Transactions D:

Computer Science & Engineering and

Electrical Engineering

Vol. 17, No. 2, pp. 99-104

© Sharif University of Technology, December 2010

Minimum Height Path Partitioning of Trees

A. Bagheri'* and M. Razzazi'

Abstract.

Graph partitioning ts a well-known problem in the literature.

In this paper, path

partitioning of trees in which the given tree is partitioned into edge-disjoint paths is considered. A linear
time algorithm is given for computing a path partitioning of minimum height.
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INTRODUCTION

Graph partitioning is a well-known problem that has
many applications specially in parallel computing,
telecommunication networks, data storage, image pro-
cessing and operation research [1,2]. In general, in
this problem either the edge set of a graph, edge
partitioning, or the vertex set of a graph, werter
partitioning, is partitioned into disjoint subsets such
that some constraints are satisfied and some criteria
are optimized. Examples of these constraints, criteria,
and required notations are given in the following.

Let T'= (V, E) denote a free tree with vertex set
V and edge set E. We define P = {p1,po2,--- ,p-} to
be a path partitioning of T if, and only if, for 1 <¢ <r
the conditions hold as follows:

1. Each p; is a path of T
2. The paths p,; are edge-disjoint.

3. There is exactly one path, called the root path,
whose two end-vertices are leaves of T.

4. Any other path p has exactly one end-vertex that
is a leaf of T" and the other end-vertex is a non end-
vertex of another path ¢; ¢ is called the parent path
of p.

5. Set P covers all the edges of T

By end-vertices of a path we mean the two vertices
of the path that have only one adjacent vertex in the

1. Department of Computer Engineering and Information Tech-
nology, Amirkabir University of Technology, Tehran, P.O.
Box 15875-4418, Iran.

. Corresponding author. E-mail: ar_bagheri@Qaut.ac.ir

Recewed 4 July 2009; received in revised form 17 July 2010;
accepted 23 August 2010

*

path. The cardinality of set P is called the cardinality
of partitioning. The height of a vertex v of a rooted tree
T, h(v,T), is the length of the longest path to aleaf of T’
from vertex v. The height of a rooted tree T, h(T') is the
height of the root. For any path partitioning P of a free
tree T', let T, denote the rooted tree obtained from P
by contracting each path of P into a single vertex. Edge
(u,v) belongs to T), if, and only if, the corresponding
path of w in P is the parent of the corresponding path of
v. The root of T}, is the vertex corresponding to the root
path of P. The height of a path partitioning P, h(P),
is defined as the height of T,. Figure 1a shows a path
partitioning P of a free tree T'. In this figure, each path
is included in a dashed box. The path1—-2—-3—-4-5
is the root path of P whose two end-vertices 1 and 5
are leaves of 7'. The corresponding contracted tree T},
of P is shown in Figure 1b. The root path of P has
been contracted to a single vertex a of T),.

In this paper, we present a linear time algorithm
for constructing a path partitioning for a given free
tree, such that the height of the partitioning is mini-
mum among all possible path partitionings of the tree.
In brief, our algorithm finds a root path for the given

Figure 1. A path partitioning of a free tree (a) and its
contracted tree T}, (b).
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tree and remove the path from the tree, then for each
remained sub-tree recursively finds a root path. The
root paths of the tree and the sub-trees are selected
such that the height of partitioning is minimized. The
detail of the algorithm is given in the next section. One
of the applications of this path partitioning can be in
(layered) drawing of trees [3-5]. An h-layer drawing
of a graph G is a planar drawing of G in which each
vertex is placed on one of h parallel lines and each edge
is drawn as a straight line between its end-vertices.

Our motivation to research on the path partition-
ing problem is its application in a point-set embedding
problem. In this problem, the vertices of a given n-node
free tree should be mapped one-to-one onto n given
points in the plane, such that the total edge length
of the tree is minimized. This is a generalization of
the well-known Travelling Salesman Problem (TSP).
Our main idea to solve this problem is to convert
the given tree into a simple path by deleting and
adding some edges. This step is done using a path
partitioning of the tree. Then we embed the simple
path onto the point-set using one of the algorithms
of TSP. At last we add the previously removed edges
and remove the previously added edges. This yields
an approximation algorithm for the problem whose
approximation factor is a function of the height of the
path partitioning.

Some results have been presented in the literature
which are close to our result, but differ from ours
in some aspects. In [6] a linear time algorithm was
given for vertex partitioning of a rooted tree into sub-
trees (connected sub-graphs). The partitioning had to
satisfy the knapsack constraint, i.e. the sum of the
weights of the vertices of each sub-tree had not to
exceed a given value. The partitioning that satisfied
this constraint was called admissible. The objective
was to minimize the height of the partitioning. The
height of the partitioning considered the height of the
rooted tree which was obtained by contracting each
sub-tree into a single vertex. The difference between
our result and the result of [6] is that we do not consider
the knapsack constraint and our partitions are paths
instead of sub-trees.

The problem of finding an admissible partitioning
of minimum cardinality was studied in [7]. A general-
ization in which there were multiple weight functions on
the vertices was investigated in [8]. Problems involving
dissimilarities between sub-trees of a partitioning was
considered in [9]. The problem of minimizing (maxi-
mizing) the maximum (minimum) weight of a sub-tree
with respect to some weight functions are considered
in [10-13]. An open problem in [11] is the most
uniform vertex partitioning problem for trees in which
the objective is to minimize the difference between the
maximum and the minimum weights of the vertex set
in the partitioning. For a special case that the tree is
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a path, a solution was given in [14]. In [2] the problem
of splitting a tree into k& connected components with
roughly equal size was studied. For general k, a simple
algorithm that finds a k-split with ratio at most three
in O(nlogk) time was proposed.

The path partitioning that we defined is a set
of edge-disjoint paths, and we would like to find a
path partitioning of minimum height. Partitioning
of graphs into minimum number of vertex-disjoint
paths have also been investigated in the literature.
Since the Hamiltonian path problem is NP-complete
so is the minimum cardinality path partitioning prob-
lem. Many linear-time algorithms were given for
this problem for special classes of graphs including
trees [15,16], cographs [17], interval graphs [18], circu-
lar arc graphs [19], bipartite permutation graphs [20]
and block graphs [21,22]. A generalization of the
problem, in which a constraint on the size of paths is
also given, was considered in [23-25]. A linear-time
algorithm was given in [26] for finding a minimum-
cardinality set of simple-paths that cover all the edges
of a given tree and, secondarily, have smallest total
path lengths. In covering problem, partitions do not
need to be disjoint.

The reminder of the paper is as follows. In the
next section, a linear-time algorithm is given for com-
puting a minimum height path partitioning of trees.
Then the correctness proof and the time complexity
of the proposed algorithm is presented. At last the
conclusion is given.

MINIMUM HEIGHT PATH PARTITIONING
OF TREES

In this section, we describe how a minimum height path
partitioning of trees can be computed in linear time.
For each edge (u,v) of a given free tree T(V,E) we
define two labels [, (u,v) assigned to end-vertex v of
edge (u,v), and l,(u,v) assigned to end-vertex u of
edge (u,v). Let I, (u,v) = max{l} (v, w), I3 (v,w) + 1},
where [1 (v,w) and 2, (v, w) are respectively the largest
and the second largest elements of {l,,(v, w)|(v,w) €
E,w # u}. Initially, let {,(u,v) = 1 for each leaf
vof T.

All the labels of the edges of a free tree T can
be computed in linear time, by applying the Depth
First Search (DFS) algorithm twice in two different
phases. The starting vertex is arbitrary but should
be the same in both phases. This is essential for
correct computation of the labels. The details and the
correctness proof are given in Theorem 1 in the next
section. In the first phase, the label of one end-vertex
of each edge is computed. In the second phase, the
label of the other end-vertex of each edge is computed.
Figure 2a shows the labels of the edges of a free tree T
after the first phase, and Figure 2b shows the labels of
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Figure 2. The labels of the edges of a free tree T'.

the edges of T' after the second phase. In this example,
the DFS algorithm starts from vertex 1.

In the following, we describe our algorithm for
computing a minimum height path partitioning of a
given free tree T = (V,E). If we remove an edge
(u,v) from a free tree T, two sub-trees (connected sub-
graphs) are left, say T, and T, which contain vertices
v and u, respectively. Let T',(u, v) be the union of edge
(u,v) and the sub-tree T,. The pseudo-code of the
partitioning algorithm is given by Algorithm 1. First,
the labels of the edges of 17" are computed by calling
procedure ComputeLabels. This procedure computes
the labels by applying DF'S twice as described before.
Then, a leaf u of T is selected such that label I, (u, v),
where v is the adjacent vertex of «, is minimum among
all leaves of T. Next, procedure ConstructPaths is
called with T and edge (u,v) as inputs to find a
minimum height path partitioning of T'.

In procedure ConstructPaths, first the root path
of the path partitioning of 7" is computed by calling
procedure ConstructMainPath with T and (u,v) as
inputs. Edge (u,v) is the first edge of the root path
of the path partitioning. The next edge of the root
path is edge (v,w*), where w* # w is an adjacent
vertex of v, with the maximum label [« (v, w*). The
other edges of the root path are selected in the
same way. Next, the other paths of the partitioning
are constructed as follows. By removing the root
path from the tree, some sub-trees are left. Each
sub-tree was connected by an edge, the connecting
edge, to the root path. For each sub-tree and its
connecting edge, procedure ConstructPaths is called
recursively.

Algorithm 1
PathPartitioning (T')

beginAlg
1. ComputeLabels (T')

2. Select the leaf u of the minimum label I, (u,v)
3. ConstructPaths (T, (u,v))

endAlg

ConstructPaths (T,(u,v))
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beginProc

1. M P=_ConstructMainPath (T, (u,v))

2. For each edge (r,w), where w ¢ MP and r € MP
do

3. ConstructPaths (T, (r,w), (r,w))

endProc

THE CORRECTNESS PROOF AND THE
TIME COMPLEXITY

In this section, we prove that the algorithm is correct
and runs in linear time. The following theorem shows
that the labels of the edges are computed correctly.

Theorem 1

Applying the DFS algorithm twice in two different
phases on a free tree T' = (V, E), starting from a fixed
arbitrary vertex s in both phases, all the labels of the
edges of T are computed correctly.

Proof

We should prove that all the edges of T are assigned
two labels, one for each end-vertex. In addition, we
should prove that on computing a label, all necessary
information are already available.

Let (u,v) be an arbitrary edge of tree T'. Without
loss of generality, assume that the DF'S algorithm which
starts from vertex s visits vertex u before visiting
vertex v, see Figure 3. The label [,(u,v) of edge
(u,v) is computed when DFS returns from vertex v
to vertex u, in the first phase. If v is a leaf then simply
l,(u,v) = 1. Otherwise, to compute l,(u,v), we need
all labels {,,(v,w) where w # u and (v,w) € E. The
labels [,,(v,w) have been already computed, because
DFS returns back from v to w after returning back from
all adjacent vertices w of v (w # v). So we already have
all information we need for computing [, (u,v).

The label I, (u, v) of edge (u,v) is computed when
DFS goes from vertex u to vertex v, in the second
phase. Note that because the starting vertex s is fixed
in both runs of DFS, the direction of traversing the
edges is the same in both phases. This is essential

D@ . .

Figure 3. DFS on a free tree, Theorem 1.
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for correct computation of the labels. Considering
Figure 3, to compute l,(u,v), we need all the labels
ly(u,w) where w # v and (u,w) € E. If u = s,
then all the labels [,,(u,w), w # v, have been already
computed in the first phase. Otherwise, let r be the
adjacent vertex of u that the DFS algorithm visits
before visiting w. The label [,.(r,u) has been already
computed, because DFS goes from r to u before going
from w to v. All the other labels I,,(u,w), where w # v
and w # r, have been already computed in the first
phase. So we already have all information we need for
computing l,(u,v). Every edge is traversed twice by
the DF'S algorithm in each run, hence all the edges are
assigned two labels, one for each end-vertex. O

In the following, we prove that our path parti-
tioning is of minimum height. The following fact is
concluded directly from the definitions.

Fact 1

For any edge (u,v) of a free tree T, label I,(u,v)
depends only on sub-tree T, (u, v).

Lemma 1

For any edge (u,v) of a free tree T, the height of any
minimum height path partitioning of sub-tree T),(u, v),
that includes edge (u,v) in its root path, is [, (u,v) — 1.

Proof

The proof is, by induction on n, the number of vertices
of the given free tree T'. For trees of size 2, both I, (u, v)
and I, (u,v) for the only edge (u,v) are one and the
height of the only path partition is zero. Assuming
that, the induction hypothesis is true for all trees of
size less than n, we prove that it is true for any tree T
of size n. For any edge (u,v) of T, if sub-tree T, (u,v)
has less than n vertices, then we are done. Otherwise,
suppose that T, (u,v) has n vertices, which is possible
only when w is a leaf, see Figure 4.

Considering Figure 4, the root path of any min-
imum height path partitioning of T, (u,v) that starts

@ : ¢

Figure 4. The sub-tree 7, (u,v), Lemma 1.
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from edge (u,v) continues by an edge (v, w*) for an
adjacent vertex w* # uw of v. Now we should specify
which adjacent vertex w # wu of v can be w*. Let
Pmin(T) denote a path partitioning of tree T whose
root path includes vertex w and has minimum height.
Let MP(P) denote the root path of a path parti-
tioning P. We have MP(P™"(T,(u,v))) = (u,v) U
MP(P™8(T,«(v,w*))). One can see the height of
Pmin(T, (u,v)) will be minimum only when w* is an
adjacent vertex w # u of v with P™" (T, (v,w)) of
maximum height among other adjacent vertices w # u
of v. This is the optimal choice of our greedy algorithm.
In this manner:

h(PF™ (T (u, ) = max{hy, (v, w), b, (v, w) + 1},
where hl (v,w) and hZ(v,w) are, respectively, the

largest and the second largest elements of {h,, (v, w)]
(v,w) € E,w # u}. From the definition we have:

L, (u,v) = max{l} (v, w), % (v,w) + 1}.
Any sub-tree T\, (v, w) has less than n vertices, so:
B (0, w) = 0 (0,0) — 1,
and:
Wy (v, w) =I5, (v,w) = 1,
and we have
hy(u,v) = 1, (u,v) — 1.0

Theorem 2

The path partitioning P of a given free tree T, obtained
by the proposed algorithm, is of minimum height.

Proof
By Lemma 1 for any leaf uw of free tree T,
label [,(u,v) — 1 is the height of a minimum

height path partitioning of sub-tree T,(u,v) that
includes edge (u,v). Vertex u is a leaf of T,
so sub-tree T,(u,v) is T itself. Because we se-
lect leaf w such that label [,(w,v) is minimum,
so the computed path partitioning of 7' has mini-
mum height among all possible path partitioning of
T.0

Theorem 3

The time complexity of the proposed algorithm is linear
in the number of vertices of the given free tree T =
(V,E).
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Proof

Consider the pseudo-code of the partitioning algorithm
which is given by Algorithm 1. In the first step, the
labels of the edges of the tree are computed by applying
the linear time DFS algorithm on the tree. In the
second step, the leaf of minimum label is selected,
which is done in linear time.

Then the recursive procedure ConstructPaths is
called to construct the paths of the partitioning. The
root path is constructed by the greedy method in time
O(>_ ,emp d(v)), where mp is the root path and d(v)
is the degree of vertex v. Then the procedure is
called recursively to construct the other paths of the
partitioning. The time that is needed to construct each
path p is bounded by O(}_,, d(v)). So the total time
that is needed to construct all the paths, using the
already computed labels, is O(>_ ., d(v)) = O(|E|) =
O(V))-

veV

CONCLUSION

In this paper, we considered path partitioning of trees.
In this problem, the given free tree was partitioned
into edge-disjoint paths. A linear time algorithm was
developed to compute a path partitioning for free
trees such that the height of the partitioning was
minimum.
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