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Analysis of Manipulators Using SDRE: A Closed
Loop Nonlinear Optimal Control Approach

M.H. Korayem'*, M. Irani' and S. Rafee Nekoo!

Abstract.  In this paper, the State Dependent Riccati Equation (SDRE) method is implemented on
robotic systems such as a mobile two-links planar robot and a fized 6R manipulator with complicated
dynamic equations. Dynamic modelings of both cases are presented using the Lagrange method.
Afterwards, the Dynamic Load Carrying Capacity (DLCC), which is an important characteristic of robots,
s calculated for these two systems. DLCC is calculated for the predefined end-effector path, where motor
torque limats and tracking error constraints are imposed for this calculation. For a mobile two-links planar
robot, the stability constraint is discussed by applying a zero moment point approach. A nonlinear feedback
control law s designed for the fully nonlinear dynamics of two cases using a nonlinear closed-loop optimal
control method. For solving the SDRE equation that appears in the optimal control solution, a power
series approrimation method is applied. DLCC 1is obtained, subject to accuracy and torque constraints,
by applying this feedback control law for the square and linear path of the end-effector for mobile two-
link and a 6R manipulator, respectively. Finally, simulations are done for both cases and the DLCC of
manipulators is determined. Also, actual end-effector positions, required control efforts and the angular

position and velocity of joints are presented for full load conditions, and results are discussed
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INTRODUCTION

In the last few years, developments in the industrial
production of complicated parts and the importance
of rapid productions, lead to automatic manufactur-
ing. Manipulators and robot arms helped to achieve
this purpose. Furthermore, some activities, like the
transportation of heavy pieces and work in dangerous
environments and large spaces, led to the use of mobile
robots and manipulators.

Whereas mobile manipulators have a higher de-
gree of freedom path planning, the trajectory control
and determining of the important parameters of a robot
are complicated. One of these important parameters
is the Dynamic Load Carrying Capacity (DLCC), the
load that a robot can repeatedly lift and carry on a de-
sired trajectory. Korayem and Pilechian [1] calculated
the DLCC of flexible joint robots using a sliding mode
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control for the trajectory tracking problem. Korayem
et al. [2] presented the DLCC of flexible joint robots
with a feedback linearization method and compared it
with an open loop method. Also, Korayem and Irani [3]
found the DLCC of mobile manipulators using a nonlin-
ear optimal feedback controller. The solution method is
a successful approximation for solving optimal control
problems.

In [4], the Iterative Linear Programming (ILP)
method is used to solve the optimization problem of
finding the DLCC of cable driven robots. The results
of the ILP method are then compared with the optimal
control method.

In [5], the DLCC of a flexible link manipulator
mounted on a vehicle is determined via a feedback
linearization control approach. Korayem et al. [6]
calculated the maximum allowable load for a flexible
link manipulator with a mobile base, applying the finite
element approach. This approach is applied to linear
and circular trajectories.

Korayem et al. [7] established the maximum load
carrying capacity of a mobile robot in an environment
with obstacles using an open loop optimal control
approach and considered stability constraint. The
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stability constraint was measured by computing the
zero moment point.

In this paper, the optimal control method is
used to design a nonlinear closed loop control law
for both fixed and mobile manipulators. A proper
approach in the nonlinear optimal control method is
the SDRE method, based on solving the nonlinear
state-dependent Riccati equation. Being simple and
systematic are two advantages of this solution method.
Also, this method is applicable to fully nonlinear
dynamic models. Pearson [8] proposed the SDRE
method, which was, then, developed by Wernli and
Cook [9]. Then, SDRE was used as nonlinear opti-
mal regulator. Cloutier [10] presented this method
with state constraint and compared it with an LQR
approach. In [11], the SDRE method is used to
synthesize a path controller, and then the simulation
results were checked by experimental results using real
hardware. Innocenti et al. [12] presented the SDRE
method to control a two-link under-actuated robot and
described that, with the same designing parameters,
the SDRE control can perform better than the LQR
control.

Xin et al. [13] used the SDRE method to control
a robot. An extra controller based on a neural network
is used in the presence of parameter uncertainties to
provide robustness characteristics. Shawky et al. [14]
represented this method for a flexible link manipulator.
For this purpose, the Lagrange and assume mode
methods are used for finding the dynamic model.
Singh et al. [15] expressed the control of an inverted
pendulum on a cart using the SDRE method; different
values for weighing matrixes are used and results are
compared. In [16] Cimen presented an overview on
SDRE with details on stability, optimality and etc.
Beikzadeh and Taghirad [17] used this for controlling a
permanent magnet synchronous motor.

The exact solution of an SDRE equation is
possible for a simple system, but for complicated
systems, solving SDRE is difficult and is usually done
using numerical methods. In this paper, a power
series approximation is applied to solve this problem.
The second section presents the method of solving a
nonlinear optimal control problem using the SDRE
approach. Then, in the next section, the power
series approximation method is applied for solving the
complex Riccati equation that appeared in the SDRE
method. The definitions of a dynamic load carrying
capacity and zero moment point are exposed in the
next section. Afterwards, the dynamic modeling of
a planar, 2-link mobile manipulator and a six degree
of freedom manipulator are considered. The last
section deals with the implementation of the SDRE
method for a mobile manipulator and a 6R robot, and
then results for a predefined trajectory are demon-
strated.

STATE-DEPENDENT RICCATI EQUATION

Consider a nonlinear equation of a system as below:

&= f(x(t)) + B(z(t))u(t), z(0) = xo, (1)

where x and w are state and input vectors, respec-
tively, + € R™ and v € R™, f : R* — R", and
B : R* — R™*™ are nonlinear functions and zq is
initial condition. The performance index that must be
minimized is of the form:

J = /OO (@" (1)Q@)x(t) +u" (HR(x)u(t))dt,  (2)
0

where ) € R™*"™ is Symmetric Positive Semi-Definite
(SPSD), and R € R™*™ ig Symmetric Positive Definite
(SPD). Rewriting the nonlinear equation in the State-
Dependent Coefficient (SDC) form becomes [18]:

= = A(z)x(t) + B(x)u(t). (3)
Then the optimal solution of Equation 3, which min-

imizes the performance index, is obtained from the
following equation [18]:

X(2)A(z) + AT ()X ()
— X(2)B(x)R ()BT ()X (2) + Q = 0. (4)
This equation is named the state-dependent Riccati
equation, where X is symmetric positive definite, which

is the solution of the SDRE equation. Also, the state
feedback control law is obtained in the following form:

u(z) = =R (z)BT (2) X (2). (5)

POWER SERIES APPROXIMATION
METHOD FOR SOLVING SDRE

For finding the numerical solution of SDRE, consider a
system with Equation 3 where B is a constant matrix.
By rewriting A in the following form [19];

A(x) = Ap + cAA(x), (6)

and representing X as a Taylor series:

X(z,e) = Z "Ly (x)
n=0
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and substituting A(z), X(z,¢) into the SDRE equa-
tion, the result will be in the following form:

(Z z—:“Ln(a;)) (Ao + eAA(z))

+ (Ag +eAA()T (i EnLn(I)>

- (i 5“Ln(:p)> BR™'BT (i e”Ln(x))

n=0
+Q=0. ®)

By expanding this equation and collecting a similar
power of ¢, three iterative equations are generated:

LoAg+ Al Ly — LyBR™'BTLy +Q = 0, (9)
LoAA(x) + AA(z)' Ly + Ly (A — BR*BTLy)
+ (A = LyBR™'BT)L, =0, (10)
L1 AA(z) + AA(@) L,y
+ L,(Ag — BR'BTL)

+ (A} — LyBR™'B"L,

n—1
- LnBR'B"L,_,, =0, (11)

m=1

where n = 2,3,4,---.

The first equation is an Algebraic Riccati Equa-
tion (ARE), the second and third are state-dependent
Lyapunov equations. These equations are simplified by
substitution:

LoAog+ Al Ly — LyBR'BTLo + Q = 0, (12)
LoAA+ AATLy + Li(Ay — BR™'BTLy)

+ (Al = LoBR™'BT)L, =0, (13)
Lo 1AA+AATL, |+ L,(Ao — BR'B' L)

+ (A = ,BR™'B"L,

n—1
-> L.BR'B"L,_,, =0. (14)

m=1
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Similarly, the state-feedback control law is obtained:
uw=—-R'BT Z 9" ()L, x. (15)
n=0

For most complicated systems, A(z) could not be
rewritten as AA(z) = g(x)AA. For these systems,
A(x) is changed to:

Alz) = Ag + Z fi(2)AA,, (16)

where j is the number of nonlinear terms, and f;(x) and
AA; are constant matrixes. Also, Ly can be written as:

L=Y fi(o)L. (17)

=1
Using two prior terms of the SDRE equation,
Lo, Li,--- | L7 are computed from the equations below:
LoAg+ Al Ly — LeBR™'BTLy + Q =0, (18)
LoAAT + (AATY Ly + LI (Ag — BR™'BTLy)

+ (Al — LyBR™'BT)L] = 0. (19)

Finally, the control law can be obtained as:

uw=—-R'BT (Lo + z]:f,(a:)L{) x. (20)

DYNAMIC LOAD CARRYING CAPACITY

The dynamic load carrying capacity is described as
being the maximum load that a manipulator can
repeatedly lift and carry on the extended configuration.
The DLCC of a fixed 6R manipulator and a two-
link planar mobile robot is calculated, with respect to
the limitation of motors, tracking error and additional
stability constraint. Upper and lower limits of motor
torques can be computed from:

Us
Umax = Us - W, (21)
Us
anin = _Us - —w. (22)
ws

In the above equation, Uj is the stall torque of a motor
and w; is no load speed.
The tracking error is calculated as:

E=/(xe —24)2 + (¥ — ¥a)® + (2e — 2a)%, (23)

where z,y and z are components of the actual position
of the end-effector and x4, y4 and z,4 are components



MDL Determination of MMs via Nonlinear Optimal Feedback

of the desired position. This error must be bounded
during motion as:
E <. (24)

¢ is the allowable error for tracking.
The stability constraint is defined by computing
the zero moment point. ZMP is the point on the ground
where the summation of external forces, moments of

inertia and gravity forces are equal to zero. Formulas
for ZMP are [7]:

Lmi(Zi + )z — omadiz — 3 (Ty):

Lomp = : = : 5 25
F >_mi(Zi +9g) (28)
2mi(Zi + g)yi — 2omiiz — 3 (Tw)i
zmp — : l : 5 26
Yamp >_mi(Zi +g) (26)
where:

Details of each term of Equations 25, 26 and 27 are
presented in [20].

DYNAMIC MODELING OF
MANIPULATORS

Mobile Robot

Two-link mobile robot that is used in simulations is
shown in Figure 1 and the parameters of this robot are
presented in Table 1.
The generalized coordinates are chosen as:
a=1l am| =[x yr 60 61 06]. (28)
By applying the Lagrange method and computing the
position and velocity for each center of mass, the

Base path

Figure 1. Two-link mobile robot.

459
Table 1. Parameters of mobile robot.
Parameters Value Unit
Length of links Li=Ls=0.5 M
Center of mass Lo = Lo =0.25 M
Mass of links m1 =05, me =3 kg
I, =0.416
Moment of inertia ! ’ kg.m?
I, =0.0625
Mass of wheel 5 kg
Mass of base 94 kg
0 0 0
Moment of 9
00 0 kg.m
inertia of base
0 0 6.609
0.131 0 0
Moment of 9
0 001 0 kg.m
inertia of wheels
0 0 0.131
b 0.171 M
r 0.075 M
Lo 0.4 M
equations of dynamic motion can be written as:
F, Jiw Ji2 Sz Juu Jis Zf
F, Jiz Jaa Jog Jaa Jos| |Ur
To| = |z Jos Jsz Jsa Jss| |bo
71 Jia Jou Jzn Jus Jus {9.1
T2 Jis Jas Jzs Jus Jss 0o
Cy
Co
Cy
Cs
Also end-effector coordinates are:
xe| _ |@xp4Licos(8g+61)+ Lo cos(by+01+62)
Ye yf+L1 sin(c90+«91)+L2 sin(c90+«91+«92) (30>

In this case, the degree of freedom is n = 5 and the end-
effector trajectory has m = 2 degrees of freedom. Thus,
the redundancy of the system is r =n —m = 3. The
system has one nonholonomic constraint, according to
the motion of the mobile base:

ipsinfy — g5 cosby + Loy = 0. (31)
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Two other constraints must be applied for redundancy
resolution. A pre-defined path is considered for the
base, then &y, s, &y and §; can be calculated,
and #p, 90 and éo are obtained using nonholonomic
constraints.

Using the remaining terms of Equation 29, equa-
tions of the system are rewritten as:

o) = [ ) )+ (R )
where:

Ry = Ji4@y + Joaliy + J3400 + C4, (33)

Ry = Jisi g + Jasiis + Jss00 + Cs. (34)

6R Fixed Robot

For the second case study, a 6R manipulator as
shown in Figure 2, is considered. Also, a schematic
view of this manipulator is shown in Figure 3 and
Denavit-Hartenberg parameters are demonstrated in
Table 2.

Figure 2. 6R configuration [19].

Table 2. Denavit-Hartenberg parameters of 6R.

Joint | a; (mm) | d; (mm) | af | 0; | Related Link
1 36.5 438 -90 | 6, | Link 1
2 251.5 0 0 |62 | Link 2
3 125 0 0 |63 |Link 3
4 92 0 90 | 04 | Gripper YAW
5 0 0 -90 | 05 | Gripper PITCH
6 0 152.8 0 | 0s | Gripper ROLL
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The transformation matrix, T', is used for forward
kinematic computations [21]:

Nz Oz 0Oz Pz

T=|" % % Pup (35)
nZ OZ aZ pZ
0 0 o0 1

The elements of T are:
Na = —C65155 + C1(C234C5C6 — 523456 ),
Ny = €234C5C6S1 + C1C685 — $1523456,
N, = —C5C65234 — €23456,

0s = 515556 — €1(CS234 + C234C556),

0y = —C6515234 — (C234C551 + €155)S6,
0, = —C234C6 + C5523456,
Gy = —C551 — C1€234 S5,

Ay = C1C5 — €2345155,

A, = 523455,

Pe = —dgcss1 + c1(ar + asca + azcas

+ c234(a4 — dgss)),
Py = dscics + s1(ay + azca + ascos
+ ca34(as — dgss)),

P = di — as8s — a3893 + 5234(—a4 + d685). (36)
In these equations, a; and d; are shown in Figure 3.
Also 84, ¢4, si;5 and ¢;; denote sin(6;), cos(6;), sin(6;+6;)
and cos(f; +6,), respectively. The relation between the
velocity of an end-effector and the angular velocity of
joints is expressed by:

vV =Jq. (37)

J is the Jacobian matrix of a 6R arm and can be
obtained as:

Jin Jiz Jiz Jia Jis 0
J21 Je2 J23  Joa J2s 0
7= 10 g2 Jz jsa decsszsa O
0 —s1 —8s1 —$1  C15234 Jae ,(38)
0 e ¢ e 515234 Js6
1 0 0 0 €934 5923455
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di T

Fix base of 6R

Figure 3. 6R schematic configuration.

where:

Jui=—dgscics—s1(a1+azca+azcaz+caza(as—dsss)),
Ji2 = —ci(agsy + azsaz + S234(as — dgs2)),

J13 = —ci(azsa3 + s234(as — dess)),

J1a = c15234(—ay + dgss),

J15 = —dgC1Ca34C5 + dg 5185,
J21=—dgs1c5+c1(a1+azca+azcaz+caza(as—dsss)),
Jo2 = —s1(a2s2 + azsaz + s234(as — dgss)),

J23 = —s1(ass23 + s234(a4 — dsss)),

Joa = 818234(—aa + dgss),

Jos = —dg(c23ac581 + €185),
Ja2 = —a2Cy — a3Ca3 + Ca3a(—aa + dgss),
J33 = —aszCa3 + C234(—a4 + dsss),

Jsa = co3a(—aa + dgss),
Ja6 = —C551 — C1€23455,

J56 = C1C5 — €2345155. (39)

According to Equations 21 and 22, characteristics of
motors U, and w, are needed for dynamic load carrying
capacity calculations. These values are determined and
collected in Table 3.

Table 3. Motor characteristics for 6R arm.

Joint U. (N.m) ws (rad/s)
1 114 1.32
2 98 4.19
3 382.2 0.73
4 19 450.29
5 40.4 9.01
6 40.4 9.01

CONTROL IMPLEMENTATION AND
RESULTS

Mobile Robot

For state space representation of a mobile 2-link ma-
nipulator, the angular position and velocity of links are
chosen as states, as below:

Ql T1
91 |22
ol = ol (40)
(92 T4

Thus, the state-space representation is obtained as:

1 T2
d | _ P(Js55(U1 —R1)—Jas (U2 —R»)) (41)
dt |3 T4 '
T4 P(—J45(U1—R1>+J44(U2—R2))
Parameter P in Equation 41 is:
1
P=—uon——. 42
J1aJss — J} (42)

The predefined path for the end-effector is a 1 x 1 m?
square and the simulation time is 12 sec. At the
beginning of the motion, the end-effector is at the left-
hand upper corner of this square and point F at the
origin. Also, the base moves from the origin to point
(2, 0) and then returns to the origin. The actual end-
effector paths under full load conditions and upper and
lower limits are shown in Figure 4.

The allowable tracking error in Equation 24 is
chosen as 4 = 0.02 m and the tracking error is
computed according to Equation 23 and plotted in
Figure 5. This figure indicates that the maximum error
occurred near ¢ = 4 sec at the up side of the square.
The angular position and velocity of joints are shown
in Figures 6 and 7.

In this case, the ZMP plot shows that stability is
guaranteed. For stability consideration, changes in zero
moment point location during the motion and limits
of stability are shown in Figure 8, where the stability
margins are virtual lines between wheels and castor.
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Figure 4. End-effector path.
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Figure 5. Tracking error.
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Figure 7. Angular velocity of joints.
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Figure 8. ZMP and stability margin.

Figure 9 demonstrates the torque of motors and
the upper and lower bounds of torques, according to
Equations 21 and 22. Using torques and tracking
constraints, the dynamic load carrying capacity of
manipulator is obtained as 6.1 kg.

6R MANIPULATOR

For the second case study, the vector of state variables
for a 6R arm is determined as:

Xz = 1] (13)
q
q is the vector of the angular position of joints:
q=1[01 6> 63 6, 05 66]. (44)
Also ¢ is the angular velocities vector:

q=1[6 6 63 6, 65 6 (45)
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0.4 . : , .

(rad/s)

71 (N.m)

w1

0.6 : . .

72 (N.m)
wsy (rad/s)

t (sec)

t (sec)
Fi 9. T f motors.
1gure oraties of thotots Figure 10. Angular velocity of joints 1 and 2.

Thus, state-space representation is obtained as:
0.5

X = [wr; 85 w05 w105 2115 012; D (U — C = G)]. (46)

o
(=

In Equation 46, D is the inertial matrix, C' is the vector
of Coriolis and centrifugal forces, G is the gravity force
vector and U is the input control vector. Details of
these matrix and vectors are as below:

wsg (rad/s)

-0.5

t (sec)
dll d12 d13 d14 d15 d16
d12 d22 d23 d24 d25 d26

dis doz dsz dss dzs  dse .
D=y dos dos dus dis dug |’ wn -z
dis das dzs das  dss dse £
dig dos dzs das dse  des 3
T -1.0 | i i I
C = [61 Cy C3 C4 Cp 66] R (48) 0 2 4 6 8 10
t (sec)
G = [91 g g3 ga s 96]T 7 (49) Figure 11. Angular velocity of joints 3 and 4.
T
U= [U1 U2 U3 Uga Us ’ng] . (50) :
The control vector is computed through the SDRE =
method using Equation 20. A linear trajectory é
is selected for the tracking problem that con- 3
nects initial point Pp(0.55,—0.1,0.5) and final point 0.1 : l : :
Pr(0.1,-0.3,0.22) at 10 sec. The line is designed so 0 2 4 6 8 10
that the velocity and acceleration of the end-effector t (sec)
are zero at both initial and final points. Actual angular
velocities of joints are shown in Figures 10 to 12 for full 0-0 ; . ! i
load conditions. These figures imply that the actual — 02f A PP S U A
angular velocities of joints are zero at initial and final 5 (| 0 N
points. = § : 5 :
Figures 13 to 15 present the actual angular pOSi— 3 »06_ vvvvvvvvvvvvvvv .............. ................. ................ 4
tions of joints under full load conditions, which indicate 08 i i ; i
a smooth angular motion for joints during the motion. 0 2 4 + (se) 6 8 10
sec

The desired values of angles and angular velocities are
computed by solving differential Equation 37. Figure 12. Angular velocity of joints 5 and 6.
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Figure 13. Angular position of joints 1 and 2.
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Figure 14. Angular position of joints 3 and 4.
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Figure 15. Angular position of joints 5 and 6.
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Figure 17. Torques of motors 3 and 4.

The values of torque of each motor are calculated
through the SDRE algorithm and are plotted in Fig-
ures 16 to 18. The upper and lower values of torques
are calculated by Equations 21 and 22 and are shown
in these figures. These figures are plotted for maximum
load carrying conditions. Moreover, the figures express
that the motors work with a maximum value of torque
at the beginning of motion.

Configuration links of the manipulator and the
actual and desired linear path of the end-effector during
the tracking motion are presented in Figure 19, and
with a better view in Figure 20.

Tracking accuracy is selected to be 6 = 0.022 m,
and according to both limitations on tracking error and
motor torques, the dynamic load carrying capacity is
obtained as DLCC = 1 kg. Figure 21 illustrates the
tracking error as a function of time during the motion.
Changes in characteristics of motors and allowable
tracking error will affect the value of DLCC.
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Figure 18. Torques of motors 5 and 6.
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Figure 19. Configuration of robot during tracking.
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Figure 21. Tracking error.

CONCLUSION

In this paper, the state-dependent Riccati equation
is discussed as a nonlinear optimal feedback con-
troller. The power series approximation method has
been employed for solving the SDRE problem. For
a mobile robot, the dynamic load carrying capac-
ity with consideration of tracking error and stability
constraint has been obtained. Also, the DLCC of
a 6R manipulator is calculated with tracking error
consideration. Variations in R and @ matrixes change
the value of the tracking error and control efforts.
In order to reach better tracking accuracy, elements
of matrix R must be decreased, but the period of
simulation is increased and the motors come close to
saturation conditions. It is seen that the tracking
error is appeared as a function of both R and @, and
the tracking accuracy can be increased by changing
these matrixes. Different state-dependent coeflicient
parameterization, which results in a different matrix,
A, leads to an additional degree of freedom for the
design controller and, as a result, different values of
DLCC can be calculated. After appropriate state-
dependent coefficient parameterization, the control
design procedure using the SDRE method is systematic
and done automatically. It is seen that the SDRE
method is suitable for solving nonlinear closed loop
optimal control problems and the DLCC can be de-
termined using this method for both mobile and fixed
robotic systems.

NOMENCLATURE

A(z) state-dependent coeflicient matrix
Ag constant part of A(x)

AA(zx) nonlinear part of A(z)

g(x) nonlinear functions in AA(x)
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Jij

T

To
xzmpvyzmp
Td,Ydy ~2d
L, Ys
TeyYey Ze

q

qb

Im
T

gy Ny, Ty
Oz, Oy, Oz
g, Qy, Ay

Pz Py, Pz

Ui
Umax ) Umin

Us

Ws

nonlinear functions in dynamic
equations

performance index

states and control weighting matrixes
the solution of SDRE

base and arm connecting point

the distance from F' to the intersection
point of the axis of symmetry with the
driving wheel axis

the heading angle of platform measured
from X-axis of the world coordinates
the angular displacements of links

the torques exerted to joints
tracking error

tracking accuracy

Jacobian matrix

elements in dynamic equations
elements of Jacobian matrix
vector of state variables

initial values of state variables
the coordination of zero moment point
desired position of end effector
the coordination of F

the coordination of E

the vector of generalized coordinates of
the system

the vector of mobile base coordinates
the vector of manipulator coordinates

transformation matrix

elements of transformation matrix

velocity vector of end effector

vector of centrifugal and Coriolis forces
elements of C'

inertia matrix of manipulator

elements of inertia matrix

gravity force vector

elements of G

input control vector

input control torque of links (elements
of U)

maximum and minimum of motor
torques

stall torque of motors

no load speed of motor
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