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Comparison of the Molli�cation Method,
Wavelet Transform and Moving Average

Filter for Reduction of Measurement Noise
E�ects in Inverse Heat Conduction Problems

S.D. Farahani1;� and F. Kowsary1

Abstract. This paper proposes a procedure to smooth temperature data by wavelet transform, moving
average �lter and the molli�cation method prior to utilizing the IHCP methods (i.e. the conjugate gradient
method, the Tikhonov regularization method) for unknown heat ux estimation. The measured transient
temperature data utilized in the solution may be obtained from locations inside the body or from locations
on its inactive boundaries. Two case studies are used to investigate the e�ciency and accuracy of the
mentioned procedure. The �rst case study is performed on a rectangular body. The second case study
demonstrates the ability of the proposed method to estimate heat ux in a more complicated geometry.
Smoothing measured data causes an increase in the accuracy and stability of the estimation.

Keywords: Molli�cation method; Wavelet transform; Moving average �lter; Estimated heat ux;
Conjugate gradient method; Tikhonov regularization method.

INTRODUCTION

Inverse Heat Conduction Problems (IHCP) have re-
cently found wide applications in industry. The classi-
cal heat conduction problem, where the temperature
histories at the surface of the body are a known
function time and interior temperature distribution is
then determined, is termed a direct problem. Inverse
Heat Conduction Problems (IHCP) involve estimation
of surface boundary conditions (i.e. heat ux or
temperature [1-3]), thermophysical properties [4-5], an
unknown geometry of a section of a body [6], or
volumetric heat generation [7] using some temperature
measured from locations within or on the surface of the
body. IHCPs are mathematically ill-posed being highly
sensitive to random errors (noise) that inherently exist
in measured temperature data. In order to alleviate
this problem, regularization techniques are utilized [8].
In general, methods of solving inverse heat conduction
problems can be divided into two main groups: sequen-
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tial methods and whole domain methods. Each of the
groups has its own advantages. Sequential methods
can be used for real time estimation and require less
memory and computational time. Whole domain meth-
ods on the other hand are more accurate as compared
to sequential methods, since whole domain methods
use all the measured temperature simultaneously in
estimation of any unknown parameters or functions.
Well-known whole domain methods are the conju-
gate gradient method and the Tikhonov regularization
method. The conjugate gradient method has been
used widely in the literature and known as one of the
successful algorithms of IHCP especially for problems
whose boundary conditions cover a major part of the
boundary [9].

An analytical solution was presented by Imber
for a solid cylinder with radial and angular heat ux
dependence [10]. Kakaee et al. used the Levenberg,
Marquardt and Modi�ed Levenberg methods to esti-
mate the surface temperature on a moving boundary
in the burning process of a homogenous solid fuel [11].
Heydari et al. studied gas temperature estimation
in a partially �lled rotating cylinder by using the
conjugate gradient method and Levenberg-Marquardt
method [12]. Kowsary et al. suggested a Variable
Metric Method (VMM) for solving inverse heat con-
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duction problems [13]. In another work, Kowsary et
al. suggested a transformation matrix based on the
dual reciprocity boundary element along with the se-
quential function speci�cation scheme for solving two-
dimensional inverse heat conduction problems involv-
ing unknown time and space varying boundary heat
ux estimation [14]. Some researchers have attempted
to �lter measured temperature data from the sensors
before employing the IHCP algorithm; for example, Al-
Khalidy used digital �lter formulation to smooth noisy
sensor data in parabolic and hyperbolic inverse heat
conduction [15]. Ji and Jang used a Kalman �lter
to �lter noisy sensor data and solve one dimensional
IHCP [16]. Beck et al. proposed a pre�ltering formula
in which all data is replaced by ym = (ym�1 + 2ym +
ym+1)=4, when m is the time index [1]. Kowsary et
al. utilized wavelets to reduce the destructive nature
of existing noise contaminating temperature data in
inverse heat conduction problems [17].

In this paper, the molli�cation method, Wavelet
transform and moving average �lter are used to smooth
experimental data prior to the use of IHCP algorithms.
Whole domain methods, such as the Tikhonov regu-
larization method and the conjugate gradient method,
are used to estimate unknown temporally and spatially
varying boundary heat ux. The mathematical concept
of formal stability for the molli�cation method was
originally introduced by Manselli and Miller [18] and
then extended by Murio [19-21]. Noise reduction
by wavelet as proposed by Donoho and Johnstone
(1991) and Donoho (1993) and referred to as de-
noising is distinctly di�erent from other noise reduction
approaches, such as the high-frequency �ltering of
signal components [22-24]. The moving average �lter
is the most common �lter, mainly because it is the
easiest digital �lter to understand and use. In spite of
its simplicity, the moving average �lter is optimal for
reducing random noise of a signal.

In this paper, the Finite Element method is used
in numerical solutions where ANSYS capabilities are
utilized in the mesh generation and numerical solution
of the problem, in order to evade the need for coding
the direct heat conduction problem. By simulating the
problem in the graphic user interface of the software
and saving it in the form of a function, the numerical
solution of the problem can be performed merely
by calling the saved function. Inverse algorithms
are written in ANSYS Parametric Design Language
(APDL).

THE MOLLIFICATION METHOD

The molli�cation method is a regularization method
that uses the averaging property of the Gaussian kernel
to smooth noisy data. In this work, the method
presented by Murio is used [20]. The automatic

character of the molli�cation algorithm, which makes
it highly competitive, is due to incorporation of the
Generalized Cross Validation (GCV) procedure for the
selection of the radius of molli�cation as a function of
the perturbation level in the data, which is generally
unknown. In this section, we introduce the method.

Abstract Setting

Let � > 0, � > 0 and A� = (
R �
�� exp(�s2)ds)�1. The

�-molli�cation of an integrable function is based on
convolution with the kernel:

��;�(t) =

(
A���1 exp(�t2=�2) jtj < ��
0 jtj > ��

(1)

The �-molli�er �� function is a nonnegative C1(���;
��), vanishing outside (���; ��) and satisfying:

��Z
���

��;�(t)dt = 1: (2)

Let I = [0; 1] and I� = [���; ��]. The interval I is
nonempty whenever �� < 1=2.

If f is integrable on I, we de�ne its �-molli�cation
on I by the convolution integral:

J�f(t) =
1Z

0

��(t� s)f(s)ds: (3)

Discrete Molli�cation

In order to de�ne the �-molli�cation of a discrete
function, we consider n di�erent numbers on I, say
t1; t2; � � � ; tn satisfying and de�ning:

�t = max
1�j�n�1

jtj+1 � tj j;

0 � t1 � � � � � tn � 1:

Furthermore, we set s0 = 0, sn = 1 and for j =
1; 2; � � � ; n� 1, sj = 1

2 (tj + tj�1).
Let G = fgjgnj=1 be a discrete function de�ned on

the set k = ft1; t2; � � � ; tng.
The discrete �-molli�cation of G is de�ned as

follows. For every t 2 I�:

gs(t) =
nX
j=1

0B@ sjZ
sj�1

��(t� s)ds
1CA gj : (4)

Notice that:
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nX
j=1

0B@ sjZ
sj�1

(��(t� s)ds)
1CA =

��Z
���

��(s)ds = 1:

Selection of Regularization Parameters

Computation of (g"�)k can be viewed as:

nX
i=1

[A�]kig
"
i = (g"�)k; (5)

where:

[A�]ki =

sjZ
sj�1

��(tk � s)ds; (6)

and G = fg"i gNi=0 is the noisy data function. Since
the noise in the data is unknown, an appropriate
molli�cation parameter introducing the correct degree
of smoothing should be selected. Such a parameter is
determined by the principle of generalized cross valida-
tion as the value of � that minimizes the functional:

(G")T (IT �AT� )(I �A�)G"
Trace ((IT �AT� )(I �A�)) : (7)

After computing g"� , the desired �-minimizer is obtained
by a golden section search procedure.

Extension of Data

Computation of g� and J�g throughout the time do-
main I = [0; 1] requires either the extension of g to a
slightly bigger interval [���; 1 + ��] or consideration of
g restricted to the subinterval [��; 1���]. Our approach
is the �rst one.

We search for constant extensions, g� of g, to
the intervals [���; 0] and [1; 1 + ��] satisfying the
conditions:

kJ�(g�)� gkl2(0;��) is minimum; (8)

and:

kJ�(g�)� gkl2(1���;0) is minimum: (9)

The unique solution to this optimization problem at
the boundary x = 1 is given by:

g�=

1R
1���

�
g(t)�

1R
0
��(t�s)g(s)dt

� 1+��R
1
��(t�s)ds

!
dtR 1

1���(
R 1+��

1 ��(t� s)ds)2dt
:
(10)

A similar result holds at end point x = 0.

WAVELET TRANSFORM

Wavelets are classes of function with properties that
are considered highly suitable for analysis of a wide
spectrum of signals found in engineering and scienti�c
applications. Wavelets are used as basic functions
for signal decomposition and reconstruction described
briey as follows.

For a scalar function,  (t) : R ! R, to be
treated as a wavelet, it is necessary that  (t) satisfy
the following conditions:

1. To have a �nite norm, i.e.:Z 1
�1
j (t)j2 dt <1:

2. To have a �nite support width (actual or e�ective)
both in the time and frequency domain (to be band
limited).

3. To satisfy the admissibility condition de�ned as:

1Z
�1

�����  ̂(w)
w

�����2 dw <1; (11)

where  ̂(w) is the Fourier transform of  (w).

The admissibility condition refers to the  ̂(w) be-
havior near the origin where it is required to approach
zero faster than frequency variable w. The admissibil-
ity condition implies having a zero DC (average) value,
i.e.:Z 1
�1

 (t)dt = 0:

Wavelets assume di�erent forms; they can be symmet-
ric or asymmetric. The wavelet transform of function
f(t) is de�ned as:

Wa;b =
Z 1
�1

f(t) 
�

(t� b)
a

�
dt; a 6= 0; (12)

where scalars a and b are referred to as scale and
translation factors, respectively. Now, let scaling and
translation parameters, a and b, assume the following
discrete values:(

a = 2j

b = k2�j j; k 2 z: (13)

Then, the translated and scaled version of 	(t) can be
written as:

 j;k = 2j=2 (2jt� k); j; k 2 Z: (14)

 j;k constitute a family of wavelet functions con-
structed from a prototype of wavelet function 	(t).
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They are utilized as basic functions for function (signal)
expansion. Signal expansion using discrete values of a
and b of Equation 12 is referred to as DWT.

Analysis of given data in wavelet transform con-
sists of three main stages:

1. Decomposition,
2. Analysis,
3. Reconstruction.

Decomposition Stage

In the decomposition stage, as used in DWT, a given
signal is decomposed into a set of low and high
frequencies. Decomposition of a signal into a set of
hierarchically low and high frequency components was
proposed �rst by Mallt [24,25].

Analysis and Signal Manipulation Stage

This stage of the wavelet analysis of a signal includes
the manipulation and coding of wavelet coe�cients,
such as for noise reduction, information extraction,
data compression, and data transmission. Threshold-
ing of wavelet coe�cients is a commonly used form of
manipulation of coe�cients for noise reduction.

Synthesis Stage

Finally, the synthesis stage refers to signal recon-
struction, where in reverse transformation is applied
to manipulated (modi�ed) coe�cients. Manipulation
of coe�cients results in a set of modi�ed values for
coe�cients used during the reconstruction (synthesis)
stage of the signal.

Wavelet-Based Noise Reduction

Noise reduction by wavelets is based on the property of
the wavelet transform referred to as the sparsity of sig-
nal representation in the coe�cient domain. Sparsity
refers to a clustering of coe�cients into two groups of:

1. A few large amplitude coe�cients.
2. A large number of small valued coe�cients.

Small amplitude coe�cients are attributed to the noise
content of the signal. Noise reduction by wavelets
deals with the manipulation of wavelet coe�cients in
which coe�cients below a judiciously selected threshold
level are replaced by zero, and the inverse transform of
manipulated (modi�ed) coe�cients is used to recover
denoised signals; hence, noise is cleaned from the signal.
Two approaches can be considered for thresholding:

1. Hard Thresholding. In hard thresholding, only
wavelet coe�cients with absolute values below or at

the threshold level are a�ected; they are replaced
by zero while others are kept unchanged. Modi�-
cation of coe�cients ! in hard thresholding can be
described as follows:

Wm = W if jW j � th;
Wm = 0 if jW j < th: (15)

2. Soft Thresholding. In soft thresholding, coe�-
cients above the threshold level are also modi�ed
where they are reduced by the amount of threshold:

Wm = Sign(W )(jW j � th) if jW j � th;
Wm = 0 if jW j < th: (16)

MOVING AVERAGE FILTER

The moving average is the most common �lter, mainly
because it is the easiest digital �lter to understand and
use. In spite of its simplicity, the moving average �lter
is optimal for reducing the random noise of a signal.
A moving average �lter smoothes data by replacing
each data point with the average of the neighboring
data points de�ned within the span. This process is
equivalent to low pass �ltering with the response of the
smoothing given by the di�erence equation:

ys(i) =
1

2N + 1
(y(i+N) + y(i+N � 1) + � � �

+ y(i�N)); (17)

where ys(i) is the smoothed value for the ith data point,
N is the number of neighboring data points on either
side of ys(i), and 2N + 1 is the span. The moving
average smoothing method used by curve �tting follows
these rules:

1. The span must be odd.

2. The data point to be smoothed must be at the
center of the span.

3. The span is adjusted for data points that cannot
accommodate the speci�ed number of neighbors on
either side.

4. The end points are not smoothed because a span
cannot be de�ned.

INVERSE PROBLEM STATEMENT

Inverse estimation of time varying heat ux is con-
sidered in two case studies. The �rst case study is
performed on a rectangular body as shown in Figure 1.
The geometry and boundary conditions of the �rst
test case are presented, as well as the locations of the
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Figure 1. Geometry and boundary conditions of the �rst
case study.

sensors. Assuming constant thermal properties, the
heat equation is written as:

@2T
@x2 +

@2T
@y2 =

1
�
@T
@t
;

@T
@x

���
x=0

= 0; �k@T
@x

���
x=l

= q1(t);

@T
@y

���
y=0

= 0; �k@T
@y

���
y=l

= q2(t);

T (x; y; 0) = 0: (18)

The second case study demonstrates the ability of
the mentioned methods to estimate heat ux in more
complicated geometries. The geometry and boundary
conditions of the second test case are shown in Figure 2.
The entire boundary is considered to be insulated ex-
cept for the outer wall where a convective heat transfer
exists. Figure 2 shows the location and arrangement
of the sensors. Assuming constant thermal properties,

Figure 2. Geometry and boundary conditions of the
second case study.

the governing equation is written as:
1
r
@
@r

�
r
@T
@r

�
+
@2T
@z2 =

1
�
@T
@t
;

@T
@r

���
(1)

=
@T
@z

���
(2)

=
@T
@r

���
(3)

=
@T
@r

���
(4)

0;

�k@T
@n

���
(5)

= q(x; t);

T (r; z; 0) = 0: (19)

CONJUGATE GRADIENT METHOD

The sum of the square of error function shows a
di�erence between measured temperature data and
computed temperature:

f =
JX
i=1

MX
m=1

(Ti(tm)� Yi(tm))2; (20)

in which J is the number of sensors, Yj is the
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temperature measured by the jth sensor and Tj is
the corresponding calculated temperature generated
by a direct heat conduction model based on a given
or assumed vector of ~q. In fact, f is our objective
function, which is an implicit function of ~q and must
be minimized. Methods for solving unconstrained
nonlinear optimization are classi�ed into two groups:
direct search methods and descent methods. These
methods are iterative in nature. The direct search
method needs only the objective function value. The
descent methods require not only the function value,
but also its �rst and possibly higher order derivatives;
therefore, this is also called the gradient based method.

In order to estimate a smoother solution for ~q,
experimental data are �ltered by the mentioned �lters
before the conjugate gradient algorithm is employed.

Numerical Procedure for the CGM

1. The pulse sensitivity coe�cients with respect to
each component of ~q are de�ned as:

Xp(xj ; yj ; tm) =
@T (xj ; yj ; tm)

@qmp
;

p = 1; 2; � � � ; P; j = 1; 2; � � � ; J;
m = 1; 2; � � � ; n: (21)

Governing equations for pulse sensitivity coe�-
cients are obtained by taking the derivative of
the heat equation with respect to each q1

i , which
yields:

@2X
@x2 +

@2X
@y2 =

1
�
@X
@t

;

@X
@x

���
x=0

=
@X
@y

���
y=0

=
@X
@y

���
y=l

= 0;

�k@X
@x

���
x=l

=

(
1 tm�1 � t � tm
0 others

X(x; y; tm�1) = 0: (22)

A similar result holds for q2
i .

2. Smoothed temperatures are calculated as follows:

Y sj (t); j = 1; � � � ; J: (23)

3. The initial value for ~q is assumed.
4. With respect to an assumed value for ~q, the dif-

ferential equation can be solved and temperatures
[T ] in the sensors are computed.

5. Stopping (or stoppage) criteria (~rs � ") is checked
here, and if it is not satis�ed, the following steps
must be followed, otherwise stop the search.

6. The gradient of the objective function at sensor
locations is calculated.
~rf = �2[X]T ([Y s]� [T ]): (24)

7. Search direction (~S) and the value of search step
() are determined here:
~Sk = �~rfk + k ~Sk�1;

if k = 1 then 1 = 0; else k =

~rfk2~rfk�1
2 :

(25)

8. By assuming �q0 = �q + ~Sk and the direct solution
of the problem, �T can be calculated as:

�T = T (�q0)� T (�q): (26)

9. The optimal step size is calculated as follows:

�k =

JP
j=1

MP
m=1

(Tj(tm)� Y mj (tm))�Tj(tm)

kP
j=1

MP
m=1

�t2j (tm)
: (27)

10. A new value for ~q can be obtained:

qk+1 = qk + �kSk: (28)

11. Go back to step 3.

THE TIKHONOV REGULARIZATION
METHOD

The Tikhonov regularization method is a procedure
which modi�es the least squares approach by adding
terms that are intended to reduce uctuations in the
unknown function, such as the heat ux. These uctu-
ations are not of a physical origin but are inherent in ill-
posed problems unless special treatment is introduced.

The regularization method may have di�erent
forms and has been studied by many researchers. The
Russians, in particular Tikhonov, Arsenien and Ali-
fanov [1], have pursued various regularization schemes
for the IHCP. In the regularization procedure, an
augmented sum of squares function, f , is minimized.
The whole domain zeroth-order regularization f is
de�ned as:

f =
JX
j=1

nX
i=1

(Y ij � T ij )2 + �
PX
p=1

nX
i=1

(qp;i)2: (29)

If � ! 0, then the exact matching of Yj and Tj is
approached, but the sum of the q2

i terms becomes large
for small time steps. The e�ect of a nonzero � is
to reduce the magnitude of the qj values. However,
by properly selecting �, instabilities can be reduced
because the e�ect of the regularization term in q2

i is
to reduce the maximum magnitudes of the estimated
values of qi.
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Numerical Procedure for the Tikhonov
Regularization Method

As based on what was mentioned previously, sensitivity
coe�cients are calculated.

1. Smoothed temperatures are calculated as:

Y sj (t)j = 1; � � � ; J: (30)

2. Estimated values for components of heat uxes are
computed as:

[q] = [XTX + �I]�1XT [Y s � T0I]: (31)

In the IHCP, the accuracy and stability are two
conicting objections. For small values of the regu-
larization parameter, the variance error is high, the
deterministic bias error is small and vice versa. Thus,
an optimal value of the regularization parameter is
selected based on the L-shaped graph [1].

SIMULATION OF THE PROBLEM IN
ANSYS

The Finite Di�erence Method (FDM), Finite Volume
Method (FVM), Finite Element Method and Bound-
ary Element Method (BEM) are the main numerical
methods for solving heat transfer problems. The
most attractive feature of the FEM is its ability to
handle complicated geometries (and boundaries) with
relative ease. The handling of geometries in FEM is
theoretically straightforward. In direct calculation, the
ANSYS commercial package is used. The �nite element
mesh contains three-dimensional, four-node thermal
elements, PLANE55, with temperature as a single
degree of freedom at each node (an axi-symmetric
model is used in the second case study). In two cases, it
is assumed that the material of the bodies is aluminum.
The mesh tool feature and relevant quadric mesh are
used in applying the mesh to the geometry. Direct
temperatures calculated by the ANSYS as a result of a
known imposed heat ux are perturbed by a Gaussian

noise with standard deviation of � = 0:1�C for the �rst
case study and � = 1�C for the second one. The time
step used in direct calculations is 0.01 s while this value
is 0.1 s for inverse calculations.

RESULTS

The root mean square error is used to compare esti-
mated values with actual values of heat ux. This error
is calculated as:

erms =

vuut nP
i=1

(q̂i � qexacti)2

n
: (32)

The errors in IHCP may be separated into the deter-
ministic bias due to the regularization method and the
variance as a result of the sensitivity of the method to
the measured errors.

Deterministic bias error can be calculated:

D =

vuut nP
i=1

(q̂i;without noise � qexacti)2

n
: (33)

Variance error is then calculated as:

V = erms2 �D2: (34)

Note that for better comparison between errors, a
second root of variance is used here, while for wavelet
calculations and denoising, the wave-menu of the
MATLAB toolbox was used. MATLAB uses seven
di�erent criteria for thresholding where they can be
implemented in either soft or hard thresholding. In
our data analysis, we used a conservative thresholding
criteria referred to as \penalize high" in MATLAB.
These oscillations in hard thresholding were found to
be less than those of soft thresholding. We used Db-
2 for analyzing wavelet in a multi resolution structure
with two levels for decomposition. For a quantitative
compression, Tables 1 and 2 show the root mean square
error for denoised temperature data by the mentioned

Table 1. Erms (�C) for smoothing temperature data by �lters in the �rst case study.

Wavelet Transform Moving Average Filter Molli�cation Method

Sensor 1 0.0432 0.039 0.04

Sensor 2 0.0522 0.05 0.091

Table 2. Erms (�C) for smoothing temperature data by �lters in the second case study.

Moving Average Filter Wavelet Transform Molli�cation Method

Sensor 1 0.44192 1.85021 0.656354

Sensor 2 0.535886 0.761292 0.822335

Sensor 3 0.488204 0.841891 0.740154
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�lters. It is also obvious from these tables that the mov-
ing average �lter has a minimum di�erence smoothed
measurement data compared with exact data (without
noise). Note that the \exact" word in Figures 3 to 24
means the heat ux for numerical simulation measured
temperature data, and the main aim of the mentioned
algorithms is its estimation.

Case 1

The results of the conjugate gradient method with and
without Discreet Wavelet Transform (DWT) are shown
in Figures 3 and 4. The estimated unknown heat
uxes by the CGM with and without a moving average
�lter (MOA) are shown in Figures 5 and 6. Figures 7
and 8 show the estimated heat uxes by the conjugate

Figure 3. Estimated heat ux value for the �rst
component by CGM by using with and without denoised
data by DWT in the �rst case study.

Figure 4. Estimated heat ux value for the second
component by CGM by using with and without denoised
data by DWT in the �rst case study.

Figure 5. Estimated heat ux value for the �rst
component by CGM by using with and without denoised
data by MOA �lter in the �rst case study.

Figure 6. Estimated heat ux value for the second
component by CGM by using with and without denoised
data by MOA �lter in the �rst case study.

Figure 7. Estimated heat ux value for the �rst
component by CGM by using with and without the
molli�ed data in the �rst case study.
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Figure 8. Estimated heat ux value for the second
component by CGM by using with and without the
molli�ed data in the �rst case study.

gradient method with and without molli�ed data.
These �gures show smoothed heat ux estimation by
denoising the data before the CGM algorithm without
a �lter. For quantitative compression, the variance,
bias and mean square error of the estimated heat ux
for noisy data and denoised data are by Wavelet trans-
form. The moving average �lter and the molli�cation
method are given in Table 3. It is also obvious in
Table 3, which shows this method that smoothing the
data has more accuracy and stability than the CGM.
The results by the Tikhonov Regularization Method
(TRM) with and without Wavelet transform are shown
in Figures 9 and 10. Figures 11 and 12 show the results
by the Tikhonov Regularization Method (TRM) with
and without a moving average �lter. The estimated
heat ux by TRM, with and without molli�ed data,
is shown in Figures 13 and 14. The regularization
parameter value was selected from the corresponding
L-curve graph (Figures 15 to 18). These �gures show
that using a �lter to smooth noisy data before the
TRM algorithm achieves the smoothed estimation of
the unknown heat ux with less error. Table 4 shows an
increase in the accuracy and stability of the proposed
algorithm, and the regularization parameter (�) value
is reduced to a small value.

Figure 9. Estimated heat ux value for the �rst
component by TRM by using with and without denoised
data by DWT in the �rst case study.

Figure 10. Estimated heat ux value for the second
component by TRM by using with and without denoised
data by DWT in the �rst case study.

Case 2

Figure 19 shows the estimated heat uxes by the
conjugate gradient method with and without molli�ed
data. The results by the conjugate gradient method
with and without Discreet Wavelet Transform (DWT)

Table 3. Error analysis of estimated heat uxes by conjugate gradient method with �lters in the �rst case study.

Filter Component Erms (w/m2) Bias (w/m2) Variance (w/m2)
Wavelet Transform 1 1824.041 414.3014 1776.367

2 2784.641 1709.218 2198.363
Moving Average Filter 1 1581.724 362.4653 1539.633

2 2864.831 2351.378 1636.544
Molli�cation Method 1 1188.638 408.0515 1116.402

2 3065.416 2935.316 883.57
No Filter 1 2672.485 412.4211 2640.47

2 3130.227 1709.409 2622.259
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Figure 11. Estimated heat ux value for the �rst
component by TRM by using with and without denoised
data by MOA �lter in the �rst case study.

Figure 12. Estimated heat ux value for the second
component by TRM by using with and without denoising
data by MOA �lter in the �rst case study.

Figure 13. Estimated heat ux value for the �rst
component by TRM by using with and without the
molli�ed data in the �rst case study.

Figure 14. Estimated heat ux value for the second
component by TRM by using with and without the
molli�ed data in the �rst case study.

Figure 15. L-curve graph for estimated heat uxes by
TRM in the �rst case study.

Figure 16. L-curve graph for estimated heat uxes by
TRM with denoised data by DWT in the �rst case study.
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Figure 17. L-curve graph for estimated heat uxes by
TRM with denoised data by MOA in the �rst case study.

Figure 18. L-curve graph for estimated heat uxes by
TRM with and without the molli�ed data in the �rst case
study.

are shown in Figure 20. The estimated unknown heat
uxes by the CGM with and without a moving average
�lter (MOA) are shown in Figure 21. Table 5 shows
error analysis for the CGM with and without using
denoised data by the mentioned �lters. These �gures
and this table con�rm once again the capability of the

Figure 19. Estimated heat uxes value by CGM by using
with and without the molli�ed data in the second case
study.

Figure 20. Estimated heat uxes value by CGM and
using denoised data by wavelet transform in the second
case study.

purposed denoising algorithms. The results by the
TRM with and without molli�ed data are shown in
Figure 22. The estimated heat uxes by the TRM
and the DWT-TRM are shown in Figure 23. The
results by the TRM and the MOA-TRM are shown
in Figure 24. The regularization parameter value was

Table 4. Error analysis of estimated heat uxes by Tikhonov regularization method with �lters in the �rst case study.

Filter Component A Erms (w/m2) Bias (w/m2) Variance (w/m2)
Wavelet Transform 1 1.6E-10 2972.987 1724.568 2421.676

2 8.8E-10 1663.356 344.6549 1627.257
Moving Average Filter 1 8.8E-10 1663.356 344.6549 1627.257

2 1.4E-10 3021.255 2372.235 1870.959
Molli�cation Method 1 1.4E-10 1104.266 381.9836 1036.094

2 1E-13 3102.099 2914.725 1061.789
No Filter 1 8.8E-10 1876.846 393.6728 1835.095

2 3.8E-10 3411.004 1724.568 2942.926
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Table 5. Error analysis of estimated heat uxes by conjugate gradient method with �lters in the second case study.

Filter Component Erms (w/m2) Bias (w/m2) Variance (w/m2)

1 14155.91 9035.537 10897.2
Wavelet Transform 2 13731.97 8243.161 10982.59

3 3899.461 1109.759 3738.213

1 13084.92 10301.83 8067.683
Moving Average Filter 2 11082.06 8179.004 7477.7

3 3746.226 1355.687 3492.323

1 9947.644 8801.688 4635.29
Molli�cation Method 2 13831.62 8326.333 11044.73

3 3549.697 1540.887 3197.814

1 14320.38 9408.168 10796.28
No Filter 2 14633.26 7887.355 12325.66

3 4138.234 1019.78 4010.614

Figure 21. Estimated heat uxes value by CGM and
using denoised data by moving average �lter in the second
case study.

Figure 22. Estimated heat uxes value by TRM and
using denoised data by molli�cation method in the second
case study.

Figure 23. Estimated heat uxes value by TRM and
using denoised data by wavelet transform in the second
case study.

Figure 24. Estimated heat uxes value by TRM and
using denoised data by moving average �lter in the second
case study.
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Table 6. Error analysis of estimated heat uxes by Tikhonov regularization method with �lters in the second case study.

Filter Component A Erms (w/m2) Bias (w/m2) Variance (w/m2)

1 1.67E-09 10248.03 8459.725 5784.051
Wavelet Transform 2 6.4E-10 15735.77 6569.27 14298.92

3 4.7E-10 18664.69 1269.856 18621.44

1 1.75E-09 9669.554 8418.827 4756.431
Moving Average Filter 2 5.1E-10 12449.89 6591.445 10561.85

3 3.1E-10 14726.67 881.1784 14700.29

1 1.88E-09 7889.638 6253.748 4810.096
Molli�cation Method 2 3.4E-10 9996.281 6625.23 7485.449

3 1.4E-10 10989.33 856.987 10955.87

1 1.22E-10 15020.89 8253.748 12550.01
No Filter 2 7.8E-10 18347.49 6825.23 17030.75

3 6.8E-10 23178.62 756.987 23166.25

selected from the corresponding L-curve graph, which
is not brought here. These �gures show the use of a
�lter to smooth noisy data before the TRM algorithm
to achieve a smoothed estimation of the unknown heat
ux. Table 6 indicates that applying wavelet transform,
moving average �lter and the molli�cation method for
noise reduction has an appreciable e�ect on the TRM
algorithm. The results (all �gures and tables) show
that the molli�cation method has a better performance
in smoothed heat ux estimation than MOA and DWT.

CONCLUSION

By smoothing measured temperature data, the ill-
posed inverse heat conduction problem is converted
into a well-posed problem that causes an increase in the
accuracy and stability of the solution method. Regu-
larization parameters, erms, variance and bias errors
in IHCP by using denoised data are reduced. The
advantage of using these �lters is low-computational
loads in the process of solving inverse heat conduction
problems. Denoising by wavelet transform and moving
average �lter has an advantage due to using Toolbox of
MATLAB. When the exact temperature data exist, we
can use wavelet transform for achieving smoothed noisy
data. The code of the molli�cation method is written
easily in programming environments such as MATLAB,
ANSYS etc. Using a molli�cation method to smooth
measured data, before the CGM or TRM algorithm,
can attain a smoothed estimation of the unknown heat
ux with minimum variance error.
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