is
shown that in contrast to statement of [25], truncation
of the frequency response equation does not necessarily
lead to more accurate results. Finally, by application
of root classi�cation of polynomials and Descartes' rule
of signs, a criterion is presented to detect the existence
of spurious solutions in any point of frequency response
equation without solving it. This procedure is also
applicable to other nonlinear systems.

2. Application of the RGM to Du�ng
equation in the case of primary resonance

In this section, �rst the renormalization group method
is reviewed, and then it is applied to the Du�ng equa-
tion. Our presentation is brief; the related theoretical
basis and rigorous proofs can be found in [33-35].

2.1. A brief review of the RGM
Here, the RGM is described and it is implemented to an
initial value problem. The present description closely
follows Chiba [34]. Consider the following di�erential
equation:

_x = Hx + "g1(t;x) + "2g2(t;x); (1)

where H is n � n diagonal matrix all of whose eigen-
values lie on the imaginary axis; x is the vector of
dependent variables; t is independent variable, and " is
a small parameter. It is assumed that gj(t;x)j = 1; 2
is periodic in t and polynomial in x.

Substituting the na��ve (straightforward) expan-
sion:

x = x0 + "x1 + "2x2; (2)

into Eq. (1), the following is found:

_x0 + " _x1 + "2 _x2 = H(x0 + "x1 + "2x2)

+
2X
j=1

"jgj(t;x0 + "x1 + "2x2): (3)

Expanding Eq. (3) with respect to ", and equating the
like coe�cients of "j , the following is obtained:

_x0 = H(x0); (4)

_x1 = Hx1 +G1(t;x0); (5)

_x2 = Hx2 +G2(t;x0;x1); (6)

where:

G1(t;x0) = g1(t;x0);

G2(t;x0;x1) =
@g1

@x
(t;x0)x1 + g2(t;x0): (7)
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The solution of Eq. (4) is:

x0 = X(t)A; (8)

where X(t) = eHt is the fundamental matrix, and A
is the vector of initial value. Substituting Eq. (8) in
Eq. (5), and solving the result, the following is found:

x1 =X(t)X(�)h+X(t)
tZ
�

X(t)�1G1(s;X(s)A)ds;
(9)

where h is the vector of initial value at initial time � .
Now, substituting Eq. (9) into Eq. (6) and solving the
result, one may obtain a solution for x2. It is noted
that the solutions x1 and x2 are the functions of � and
A. Finally, applying the RG condition:

d
d�

����
�=t

�
x0+"x1(t; �;A(�))+"2x2(t; �;A(�))

	
= 0;

(10)

a di�erential equation is obtained in term of A(t).
This di�erential equation is called RG equation or
modulation equation. As Kunihiro [30,31] stated,
with the application of RG condition (Eq. (10)), an
envelope for the family (Eq. (2)) parameterized by � is
constructed. The other interpretation is that [40] \the
na��ve perturbation is independent of the parameter
� , hence the approximate solution should not depend
on �". It is observed that RGM requires neither
assumptions about the structure of perturbation series
(e.g. time scales in MSM) nor the use of asymptotic
matching.

In the next subsection, the present general ap-
proach is applied to Du�ng equation to study the
problem of spurious solutions in the higher order
approximation of this equation.

2.2. Application of the RGM to the Du�ng
equation

Following [16,17,25], the primary resonance of Du�ng
equation is considered:


2 d2u
dt2

+ u+ 2"�

du
dt

+ "�u3 = "F cos(t); (11)

where u is displacement, 
 excitation frequency, �
damping coe�cient, F excitation amplitude, t time
and " positive ordering parameter. The parameter �
is the coe�cient of nonlinearity term. All variables
and parameters are in dimensionless form. Using
transformations u = � + ��, du

dt = i(� � ��), the above
equation in complex variable form becomes:


2 d�
dt

=
1
2
i
2(� � ��) +

1
2
i(� + ��)� "�
(� � ��)

+
1
2
i"�(� + ��)3 � 1

4
iF"(eit + e�it); (12)

where an overbar denotes a complex conjugate, and
i =
p�1.

Here, only primary resonance is considered.
So [25]:


2 = 1 + �";


 = 1 +
1
2
�"� 1

8
�2"2 + � � � (13)

where � is a detuning parameter.
The RGM is applied to Eq. (12). Substituting the

naive (straightforward) expansion:

� = �0 + "�1 + "2�2; (14)

into Eq. (12) and using Eq. (13), the following is
obtained:

O("0):

d�0
dt
� i�0 = 0; (15)

O("1):

d�1
dt
� i�1 = �(��0 � �0)� 1

2
i�(��0 + �0)

+
1
2
i�(�0 + ��0)3 � 1

4
iF (eit + e�it); (16)

O("2):

d�2
dt
� i�2 = �(��1 � �1)� 1

2
i�(��1 + �1)

+
1
2
��(�0 � ��0) +

1
2
i�2(�0 + ��0)

+
3
2
i�(�1 + ��1)(�0 + ��0)2 � 1

2
i��(��0 + �0)3

+
1
4
i�F (eit + e�it): (17)

The solution of Eq. (15) with initial time � is:

�0 = Aei(t��); (18)

where A is a complex constant.
Substituting Eq. (18) into Eq. (16) and solving

the outcome, it is found:

�1 =
1
4
i(4i�A+ 6�A2 �A� 2�A� F )(t� �)ei(t��)

+
1
8

(4i� �A+2�+F�6�A �A2�� �A3+2�A3)ei(t��)

+
1
8

(4i�+ 2� �A+ F � 6�A �A2)e�i(t��)

� 1
8
� �A3e�3i(t��) +

1
4
�A3e3i(t��): (19)
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In the above equation, the homogenous parts of the
solution are chosen so that �1(�) = 0. The integration
constant A is renormalized and the homogenous parts
of solutions are absorbed into it. Consequently, a new
integration constant A = A(�) is generated. Removing
the non-secular resonance terms at �rst order [35], the
following is found:

~�1 =
1
4
i(4i�A+ 6�A2 �A� 2�A� F )(t� �)ei(t��)

+
1
8

(4i� �A+ 2� �A+ F � 6�A �A2)e�i(t��)

� 1
8
� �A3e�3i(t��) +

1
4
�A3e3i(t��): (20)

Substituting Eqs. (18) and (20) into Eq. (17), solving
the outcome with initial time � and removing the non-
secular resonance terms, the following is obtained:

~�2 =
1
16

(6i�2A� 8i�2A+ 8��A� 51i�2A3 �A2

+ 3iF� + 2F�+ 6iF�A �A

+ 3iF�A2)(t� �)ei(t��) +
1
16
i(�12i��A2 �A

� 48��A2 �A+ 2i�2A� 8i�2A+ 8��A

+ 18i�2A3 �A2 + F�i+ 2F�� 6iF�A �A

+ 3iF�A2)(t� �)2ei(t��) +
1
32

(�12F�A �A

� 2F� � 12��A �A2 � 48i��A �A2 � 4�2 �A

+ 69�2A2 �A3)e�i(t��) � 1
16

(�2i�2 �A+ 8�� �A

+ 8i�2 �A+ 12i��A �A2 � 48��A �A2

� 18i�2A2 �A3 � F�i+ 2F�� 3iF� �A2

+ 6iF�A �A)(t� �)e�i(t��) +
1
32

(�18i��A3

+ 3��A3 � 30�2A �A4 + 6�FA2)e3i(t��)

� 3
16
i(2�A� 4i�A� 6�A2 �A

+ F )(t� �)e3i(t��) � 1
128

(24i�� �A3

� 42�2A �A4 + 9�F �A2)e�3i(t��) � 3
32
i(2� �A

+ 4i� �A� 6� �A2A+ F )(t� �)e�3i(t��)

+
3
64
�2A5e5i(t��) � 1

32
�2 �A5e�5i(t��): (21)

With the application of the RG condition:

d(�0 + "~�1 + "2 ~�2)
d�

�����
�=t

= 0; (22)

and bearing in mind that A = A(�), the following is
found:

dA
dt

=
1
4

(6i�A2 �A� iF � 2i�A� 4�A)"

+
1
16

(8��A+ 6i�2A+ 2�F � 8i�2A

+ 3i�F + 6i�FA �A� 51i�2A3 �A2

+ 3iF�A2)"2 +O("3): (23)

Neglecting the higher order terms O("3), the RG
equation [34] is found as:

dA
dt

=
1
4

(6i�A2 �A� iF � 2i�A� 4�A)"

+
1
16

(8��A+ 6i�2A+ 2�F � 8i�2A

+ 3i�F + 6i�FA �A� 51i�2A3 �A2

+ 3iF�A2)"2: (24)

Substituting the polar form:

A =
1
2
ae�i; (25)

into Eq. (24) and separating real and imaginary parts,
the phase and amplitude modulation equations are
obtained as:

da
dt

=�
�
�a+

1
2
F sin �

�
"+

�
1
2
��a+

1
4
�F cos �

+
3
8
�F sin � +

3
32
�Fa2 sin �

�
"2; (26)

d�
dt

=
�

3
8
�a2 � F cos �

2a
� �

2

�
"+

�
3�F cos �

8a

� �F sin �
4a

+
9
32
F�a cos � � 51

256
�2a4

� �2

2
+

3�2

8

�
"2: (27)

Eqs. (26) and (27) are identical with Eq. (26) of [25]
obtained by MSM (version I) and GMA. So, the three
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methods RGM, MSM, and GMA give the same higher
order approximation for primary resonance of Du�ng
Eq. (11). A comprehensive discussion of Eqs. (26)
and (27) was presented in [18]. In addition, a complete
discussion in versions I and II of MSM can be found
in [17].

Let us compare the application of two methods
MSM and RGM in higher order approximation of Du�-
ing equation. It seems that the application of RGM in
higher order approximation is simpler than the MSM.
In the application of MSM, only particular solution of
higher order problems is often included [1,2]. But to
obtain Eq. (24), Nayfeh [25] included the homogeneous
solution of the higher order problem. Furthermore, in
MSM, two or more complex-valued partial di�erential
equations are obtained for modulation of amplitude
and phase. Instead of solving theses equations di-
rectly, Nayfeh [15] combined these partial di�erential
equations (i.e. the method of reconstitution) to obtain
an ordinary di�erential equation. On the other hand,
some authors [20-23] used the original complex-valued
partial di�erential equations of modulation to treat
the problem. But in RGM, the modulation equation
(i.e. Eq. (24)) is determined directly without any
extra computations and assumptions. Furthermore,
the RGM requires no assumption about the structure
of perturbation series, i.e. time scales. Consequently,
in comparison to MSM, higher order approximation in
RGM is more natural and may be e�ciently used for
other problems in engineering.

3. Steady state periodic solution

Periodic solution of Eq. (11) corresponds to the equilib-
rium solution of Eqs. (26) and (27). So, the following
algebraic equations are found for the periodic solution
of Eq. (11):

��a� 1
2
F sin � +

�
1
2
��a+

1
4
�F cos � +

3
8
�F sin �

+
3
32
�Fa2 sin �

�
" = 0; (28)

3
8
�a2 � F cos �

2a
� �

2
+
�

3�F cos �
8a

� �F sin �
4a

+
9
32
F�a cos � � 51

256
�2a4 � �2

2
+

3�2

8

�
" = 0:

(29)

One may solve Eqs. (28) and (29) simultaneously for
a and �, using numerical methods [10-14]. Other ap-
proach is eliminating phase � and obtaining an equation
in amplitude a, i.e. frequency response equation. In the
later approach, �rst Eqs. (28) and (29) are solved for
cos(�) and sin(�) as:

sin � =
f1

g
; cos � =

f2

g
; (30)

where:

f1 =� �a[(96�2 + 51�2a4 + 128�2 + 144��a2)"2

� (512� + 384�a2)"+ 512];

f2 =
1
8

[(612�2�a5 � 288��2a3 + 384��2a3

+ 512��2a+ 153�3a7 � 1152�3a)"2

+ (�768��a3 � 1104�2a5 + 3072�2a)"

+ (�2048�a+ 1536�a3)];

g =F [(144�2 + 27�2a4 + 64�2 + 144��a2)"2

� (384� + 192�a2)"+ 256]: (31)

Using identity sin2(�) + cos2(�) � 1 = 0 and Eqs. (30)
and (31), the following is obtained:

f2
1 + f2

2 � g2 = 0: (32)

Substituting Eq. (31) into Eq. (32), the frequency
response equation is found as:�

23409�6a14

4194304F 2 + P12

�
"4 +

�
10557�5a12

131027F 2 + P10

�
"3

+
�

6597�4a10

16384F 2 + P8

�
"2 +

�
�207�3a8

256F 2

+
33��2a6

64F 2 � 6��2a4

F 2 +
3��2a4

F 2 � 8�2�a2

F 2

� 3�3a2

F 2 +
3�a2

2
+ 3�

�
"+

9�2a6

16F 2 � 3��a4

2F 2

+
4�2a2

F 2 +
�2a2

F 2 � 1; (33)

where Pi is polynomial of degree i in a that for the sake
of brevity, it is not presented. It is stated in [25] that
the terms O("2) and higher in Eq. (33) are incomplete
and must be discarded, i.e.:�
� 207�3a8

256F 2 +
33��2a6

64F 2 � 6��2a4

F 2 +
3��2a4

F 2

� 8�2�a2

F 2 � 3�3a2

F 2 +
3�a2

2
+ 3�

�
"+

9�2a6

16F 2

� 3��a4

2F 2 +
4�2a2

F 2 +
�2a2

F 2 � 1: (34)
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This truncated frequency response equation is not
equivalent to Eqs. (28) and (29). Consequently, if one
can solve Eqs. (28) and (29) in a and � [10-14], he/she
can also solve Eq. (33) without truncating it. One
may think that the number of spurious solutions in
truncated Eq. (34) is necessarily less than the original
Eq. (33). This is generally not the case. For example,
in the case of hardening nonlinearity, � > 0, even for
very small value of ", Eq. (34) has spurious solution
for any �, but Eq. (33) may not. To investigate this
case more thoroughly, the amplitude a versus detuning
parameter � are presented in Figures 1 and 2. These
�gures are plotted for hardening case with the following
data:

" = 0:005; � = 1; F = 1; � = 0:1:

In both �gures, the �rst order approximation (the
case " = 0 in Eq. (34)) is plotted. Second order

Figure 1. Amplitude versus detuning parameter for
hardening case � = 1.

Figure 2. Amplitude versus detuning parameter for
hardening case � = 1.

approximation corresponding to Eqs. (33) and (34)
are shown in Figures 1 and 2, respectively. It is
observed that Eq. (34) for these data does not possess
the spurious solution, but Eq. (33), even for the small
value, " = 0:005, has spurious solution. For softening
case (" = 0:005, � = �1, F = 1, � = 0:1.), Figures 3
and 4 are plotted. Again, it is observed that Eq. (34),
for these data, does not possess the spurious solution,
but Eq. (33) has spurious solution. Therefore, the
statement of [25], that to obtain a consistent expansion
(i.e. a solution without spurious solution), the terms
O("2) and higher in frequency response equation are
incomplete and must be discarded, is not always
true.

Frequency response Eq. (34), when " ! 0, has
spurious solution 1p

23�"
for the case � > 0, i.e. in

the case of hardening nonlinearity. Also, Eq. (33)
does possess spurious solution 4

p
2346

51
p
�" in the case of

hardening nonlinearity, when "! 0.

Figure 3. Amplitude versus detuning parameter for
softening case � = �1.

Figure 4. Amplitude versus detuning parameter for
softening case � = �1.
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There is another method to compute the trun-
cated frequency response equation. In this approach,
�rst, cos(�) and sin(�) de�ned in Eqs. (30) and (31) are
truncated, i.e. f1

g and f2
g in Eq. (31) are expanded in

Taylor series with respect to " up to the �rst order as:

sin(�) = ��a(2 + "�)
F

; (35)

cos(�) =
a(3"�2a4 + 96�a2 � 128�)

128F
: (36)

Using identity:

sin2(�) + cos2(�)� 1 = 0

and Eqs. (35) and (36), and neglecting higher order
terms, the following is obtained:�

9�3a8

256F 2 � 3��2a6

64F 2 +
4�2�a2

F 2

�
"+

9�2a6

16F 2

� 3��a4

2F 2 +
4�2a2

F 2 +
�2a2

F 2 � 1: (37)

Frequency response Eq. (37) is identical to Eq. (59)
of [25], if higher order terms are neglected there.
Although Eq. (37) was previously obtained by
Nayfeh [25], the initial amplitude and phase equations
that have been used in Nayfeh [25] are not the same as
Eqs. (28) and (29).

Furthermore, his method to obtain Eq. (37) is not
similar to the procedure used in Eqs. (36) and (37).
Rather, it is like the procedure used in Eqs. (30)-(34).
But surprisingly, the �nal solution is identical. Eq. (37)
possesses spurious solution 16

3
p��" when "! 0 for � <

0, i.e. in the case of softening nonlinearity. This result
was previously obtained by Nayfeh [25]. In summary,
frequency response Eq. (33) and truncated frequency
response Eq. (34) possess a spurious solution in the
case of hardening nonlinearity, but truncated frequency
response Eq. (37) possesses a spurious solution in the
case of softening nonlinearity. As an example, Figure 5
shows the amplitude a versus detuning parameter � for
the case of softening nonlinearity (" = 0:005, � = �1,
F = 1, � = 0:1.). Second order approximation is
obtained by Eq. (37). It is observed in Figure 5 that in
the case of softening nonlinearity, Eq. (37) has spurious
solutions. Previously, Nayfeh [25] concluded that in
Du�ng equation, in the case of primary resonance,
the spurious solutions do not exist for the case of
hardening nonlinearity. The present analysis showed
that this is not always true. A comparison between
Figures 2 and 5 shows that depending on the truncation
method of original phase and amplitude modulation
equations, two types of frequency response equation
may be obtained. One possesses spurious solutions
for the case of softening nonlinearity (Eq. (37) and

Figure 5. Amplitude versus detuning parameter for
softening case � = �1.

Figure 5) and the other (Eq. (34) and Figure 2) for
the case of hardening nonlinearity.

It is interesting to note that in numerical sim-
ulation of Du�ng equation, in the case of primary
resonance, and in the �rst order approximation of
perturbation method (the case " = 0 in Eq. (34)), the
amplitude of steady state periodic solution is invariant
under � ! ��, � ! �� transformations. In other
words, backbone curves in the cases of hardening and
softening nonlinearity are mirror images of each other.
But higher order approximations, i.e. Eqs. (33), (34)
or (37), do not show this invariant property. It means
that in reduction of forced Du�ng oscillator (Eq. (11))
by higher order approximation of the perturbation
methods, the invariant property of original equation
destroys.

4. Criteria for the existence of spurious
solution in the frequency response equation

Eqs. (34) and (37) possess additional and spurious
solution in some region. To detect the existence of
spurious solution in a speci�ed point of frequency
response equation, one should numerically solve the
equation. A criterion is given that without solving
the frequency response equation, one will be able to
detect the existence of spurious solution in any point
of it. Frequency response Eqs. (34) or (37) are degree
4 in a2 and when " = 0, they are degree 3 in a2.
So, a combination of root classi�cation of cubic and
quartic polynomials and Descartes' rule of signs is
used to obtain the criteria (see Appendix). Additional
and spurious solutions exist when the number of real
roots of higher order frequency response equation, i.e.
Eqs. (34) or (37), is greater than the number of real
roots of the �rst order frequency response equation,
i.e., Eqs. (34) or (37) for " = 0.
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Parameters �, D2, D3, D4 and E are de�ned as:

� =
243
4
�3�F 2�2 +

27
16
�3�3F 2 � 2187

256
�4F 4

� 72�2�2�4 � 9�2�4�2 � 144�2�6;

D2 = 3a2
1 � 8a0a2;

D3 =16a2
0a4a2 � 18a2

0a
2
3 � 4a0a3

2 + 14a0a1a2a3

� 6a0a2
1a4 + a2

2a
2
1 � 3a3a3

1;

D4 =256a3
0a

3
4 � 27a2

0a
4
3 � 192a2

0a1a3a2
4 � 27a4

1a
2
4

� 6a0a2
1a

2
3a4 + a2

1a
2
2a

2
3 � 4a0a3

2a
2
3

+ 18a3
1a2a3a4 + 144a0a2

1a2a2
4 � 80a0a1a2

2a3a4

+ 18a0a1a2a3
3 � 4a2

1a
3
2a4 � 4a3

1a
3
3 + 16a0a4

2a4

� 128a2
0a

2
2a

2
4 + 144a2

0a2a4a2
3;

E = 8a2
0a3 + a3

1 � 4a0a1a2; (38)

where for the case of Eq. (34):

a0 = �207"�3

256
; a1 =

33"��2

64
+

9�2

16
;

a2 = �6"��2 + 3"��2 � 3��
2

a3 = �8�2"� � 3"�3 +
3F 2�"

2
+ 4�2 + �2;

a4 = �F 2 + 3F 2"�; (39)

and for Eq. (37):

a0 =
9"�3

256
; a1 = �3"��2

64
+

9�2

16
;

a2 = �3��
2
; a3 = 4�2"� + 4�2 + �2;

a4 = �F 2: (40)

Now, Eqs. (34) or (37) possess spurious solution if one
of the following conditions is satis�ed:

(1) �>0; fD4>0^D3>0^D2>0g; � = 4;

(2) �<0; fD4>0^D3>0^D2>0g; �>1;

(3) � = 0; fD4 = 0 ^D3 > 0g; � > 1;

(4) � < 0; fD4 < 0g; � > 1;

(5) � > 0; fD4 = 0 ^D3 < 0g;
(6) � > 0; fD4 = 0 ^D3 = 0 ^D2 > 0 ^ E = 0g;
(7) fD4 =0^D3 =0^D2>0^E 6=0g; �=4;

(41)

where � is the number of sign changes in the ai(i =
0 � 4), de�ned in Eq. (39) or (40). Bifurcation occurs
when � = 0. For example, with the following data:

� = 2; � = 1; � = 0:1;

" = 0:1; F = 1; (42)

for Eq. (34), it is found that:

� = 4:7; D2 = 0:16; D3 = 0:0037;

D4 = 0:0001; E = �0:001; � = 4: (43)

So, it is case 1 in Eq. (41) and consequently Eq. (34)
possesses spurious solution. This procedure is also
applicable to other nonlinear systems.

5. Conclusion

The higher order approximation of forced Du�ng
equation was studied. First, the modulation equations
are determined using RGM, which were identical with
those obtained previously by MSM and GMA. It seems
that the application of RGM in higher order approx-
imation is simpler than the other methods. Second,
the periodic steady state behavior of the solutions
and the problem of spurious solutions in higher order
approximation were considered. It was shown that
depending on the truncation method of the original
phase and amplitude modulation equations, two types
of frequency response equation may be obtained. One
possesses spurious solutions for the case of softening
nonlinearity, and the other for the case of hardening
nonlinearity. Furthermore, it was shown that truncat-
ing the frequency response equation did not necessarily
lead to more accurate results. Finally, by application of
root classi�cation of polynomials and Descartes' rule of
signs, a criterion was presented to detect the existence
of spurious solution in any point of frequency response
equation without solving it. This procedure is also
applicable to other nonlinear systems.
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Appendix A

A.1. Root classi�cation of quartic polynomial
For quartic polynomial:

a0x4 + a1x3 + a2x2 + a3x+ a4(a0 6= 0); (A.1)

the numbers of real and imaginary roots and multi-
plicities of repeated roots in all cases are summarized
as [41]:

(1) D4 > 0 ^D3 > 0 ^D2 > 0 f1; 1; 1; 1g;
(2) D4 > 0 ^ (D3 � 0 _D2 � 0) fg;
(3) D4 < 0 f1; 1g;
(4) D4 = 0 ^D3 > 0 f2; 1; 1g;

(5) D4 = 0 ^D3 < 0 f2g;
(6) D4 = 0 ^D3 = 0 ^D2 > 0 ^ E = 0 f2; 2g;
(7) D4 = 0 ^D3 = 0 ^D2 > 0 ^ E 6= 0 f3; 1g;
(8) D4 = 0 ^D3 = 0 ^D2 < 0 fg;
(9) D4 = 0 ^D3 = 0 ^D2 = 0 f4g: (A.2)

D2, D3, D4 and E were de�ned earlier in Eq. (38).
The numbers in the brace in Eq. (A.2) describe

the situations of the roots. For example, f1; 1; 1; 1g
means four real simple roots and f2; 1; 1g means one
real double root plus two real simple roots.

A.2. Root classi�cation of cubic polynomial
For cubic equation:

a0x3 + a1x2 + a2x+ a3 (a0 6= 0); (A.3)

three following cases exist [42]:

(1) � > 0 f1; 1; 1g;
(2) � = 0 f3g;
(3) � < 0 f1g; (A.4)

where:

� = 18a0a1a2a3 � 4a3
1a3 + a2

1a
2
2 � 4a0a3

2 � 27a2
0a

2
3:

(A.5)

A.3. Descartes' rule of signs
Descartes' rule of signs is a technique for determining
the number of positive or negative real roots of a
polynomial [43]. It states that the number of positive
real roots of a polynomial with real coe�cients is
bounded by the number of changes of sign in its
coe�cients.

For example, the polynomial x3+x2�x�1 has one
sign change and therefore it has exactly one positive
root.
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