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A New Rolling-Horizon Technique for
Lotsizing in a Capacitated Pure Flow

Shop with Sequence-Dependent Setups

M. Mohammadi1 and S.M.T. Fatemi Ghomi2;�

Abstract. A new rolling-horizon approach is presented in this paper to solve the problem of lotsizing
in a capacitated pure 
ow shop with sequence dependent setups. Two solution algorithms are provided,
based on a simpli�ed version of the problem, combining the rolling-horizon approach with a heuristic. To
evaluate the e�ectiveness of the proposed algorithms, a comparison is made between the results obtained
by the proposed algorithms and those obtained by existing algorithms. The comparison indicates the
superiority of the proposed algorithm for large scale problems.
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INTRODUCTION

Modeling and solving lotsizing problems have been an
area of active research starting from the seminal paper
of Wagner and Whithin [1]. Since then, there has been
a considerable amount of investigation to incorporate
other important features.

Among the characteristic features of the models
for lotsizing and scheduling are the segmentation of the
planning horizon, the time dependence of the model
parameters, the accuracy of the model parameters,
the number of products and production stages, the
production structure and the capacity restrictions [2-5].

Models of lotsizing and scheduling are divided
in the literature into small bucket and big bucket
problems [6]. Readers interested in small bucket
problems can refer to [7]. Small bucket problems
for multi-level multi-product production include the
Multi-Level Discrete Lotsizing and Scheduling Problem
(MLDLSP) [8] and the Multi-Level Proportional Lot-
sizing and Scheduling Problem (MLPLSP) [9-10]. Both
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models enable simultaneous lotsizing and scheduling,
but limit the number of products to be manufactured
in a period. The Multi-Level Capacitated Lotsizing
Problem (MLCLSP) is a big bucket problem, and does
not have this disadvantage, but it cannot determine
lotsizes and schedules simultaneously.

To attempt to unite the advantages of the
MLPLSP and MLCLSP, Fandel and Stammen-
Hegene [3] presented a model formulation based on a
two-level time structure [11], which enables simultane-
ous lotsizing and scheduling for multi-product multi-
level job shop production. The non-linear nature of
the model and existing three types of binary variable
make the model too complicated, therefore, no solution
approach has yet been presented.

Recently, Mohammadi et al. [12,13] proposed a
mathematical formulation for lotsizing in capacitated
pure 
ow shops with sequence-dependent setups and
developed novel heuristics, all based on solving a
sequence of smaller Mixed Integer Programs (MIPs).
To solve larger instances of the problem, Mohammadi
et al. [14] proposed an algorithmic approach. Heuristics
provided in Mohammadi et al. [12] are superior to those
provided in Mohammadi et al. [13,14]. The current
paper proposes more e�cient heuristics to solve the
problem.

This paper has the following structure. The next
section introduces a detailed description of the problem
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and its underlying assumptions. Further sections pro-
vide the solution approaches and report the numerical
experiments, respectively. Finally, the last section is
devoted to concluding remarks and recommendations
for future studies.

PROBLEM DEFINITION AND
MATHEMATICAL MODEL

Assumptions

Our assumptions and mathematical model are similar
to those of Mohammadi et al. [12-14] and are presented
as follows:

� Several products are produced on serially-arranged
machines in a pure 
ow shop structure.

� Each machine is constrained in capacity.
� When the machines are setup, sequence-dependent

setup costs and times are incurred.
� The setting-up of a machine must be completed

within a period.
� There must be precise N (number of products)

setups at each period on each machine, even if a
setup is just from a product to itself. Since a setup
time (and cost) from a product to itself is zero,
note that the model does not force a machine to
have exactly N positive-time (and cost) setups, but
rather up to N such setups. The remaining zero-
time (cost) setups are modeling phantoms and do
not exist in reality [15-16]. This feature makes it
possible for a lotsize, or production run, to continue
over consecutive time periods without incurring
setup costs or times in the later periods (setup carry
over).

� The required resources and parts must be ready for
production.

� External demand exists for �nal products and must
be satis�ed at the end of each period.

� There are no lead times between the di�erent pro-
duction levels.

� Shortages are not permitted.
� A component cannot be produced earlier in a period

than the �nish of the production of its required com-
ponent. In other words, production on a production
level can only be started if a su�cient amount of
the product from the previous production level is
available; this is called vertical interaction.

� To guarantee the vertical interaction, idleness be-
tween each setup and its production is de�ned with
the help of a shadow product [3].

� There are no demands and no storage costs for
shadow products.

� At the beginning of the planning horizon, all ma-
chines are setup for a de�ned product.

� The triangle inequality holds, i.e. it is never faster
to change over from one product to another by
means of a third product. In other words, a direct
changeover is at least as capacity e�cient as going
via another product.

MATEMATICAL MODEL

Indices

i; j; k product type
n; n0 designation for a speci�c setup number
m level of production
t period

Parameters

T planning horizon
N number of di�erent products
M number of production levels/number of

machines
bigM a large real number
Cm;t available capacity of machine m in

period t (in time units)
dj;t external demand for product j at the

end of period t (in units of quantity)
hj;m storage costs (unit rate) for product j

in level m
bj;m capacity of machine m required to

produce a unit of product (or shadow
product) j (in time units per quantity
units)

pj;m;t production costs to produce one unit
of product j on machine m in period t
(in money unit per quantity unit)

Si;j;m sequence-dependent setup time for
the changeover of machine m from
production of product i to production
of product j (in time units), for i = j,
Si;j;m = 0

Wi;j;m is the sequence-dependent setup cost
for the changeover of machine m from
production of product i to production
of product j (in money units), for
i = j, Wi;j;m = 0, setup costs have
the form Wi;j;m = fw:Si;j;m where fw
is opportunity cost per unit of setup
time.

j0 the starting setup con�guration on
machines. This is the same on all
machines.
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Decision Variables

Ij;m;t stock of product j at level m at the
end of period t

yni;j;m;t binary variable, which indicates
whether the nth setup on machine m
in period t is from product i to product
j(yni;j;m;t = 1) or not (yni;j;m;t = 0)

xnj;m;t quantity of product j produced after
nth setup on machine m in period t

qnj;m;t shadow product: The gap (in quantity
units) between the nth setup (to
product j) on machine m in period t
and its related production in order to
ensure that the direct predecessor of
this product (production of product
j on machine m � 1 in period t) has
been completed; in other words, the
idle time (in quantity units) before
production of product j on machine
m in period t in order to guarantee
vertical interaction.

Readers interested in the original model can refer
to [12]. As mentioned brie
y in the introduction, to
solve larger instances of the problem, Mohammadi et
al. [12] provided three (of four) heuristics, based on a
simpli�ed model, which assumed that products follow
a similar sequence on all machines. Therefore, they
used yni;j;t instead of yni;j;m;t. In this paper, to solve the
problem through our algorithmic approach, we focus
on a more simpli�ed model. In this model, in addition
to the sequence of products, the size of products is also
independent of the machines. Therefore, yni;j;t, xnj;t and
Ij;t are used instead of yni;j;m;t, xnj;m;t and Ij;m;t in this
model. Other parameters and variables are similar to
those mentioned in the former model. Our proposed
simpli�ed model follows:

min
NX
n=1

NX
j=1

NX
i=1

MX
m=1

TX
t=1

wi;j;m:yni;j;t

+
NX
n=1

NX
j=1

MX
m=1

TX
t=1

pj;m;t:xnj;t

+
NX
j=1

TX
t=1

hj;M :Ij;t: (1)

Subject to:

dj;t = Ij;t�1 +
NX
n=1

xnj;t � Ij;t;

j = 1; � � � ; N; t = 1; � � � ; T; (2)

n0X
n=1

NX
i=1

NX
j=1

yni;j;t:Si;j;m +
n0X
n=1

NX
j=1

bj;m:qnj;m;t

+
n0X
n=1

NX
j=1

bj;m:xnj;t�
n0X
n=1

NX
i=1

NX
j=1

yni;j;t:Si;j;m+1

+
n0X
n=1

NX
j=1

bj;m+1:qnj;m+1;t+
n0�1X
n=1

NX
j=1

bj;m+1:xnj;t;

n0 = 1; � � � ; N;
m = 1; � � � ;M � 1;

t = 1; � � � ; T; (3)

NX
n=1

NX
i=1

NX
j=1

yni;j;t:Si;j;m +
NX
n=1

NX
j=1

bj;m:xnj;t

+
NX
n=1

NX
j=1

bj;m:qnj;m;t � Cm;t;

m = 1; � � � ;M;

t = 1; � � � ; T; (4)

xnj;t � (bigM):
NX

i=1;i 6=j(forn>1)

yni;j;t;

n = 1; � � � ; N;
j=1; � � � ; N;
t=1; � � � ; T; (5)

qnj;m;t � (Cm;t=bj;m):
NX
i=1

yni;j;t;

n = 1; � � � ; N;
j = 1; � � � ; N;
m = 1; � � � ;M;

t = 1; � � � ; T; (6)

y1
j;i;1 = 0;

j 6= j0;

i = 1; � � � ; N; (7)
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NX
i=1

y1
j0;i;1 = 1; (8)

NX
j=1

ynj;i;t =
NX
k=1

yn+1
i;k;t ;

n = 1; � � � ; N � 1;

i = 1; � � � ; N;
t = 1; � � � ; T; (9)

NX
j=1

yNj;i;t�1 =
NX
k=1

y1
i;k;t;

i = 1; � � � ; N;
t = 2; � � � ; T; (10)

yni;j;t = 0 or 1; (11)

Ij;t; xnj;t; q
n
j;m;t � 0; (12)

Ij;0 = 0;

j = 1; � � � ; N: (13)

In this model, Equation 1 represents the objective
function, which minimizes the sum of the sequence-
dependent setup costs, the storage costs and the pro-
duction costs. Equation 2 ensures the demand supply
in each period.

Equation 3 guarantees that within one period,
each typical product j on machine m is produced before
its direct successor (product j on machine m+ 1).

The left side of Equation 3 is equal to the time
between the beginning of period t and the end of
production of product j on machine m. The right
side of Equation 3 is equal to the time between the
beginning of period t and the beginning of production
of product j on machine m+ 1.

Equation 4 represents the capacity constraints
of machines during periods. Equation 5 indicates
that setup is considered in the production process.
Equation 6 indicates the relationship between shadow
products and setups. Equations 7 and 8 guarantee
that the �rst setup at the beginning of the planning
horizon is from a de�ned product. Equations 9
and 10 represent the relationship between successive
setups. Equations 11 and 12 represent the type of
variables. Equation 13 indicates that at the beginning
of the planning horizon there is no on-hand inven-
tory.

SOLUTION METHOD

Idea

Rolling-horizon heuristics are usually used in dynamic
lotsizing and scheduling problems, where demands are
gradually revealed during the planning horizon and
part types have to be allocated to machines in an on-
going fashion as new orders arrive. On the other hand,
a rolling-horizon approach is still suitable when all
parameters are perfectly known [4,15-19]. In this case,
rolling-horizon heuristics have been used to overcome
computational infeasibility for large MIP problems by
substituting most of the binary variables and con-
straints with continuous variables and constraints. The
approach initially adopted decomposes the model into a
succession of smaller MIPs, each with a more tractable
number of binary variables. For larger instances of
problem, the resulting huge number of binary variables
in each MIP causes great computational intractabil-
ity.

To face this intractability, instead of solving a
succession of smaller MIPs, we would relax all binary
variables of the problem. The resulting problem is
solved through a T -iteration based algorithm. In a
speci�c iteration, k, the relaxed binary variables of
period k are divided into two groups, where members of
the �rst group have value 1 and members of the second
group have value 0. In other words, our rolling-horizon
approach decomposes the planning horizon into three
sections as follows. For a given iteration, k, all sections
are described as follows:

� The �rst section (beginning section) is composed of
the �rst (k � 1) periods. Within this section, the
decision variables have been partially or completely
frozen by the previous iterations, according to a
selected freezing strategy.

� The second section (central section) is the kth
period. The relaxed binary variables of this period
are divided into two groups, where members of the
�rst group have value 1 and members of the second
group have value 0.

� The third section (ending section) is composed of
the last periods (from period k + 1 to period T ).
There, the model is simpli�ed according to a selected
simpli�cation strategy.

Each iteration is completed by solving a linear pro-
gramming problem that consists of all three sections.
At the end of iteration k, all sections roll forward by one
period and a new iteration is then performed. The pro-
cedure stops when there is no longer an ending section.
The last iteration (T ) de�nes all decision variables over
the entire horizon. Figure 1 demonstrates the iterative
procedure.
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Figure 1. Demonstration of the iterative procedure.

Procedure to Divide Relaxed Binary Variables
into Two Groups
As mentioned before, in each iteration of the rolling-
horizon approach, all relaxed binary variables of the
central section are divided into two groups. Members
of the �rst group would get value 1 and members of the
second group would get value 0. Note that according to
Equations 7 to 10, for each pair (n; t), there is exactly
one pair (i; j) for which yni;j;t = 1 and for (i0; j0) 6= (i; j),
yni0;j0;t = 0. In other words, for each pair (n; t) of the
central section, a pair (i; j), in which yni;j;t = 1 would be
speci�ed through a heuristic, which will be explained
in the next subsection.

Description

A detailed description of the rolling-horizon approach
is now given.

The First Rolling-Horizon Approach (R1)
For a given iteration, k, this rolling-horizon approach
contains the following sections:

� The �rst section (beginning section) is composed of
the (k�1) �rst periods. Within this section, xnj;t and
yni;j;t have been frozen by the previous iterations.

� The second section (central section) includes the kth
period. The relaxed binary variables of this period
would be divided into two groups, where members
of the �rst group would get value 1 and members of
the second group would get value 0.

This procedure would be described as follows.
In this heuristic, relaxed binary variables of the

central section would get value 0 or 1 by an adap-

tation of the Flow Time Multiple Insertion Heuristic
(FTMIH). This class of heuristics is based on the
insertion heuristic for the Traveling Salesman Problem
(TSP), and can be considered an adaptation of a
heuristic by Nawaz et al. [20]. Kurz and Askin [21-22]
used a modi�ed version of this heuristic in scheduling

exible 
ow lines with sequence dependent setups. The
insertion heuristic for the TSP begins with a set of cities
to be visited in order, and a set of cities that have
not yet been visited. The unvisited cities are sorted
according to some criteria, and then added to the
current set of cities to be visited. The location of the
new city in the sequence is determined by comparing
the increase in time to visit all cities.

Let [i] indicate the ith product in an ordered
sequence in the following heuristic. For m =
1; � � � ;M(8i; j); S0m = minfSi;j;mg. The following
steps are performed in the central section of the current
iteration (k):

1. Create the product durations for all products as
follows:

D(j; k) = dj;k:
MX
m=1

(bj;m + S0i;j;m):

2. end0 = j0, where for k > 1, endk�1 is the last
sequenced product in period k.

3. Arrange the products in non-increasing order
(LPT) of D(j; k) for use in step 5.

4. Delete products for which Ij;k�1 > dj;k. According
to Equation 13, for k = 1, Ij;k�1 = 0 and k > 1,
Ij;k�1 has been determined at the end of iteration
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k � 1. Then, instead of each deleted product, the
last remaining product is replaced.

5. For [i] = 1 to N :

(a) Consider inserting product [i] into every posi-
tion.

(b) Calculate the sum of 
ow times for all products
scheduled so far, using the actual setup times.

(c) Place product i in the position with the lowest
resultant sum of 
ow times.

6. Let [i] indicate the ith product in the ordered
sequence:

If i = 1; yiendk�1[i];k = 1;

else yi[i�1];[i];k = 1:

As mentioned before, the rest of the relaxed binary
variables in the central section take value 0.

� The third section (ending section) includes the last
periods (from period k + 1 to period T ). There,
the model is simpli�ed according to a selected
simpli�cation strategy, as follows.

More computational time is economized by eliminating
the majority of the variables from the ending section.
yni;j;t(n > 1), xnjt(n > 1) and qnjmt are eliminated from
the ending section. Except for Equations 2 and 4,
the other constraints are ignored in the ending section.
All setup costs (and times) for the ending section are
assumed to be 0.

For the ending section, bj;m and pj;m;t should
be modi�ed to estimate the capacity consumption of
future setups. We assume that A1 is the objective value
of the lower bound provided by Mohammadi et al. [12],
and that A2 is the sum of variable production costs
of the aforementioned lower bound. For the ending
section, we would replace bj;m and pj;m;t with b0j;m and
p0j;m;t as follows:

b0j;m = (A1=A2):bj;m;

p0j;m;t = (A1=A2):pj;m;t:

A simpli�ed representation for the ending section in
the rolling-horizon is less di�cult to solve, and hence
permits the solution of larger problems.

This iteration is completed by solving a linear
programming problem that contains all three sections.

The Second Rolling-Horizon Approach (R2)
In order to solve larger instances of the problem on
the one hand and improve the quality of solutions on
the other, some modi�cations have been made to the
former rolling-horizon approach, as follows:

1. In each iteration, all variables and constraints of
the beginning section are frozen (instead of freezing
only yni;j;t and xnj;t), thus making it possible to solve
larger instances of the problem.

2. At the end of each iteration (after solving the linear
programming problem), the continuous variables
of the central section are modi�ed to reduce the
holding costs of the central section.

Variables of the central section are modi�ed
as follows:

For j = 1 to N;

For xnj;k > 0:

The speci�c value of Lj , which satis�es the follow-
ing relation, is determined.

LjX
l=1

dj;k+l � xnj;k � dj;k �
Lj+1X
l=1

dj;k+l:

The value of xnj;k is changed to
PLj
l=1 dj;k+l + dj;k.

Lj indicates the last period in which its re-
spective demand of product j has been produced in
period k. To ensure that Equation 4 holds true, Ij;k
would be modi�ed as follows:

Ij;k =
NX
n=1

xnj;k + Ij;k�1 � dj;k: (14)

This implies that in the central section, the pro-
duction is either zero or equal to the sum of
consecutive demands for some number of periods
into the future.

NUMERICAL EXPERIMENTS

For a �rst evaluation of the proposed algorithms, we
compare their results for a set of twenty problems,
as introduced in [12]. Twenty di�erent problem sizes
in the range of (N;M; T ) = (3; 3; 3) to (N;M; T ) =
(15; 15; 15) have been considered. For each problem
size, 5 problem instances are randomly generated and
the average values are considered. The required pa-
rameters are similar to those of Mohammadi et al. [12],
and are as follows:

bj;m � U(1:5; 2);

dj;t � U(0; 180);

hj;m � U(0:2; 0:4);

pj;m;t � U(1:5; 2);
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Wijm = Sijm � U(35; 70);

Cm;t = U(a; b);

a = 200N + 100(m� 1);

b = 200N + 200(m� 1):

Our proposed algorithms are coded in the Matlab
programming language and are run on a personal com-
puter with a Pentium 4 processor running at 3.4 GHZ.
Table 1 shows the comparison between the objective
functions and CPU times of the proposed algorithms.
The lower bound provided by Mohammadi et al. [12] is
used to compare our proposed algorithms against the
heuristics provided in [12]. Because heuristics provided
in [12] are superior to those provided in [13-14], they
are used for comparison with our proposed algorithms.
Tables 2 and 3 report such comparisons for small and
non-small instances, respectively.

Table 2 shows that the average di�erence between
the heuristics provided by Mohammadi et al. [12] (H1
to H4) and our proposed algorithms (R1 and R2)
against the mentioned lower bound for small instances
are, respectively, 11.74%, 13.44%, 22.83%, 18.57%,
23.61% and 16.85%. This shows the superiority of the
proposed heuristics for small instances of the problem.

Table 3 shows that the average di�erence between
the heuristics provided by Mohammadi et al. [12]
(H3 to H4) and our proposed algorithms (R1 and
R2) against the aforementioned lower bound for large
instances are, respectively, 26.90%, 22.59%, 22.95%
and 16.92%. This shows the superiority of the proposed
heuristics for large instances of the problem. Table 3
shows the advantages of R2 for large instances of the
problem.

CONCLUDING REMARKS AND
RECOMMENDATION FOR FUTURE
STUDIES

The main contribution of this paper is the presenta-
tion of a new rolling-horizon technique to solve the
problem of lotsizing in a pure 
ow shop with sequence-
dependent setups. Two heuristics, based on the men-
tioned rolling-horizon approach, have been proposed.

According to the numerical experiments, our sec-
ond proposed algorithm (R2) is superior, especially for
large problem sizes.

Because of the expanding role of metaheuristic
approaches to solve complicated lotsizing problems [23-
25], the application of metaheuristic approaches to
solve hard problems is recommended as an area for
future research.

Table 1. Comparison between the objective function and
computational time of the proposed algorithms. The
values inside the parentheses are the computational time
in seconds. \-" means that a feasible solution has not been
found.

Problem Size
(N.M.T)

R1 R2

3.3.3 (0.08) (0.05)
5,749.91 5,432.92

5.3.3 (0.91) (0.56)
9,661.23 9,062.10

3.5.3 (0.25) (0.17)
9,604.19 9,033.63

3.3.5 (0.44) (0.28)
9,710.98 9,101.23

5.5.5 (5.64) (2.31)
27,351.54 25,852.76

7.5.5 (51.85) (12.64)
36,215.41 34,001.05

5.7.5 (13.45) (4.63)
34,436.45 32,940.46

5.5.7 (8.39) (2.96)
36,277.19 34,205.39

7.7.7 (376.11) (87.02)
71,240.44 68,082.26

5.10.5 (23.97) (4.59)
50,862.92 47,632.13

5.5.10 (81.48) (5.75)
52,379.12 50,150.03

7.10.7 (503.34) (33.24)
109,220.27 103,668.31

7.7.10 (1,543.10) (41.98)
110,479.94 104,516.72

10.5.5 (814.88) (135.23)
52,149.02 49,353.29

10.7.7 (5,888.78) (539.81)
110,759.81 104,679.93

10.10.10 - (1,222.21)
| 210,803.47

15.10.10 | (2,858.53)
| 337,524.75

10.15.10 | (1,396.16)
| 321,241.12

10.10.15 | (1,937.09)
| 317,337.40

15.15.15 | (4,997.12)
| 779,964.12
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Table 2. Comparison between our proposed algorithms (R1 and R2) and those provided by Mohammadi et al. [12] (H1 to
H4) for small and medium instances. The values inside the parentheses are the computational time in seconds. The
percentage values are the di�erence between the objective values against lower bound provided by Mohammadi et al. [12].
\-" means that a feasible solution has not been found.

Problem Size
(N.M.T)

H1 H2 H3 H4 R1 R2

3.3.3 (2.31) (0.036) (0.13) (0.70) (0.08) (0.05)

10.02% 12.77% 18.11% 13.89% 22.92% 16.14%

5.3.3 (711.11) (9.44) (0.44) (2.98) (0.91) (0.56)

9.60% 12.98% 18.90% 15.49% 23.92% 16.24%

3.5.3 (98.34) (1.38) (0.16) (1.42) (0.25) (0.17)

10.40% 14.25% 19.90% 14.56% 24.32% 16.93%

3.3.5 (26.26) (0.21) (0.23) (0.91) (0.44) (0.28)

10.60% 13.26% 19.59% 16.85% 22.88% 15.17%

5.5.5 (7,200) (146.67) (2.19) (24.51) (5.64) (2.31)

11.18% 14.74% 20.33% 16.17% 24.57% 17.74%

7.5.5 | (2,147.43) (15.74) (208.22) (51.85) (12.64)

| 12.82% 23.88% 20.29% 23.52% 15.97%

5.7.5 | (735.58) (5.21) (58.31) (13.45) (4.63)

| 14.24% 25.23% 19.48% 22.26% 16.94%

5.5.7 (7,200) (318.33) (5.28) (38.81) (8.39) (2.96)

18.66% 13.19% 25.08% 22.45% 23.51% 16.46%

7.7.7 | (4,038.80) (77.61) (1,437.27) (376.11) (87.02)

| 12.97% 25.48% 19.35% 22.90% 17.54%

5.10.5 | (1,846.93) (11.43) (127.51) (23.97) (4.59)

| 12.78% 24.38% 21.60% 23.98% 16.10%

5.5.10 | (734.66) (8.52) (96.31) (81.48) (5.75)

| 14.34% 26.48% 21.55% 23.26% 18.02%

7.10.7 | (7,200) (58.72) (1,411.13) (503.34) (33.24)

| 13.76% 24.26% 19.42% 23.67% 17.38%

7.7.10 | (7,200) (79.60) (1,983.31) (1,543.10) (41.98)

| 12.62% 25.22% 20.34% 25.25% 18.48%
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Table 3. Comparison between our proposed algorithms (R1 and R2) and those provided by Mohammadi et al. [12] (H1 to
H4) for large instances. The values inside the parentheses are the computational time in seconds. The percentage values
are the di�erence between the objective values against lower bound provided by Mohammadi et al. [12]. \-" means that a
feasible solution has not been found.

Problem Size
(N.M.T)

H1 H2 H3 H4 R1 R2

10.5.5 | | (132.55) (2,095.89) (814.88) (135.23)

| | 22.94% 19.14% 23.24% 16.63

10.7.7 | | (298.96) (3,807.97) (5,888.78) (539.81)

| | 25.43% 22.48% 22.66% 15.93%

10.10.10 | | (823.33) (5,711.96) | (1,222.21)

| | 26.98% 22.11% | 16.38%

15.10.10 | | (1,831.27) | | (2,858.53)

| | 26.66% | | 18.07%

10.15.10 | | (1,138.51) (6,854.35) | (1,396.16)

| | 29.38% 26.65% | 16.21%

10.10.15 | | (1,383.41) | | (1,937.09)

| | 31.60% | | 17.82%

15.15.15 | | (3,231.59) | | (4,997.12)

| | 25.29% | | 17.38%
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