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Gauss Integration Limits in Nearly
Singular Integrals of BEM for
Geometrically Linear Elements

M. Abbaspour1;� and M. Ghodsi1

Abstract. The most suitable and widely used numerical integration method for boundary integrals
in the BEM method is Gauss-Legendre integration. But, this integration method is not appropriate
for singular and nearly singular integrations in BEM. In this study, some criteria are introduced for
recognizing nearly singular integrals in the integral form of the Laplace equation. At the �rst stage,
a criterion is obtained for the constant element and, at the later stages, higher order elements are
investigated. In the present research, the Romberg integration method is used for nearly singular
integrals. The results of this numerical method have good agreement with analytical integration. The
singular integrals are solved by composing the Romberg method and midpoint rule. Constant, linear
and other interpolation functions of potentials over an element are a category of BEM elements. In
those elements, the Gauss-Legendre integration will be accurate if the source point is placed out of
the circle with a diameter equal to element length, and its center matched to the midpoint of the
element.

Keywords: Boundary element method; Gauss-Legendre integration; Laplace equation; Nearly singular
integrals; Romberg integration.

INTRODUCTION

As is well known, the Gaussian quadratures are the
most conventional methods for BEM integration, be-
cause it is accurate and calculation time is very short
compared to other numerical integration methods.
However, in the case of singular or nearly singular
integrals, the ordinary Gaussian quadrature is not
accurate [1].

Much research has investigated singular integrals
in BEM. A new method known as the Direct Gauss
quadrature formula was introduced by Smith [2] for sin-
gular integrals. Ozgener [3] veri�ed a newly developed
quadrature formula for singular integrals, Sladek [4]
explained and de�ned the singularity in BEM and Zisis
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and Ladopoulos [5] introduced an exact solution for
singular integrals in BEM.

Many researchers have focused on nearly sin-
gular integrands of an integral form of the Laplace
equation in the boundary element method. Ma and
Kamiya [6] have introduced a general algorithm for
accurate integration of nearly singular integration
known as the boundary layer e�ect in BEM. Niu
et al. [7,8] have focused on the analytical integra-
tion of nearly singular integrands for some types
of element of BEM by introducing relative dis-
tance.

As mentioned, all the above research introduced
di�erent methods for solving the nearly singular prob-
lem in BEM. This study attempts to answer the
following important question: In what relative position
between source point and element would we have a
nearly singular integral? In this research, the position
of the source point relative to the element has been
determined, such that the Gauss-Legendre quadrature
would be accurate for BEM integrals. Also, the
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Romberg integration method is used for nearly singular
integrals.

GAUSS-LEGENDRE INTEGRATION

The Gauss-Legendre integration is based on the follow-
ing equation [9-12]:Z 1

�1
f(x)dx =

nX
i=1

wif(xi); (1)

in which f is an arbitrary function, wi are weight
factors and xi are Gauss points.

The Taylor series around zero (Maclaurin series)
can be used for deriving Gauss-Legendre integration
parameters [10]:

f(x) = f(0) + xf 0(0) +
x2

2!
f 00(0) + � � �

+
xm�1

(m� 1)!
f (m�1)(0) +

xm

m!
f (m)(�): (2)

The left hand side of Equation 1 and the Maclaurin
series results in the following equation:Z 1

�1
f(x)dx = xf(0) +

x2

2!
f 0(0) +

x3

3!
f 00(0) + � � �

+
xm

m!
f (m�1)(0) +

xm+1

(m+ 1)!
f (m)(�) j1�1 : (3)

By combining Equations 1 and 2, the following is
obtained:Z 1

�1
f(x)dx =

2kX
j=1

�
4(j=2� [j=2])

j!
f (j�1)(0)

�
+

2
(2k + 1)!

f (2k)(�): (4)

The right hand side of Equation 1 and the Maclaurin
series provides Equation 5:

nX
i=1

wif(xi) =
nX
i=1

wi
�
f(0) + xif 0(0) +

x2
i

2!
f 00(0)

+� � �+ x2k�1
i

(2k�1)!
f (2k�1)(0)+

x2k
i

(2k)!
f (2k)(�)

!
: (5)

The closed form of the above equation is as follows:

nX
i=1

wif(xi) =
2kX
j=1

 
f (j�1)(0)
(j � 1)!

nX
i=1

(wixj�1
i )

!
+

nX
i=1

wi
x2k
i

(2k)!
f (2k)(�): (6)

Relations 4 and 6 are equal by considering Equation 1,
therefore, it could be written as:

nX
i=1

(wixj�1
i )=

4(j=2� [j=2])
j

;

for j=1 to 2n; (7)

or:8>>>>>>>>><>>>>>>>>>:

w1 + w2 + � � �+ wn = 2
w1x1 + w2x2 + � � �+ wnxn = 0
w1x2

1 + w2x2
2 + � � �+ wnx2

n = 2
3

...
w1x2n�2

1 + w2x2n�2
2 + � � �+ wnx2n�2

n = 2
2n�1

w1x2n�1
1 + w2x2n�1

2 + � � �+ wnx2n�1
n = 0

(8)

Weight factors and Gauss points of n points Gauss
integration are obtained by solving the system of Equa-
tion 7 or 8. Also, these values could be found in many
numerical analysis books or by applying Legendre's
polynomials [9-12].

Considering Equations 4 and 6, the error could be
calculated by using the following equation:

E = jI � Inj =
�

2
2n+ 1

�(w1x2n
1 +w2x2n

2 +� � �+wnx2n
n )
���f (2n)(�)

��
(2n)!

;

�1 � � � 1: (9)

After some lengthy mathematical operations, the fol-
lowing well-known equation can be achieved [11]:

E =
22n+1:(n!)4

(2n+ 1)((2n)!)3 f
(2n)(�); (10)

in which n is the number of points of Gauss integration.
The following formula is another error formula

that is also used [12]:

E = jI � Inj

=
1

2n+ 1

"
f(1)+f(�1)�In�

nX
i=1

wixif 0(xi)
#
:

(11)

INTEGRALS IN BOUNDARY ELEMENT
METHOD

In BEM for the Laplace equation there are two integrals
in the integral equation that should be solved for each
node and element. The integrands of these integrals
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(following equations) are singular and nearly singular
for some cases in which the Gauss integration does not
provide an accurate result.

H =
Z

�
uvnds =

Z
�
u

cos �
2�r

ds

=
�

1
2�

Z 1

�1

n̂:~r(�)
r(�)2 :Nj(�):J(�)d�

�
uj ; (12)

G =
Z

�
vunds =

Z
�

ln r
2�

@u
@n

ds

=
�

1
2�

Z 1

�1
ln r(�):Nj(�):J(�)d�

�
ujn: (13)

In general, the limits of these integrals are -1 and 1 and
they �t the de�nition of Gauss-Legendre integration.
But, there is a problem. According to Equation 1, if
the Maclaurin series diverges, the truncation error will
increase. In other words, if n is su�ciently close to
in�nity, the error according to Equation 9 or 10 will
tend to approach in�nity. Therefore, the numerical
method will be incorrect. Then, it is necessary for
the truncation error to be close to zero. Hence,
the Maclaurin series of integrands of Equations 12
and 13 and also their convergence conditions should
be derived.

Nearly Singular Condition for Constant
Element

In the boundary of the BEM domain, the coordinates,
x and y, for each element, and u (variable of Laplace
equation) can be expressed by the polynomial of degree,
n (shape function of degree n and n > 0) and m (shape
function of degreem), respectively. If n = 1 andm = 0,
then, the element is called constant. In this study,
Gauss-Legendre integration has been discussed in the
constant element and then extended to higher order
elements. H and G for the constant element are as
below:

H =
�
L
2�

Z 1

�1

n̂:~r(�)
r(�)2 d�

�
uj ; (14)

G =
�
L
2�

Z 1

�1
ln r(�)d�

�
ujn: (15)

The integrand of G and H only depend on the position
of node i relative to the element. The value of the
u polynomial on the element is equal to 1 for the
constant element. Therefore, if node i and the element
together have translational and rotational movements,
the integrals do not di�er. Hence, the integrals H and

Figure 1. (a) An arbitrary linear element with node i.
(b) Transportation of part (a) without change in lengths.
(c) Non-dimensionalizing part (b) with respect to L.

G are equal for Figures 1a and 1b. Figure 1c is obtained
for integrals H and G by non-dimensionalizing lengths,
with respect to L, as follows:

x0 =
X0

L
; y0 =

Y0

L
;

(�L; 0)! (�1; 0);

(L; 0)! (1; 0): (16)

This speci�cation �ts the de�nition of a local coordi-
nate. By considering Figure 1c and using Equations 1,
14 and 15, the Maclaurin series are expressed as below:

integrand(H) = f(x) =
n̂:~r(x)
r(x)2 =

y0

[(x� x0)2 + y2
0 ]

) f(0) =
y0

[x2
0 + y2

0 ]
;

f 0(x) =
�2y0(x� x0)

[(x� x0)2 + y2
0 ]2
) f 0(0) =

2y0x0

[x2
0 + y2

0 ]2
;

f 00(x) =
2y0[3(x� x0)2 � y2

0 ]
[(x� x0)2 + y2

0 ]3

) f 00(0) =
2y0[3x2

0 � y2
0 ]

[x2
0 + y2

0 ]3
;
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f 000(x) =
�24y0(x� x0)[(x� x0)2 � y2

0 ]
[(x� x0)2 + y2

0 ]4

) f 000(0) =
24y0x0[x2

0 � y2
0 ]

[x2
0 + y2

0 ]4
;

f (4)(x) =
24y0[5((x� x0)2 � y2

0)2 � 4y2
0 ]

[(x� x0)2 + y2
0 ]5

) f (4)(0) =
24y0[5(x2

0 � y2
0)2 � 4y2

0 ]
[x2

0 + y2
0 ]5

;

... (17)

integrand(G)=g(x)=ln r(x)=
1
2

ln[(x� x0)2 + y2
0 ]

) g(0) =
1
2

ln(x2
0 + y2

0);

g0(x) =
(x� x0)

[(x� x0)2 + y2
0 ]
) g0(0) =

�x0

(x2
0 + y2

0)
;

g00(x) =
�[(x� x0)2 � y2

0 ]
[(x� x0)2 + y2

0 ]2
) g00(0) =

�(x2
0 � y2

0)
[x2

0 + y2
0 ]2

;

g000(x) =
2(x� x0)[(x� x0)2 � 3y2

0 ]
[(x� x0)2 + y2

0 ]3

) g000(0) =
�2x0[x2

0 � 3y2
0 ]

[x2
0 + y2

0 ]3
;

g(4)(x)=
6[4x2

0y2
0 � ((x� x0)2 � y2

0)2]
[(x� x0)2 + y2

0 ]4

) g(4)(x) =
6[4x2

0y2
0 � (x2

0 � y2
0)2]

[x2
0 + y2

0 ]4
;

... (18)

De�ning the following variables, better formulations
are obtained for the terms of the Maclaurin series:

x0 = r0 cos �0;

y0 = r0 sin �0; (19)

1
0!
f(0) =

sin �0

r0
;

1
1!
f 0(0) =

2 sin �0: cos �0

r2
0

) 1
1!
f 0(0) =

sin 2�0

r2
0

;

1
2!
f 00(0) =

2 sin �0[3 cos2 �0 � sin2 �0]
r3
0

) 1
2!
f 00(0) =

sin 3�0

r3
0

;

1
3!
f 000(0) =

4 sin �0: cos �0[cos2 �0 � sin2 �0]
r4
0

) 1
3!
f 000(0) =

sin 4�0

r4
0

;

1
4!
f (4)(0) =

sin �0[5 cos2 2�0 � 4 sin4 �0]
r5
0

) 1
4!
f (4)(0) =

sin 5�0

r5
0

;

...

1
n!
f (n)(0) =

sin(n+ 1)�0

rn+1
0

; (20)

1
0!
g(0) = ln(r0);

1
1!
g0(0) =

� cos �0

r0
) 1

1!
g0(0) = �cos �0

r0
;

1
2!
g00(0) =

�[cos2 �0 � sin2 �0]
2r2

0

) 1
2!
g00(0) = �cos 2�0

2r2
0

;

1
3!
g000(0) =

� cos �0[cos2 �0 � 3 sin2 �0]
3r3

0

) 1
3!
g000(0) = �cos 3�0

3r3
0

;

1
4!
g(4)(0) =

�[(cos2 �0�sin2 �0)2�4 sin2 �0: cos2 �0]
4r4

0

) 1
4!
g(4)(0) = �cos 4�0

4r4
0

...

1
n!
g(n)(0) = �cosn�0

nrn0
: (21)

As mentioned in the previous section, the nth term of
the Maclaurin series should approach zero when \n" is
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tending to approach in�nity. Therefore, we arrive at
the following condition:

lim
n!1

1
n!f

(n)(0)=0) lim
n!1

sin(n+1)�0
rn+1
0

=0

�1 � sin(n+ 1)�0 � 1

9>=>;)r0>1:
(22)

This condition is the necessary condition for series
convergence.

The procedure below completes the convergence
of the series by using the following correct inequality.

jsin(n+ 1)�0j
rn+1
0

� 1
rn+1
0

: (23)

The comparison test theorem for the convergence of
series shows that if

P1
n=0

1
rn+1
0

converges, then the
absolute values of the Maclaurin series for the H
integrand will also converge. The ratio test for series
convergence is applied for convergence proo�ng using
the condition of Equation 22 [13].

lim
n!1

1
rn+2
0

=
1

rn+1
0

=
1
r0
< 1: (24)

Equation 24 and other mentioned convergence theo-
rems show the convergence of the

P1
n=0

j sin(n+1)�0j
rn+1
0

series. Therefore, the nth term of the Maclaurin series
of the H integrand (n ! 1) is su�ciently close to
zero and the Gauss-Legendre integration can be applied
with good precision. The same procedure can be used
for the G integrand and the same result is obtained.

Equation 10 shows the error of the n points Gauss
integration that can be expressed as the following for
the H integrand:

E = B(n)f (2n)(�) = B(n)
�
f (2n)(0) + �f (2n+1)(0)

+
�2

2!
f (2n+2)(0) + � � �+ �k

k!
f (2n+k)(0) + � � �

�
:

(25)

The error can be written in the form of the following
equation by using Equation 20:

E = B(n)
2n!
r2n+1
0

(sin(2n+ 1)�0

+
(2n+ 1)� sin(2n+ 2)�0

r0
+ � � �

+
(2n+ k)!�k sin(2n+ k + 1)�0

2n!k!rk0
+ � � �

�
: (26)

The following inequality can be written for using the
comparison test theorem for convergence of the series:

E < B(n)
2n!
r2n+1
0

�
1

+
(2n+ 1)�

r0
+ � � �+ (2n+ k)!�k

2n!k!rk0
+ � � �

�
: (27)

Now, the comparison test theorem for convergence of
the series is applied as follows [13]:

lim
k!1

(2n+k+1)(2n+k)���(k+2)�
(2n+k)(2n+k�1)���(k+1)r0 = �

r0

�1 < � < 1; r0 > 1

9>=>;) �
r0
< 1: (28)

It could be shown that the truncation error is a limited
value and becomes close to zero by increasing n.

The same procedure can be used for the G
integrand and the same results are obtained. The �nal
result of these calculations is:

r0 > 1) x2
0 + y2

0 > 1)
��
X0 � Xj +Xj+1

2

�
=L
�2

+
��
Y0 � Yj + Yj+1

2

�
=L
�2

> 1

)(Xj�2X0+Xj+1)2+(Yj�2Y0+Yj+1)2>4L2:
(29)

This means that if the ith node is located out of
the represented circle in Figure 2, then, the Gauss
integration can be applied with acceptable precision.

Figure 2. Boundary of BEM domain and the limits of
precise Gauss-Legendre integration.
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Higher Order Shape Functions of Potentials
over an Element

In this section, it is assumed that the shape function
of geometry over an element is linear, and potential
interpolation over an element is a polynomial with
order k.

In the BEM integrations, the following integrals
are found by de�ning local coordinates:

H =
Z 1

�1
f(�)d� =

1
2�

Z 1

�1

n̂:~r(�)
r(�)2 :�

kJ(�)d�;

G =
Z 1

�1
g(�)d� =

1
2�

Z 1

�1
ln r(�):�kJ(�)d�: (30)

In which J is Jacobean, whose value is L (half of the
element length) for the geometrically linear element.

Equations 17 to 21 can be extended for Equa-
tion 30 after some similar and lengthy operations. Final
formulations for the Maclaurin series of integrands in
Equation 30 are as below:

1
n!
f (n)(0) =

(
0; n < k
sin(n�k+1)�0

2�rn�k+1
0

; n � k (31)

1
n!
g(n)(0) =

8><>:
0; n < k
ln r0; n = k
� cos(n�k)�0

2�(n�k)rn�k0
; n > k

(32)

The shape function with order k can be written as
follows:

Ni(�) = aik�
k + aik�1�

k�1 + � � �+ ai0: (33)

The following equation is obtained by using Equa-
tions 30 to 32:

1
n!
f (n)(0) =

JX
j=0

aij
sin(n� j + 1)�0

2�rn�j+1
0

;

(
J = k; k < n
J = n; k > n

(34)

1
n!
g(n)(0) = ainA�

JX
j=0

aij
cos(n� j)�0

2�(n� j)rn�j0
;

(
J = k & A = 0; k < n
J = n & A = ln r0; k � n (35)

The same condition (r0 > 1) is achieved for these for-

mulations by applying a similar convergence procedure
to that used in Equations 22 to 28.

Integration Methods of BEM Singular and
Nearly Singular Integrals

In this study, the Romberg method is used for nearly
singular integrals. This numerical integration was
selected due to its �ne precision and its rapid conver-
gence [9-12].

In the present research, the trapezoidal rule was
used as the base of Romberg integration. At the �rst
step, the distance between integral bounds is divided
into 10 sub-distances. Then, the successive steps of
Romberg integration are continued to 4 steps. The
results show that the Romberg method is signi�cantly
more accurate than the Gauss method in the nearly
singular integral. However, the CPU time increases
using the Romberg method. The results in the next
section show the modi�cation of errors in the Romberg
method.

If the source point places on the element, the
BEM integrals will be singular [1,4]; in this situation
the Gauss integration is not applicable. Also, the
procedure of the Romberg method includes inde�nite
(division by zero) status and is also not usable.

In this research, composition of the midpoint
rule and Romberg method is used to overcome this
problem [10]. Results show that this method is suitable
for integration in BEM.

RESULTS

As obtained in Equations 29, the Maclaurin series
converge when r0 is greater than 1. Figure 3 shows
this result for r0 = 0:75, 1 and 1.25 for di�erent �0
(�0 = �=2; �=3; �=4 and �=6).

Figures 4, 5 and 6 show error estimation using
Schaum's formula (Equation 11), the conventional
formula (Equation 10) and by comparing them with
the analytical solution for the constant element, re-
spectively. The analytical solution is obtained from
the research of Zisis and Ladopoulos [5] and Nui et
al. [8]. These �gures con�rm the condition obtained in
Equation 22. The errors after r0 = 1 are very close to
zero. Also, Table 1 shows the errors are very close to
zero for 6 point Gauss integration in r0 = 1.

Also, Figures 4 to 6 show an acceptable agreement
between Schaum's formula and error estimation by
comparing analytical integration. Therefore, Schaum's
formula will be used for other elements that do not
have exact solutions.

By comparing some degrees of Gauss integration,
we conclude that the 6 point Gauss integration is
accurate enough for BEM integrations. The maximum
error of 6 point Gauss integration is 1:285 � 10�4
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Figure 3. Twenty �ve terms of Maclaurin series in several r0 and �0 for H and G integrands.

for H, where the analytical integral value is 0.25 and
1:484� 10�5 for G where the analytical integral value
is -0.0118 according to Figures 7 and 8.

In this study, the errors have also been estimated
for various angles �0 and a critical amount of r0 (r0 =
1). As shown in Figure 9, the errors decrease by
increasing angle �0.

As mentioned in the previous section, the condi-
tion of Equation 22 is applicable for higher order of u.
Figures 10 to 12 show that this condition is true for
the linear element of the potential function. Higher
order potential functions also have the same results.
The analytical solution is obtained from the research
of Zisis and Ladopoulos [5] and Nui et al. [8].
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Figure 4. The error estimation of H and G integration by using Schaum's formula (Equation 11).
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Figure 5. The error estimation of H and G integration by using Equation 10.
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Figure 6. The error estimation of H and G integration by comparing with analytical integration.
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Table 1. The errors estimation by di�erent methods for 6 points Gauss integration in r0 = 1.

Integral H (r0 = 1)
�0

(Deg.)
Error According

to Figure 6
Error According

to Figure 7
Error According

to Figure 8
Exact

Solution

90 7.2830E-06 0.00011747 1.0285E-05 0.25

60 1.4069E-06 0.00076212 3.2643E-06 0.25

45 2.8359E-05 0.01061588 1.8623E-05 0.25

30 0.00017828 0.95677845 0.00012851 0.25

Integral G (r0 = 1)
�0

(Deg.)
Error According

to Figure 6
Error According

to Figure 7
Error According

to Figure 8
Exact

Solution

90 8.823E-07 9.79E-06 1.18502E-06 0.042008

60 5.462E-07 5.50E-05 2.3228E-07 0.02933365

45 3.619E-06 0.0006257 3.3627E-06 0.0128151

30 1.499E-05 0.039899 1.4842E-05 -0.011791

Figure 7. The integral value of H integral by analytical and some Gauss integration (left) and the error of numerical
integrations by subtracting numerical value from analytical value (right).

Figure 8. The integral value of G integral by analytical and some Gauss integration (left) and the error of numerical
integrations by subtracting numerical value from analytical value (right).
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Figure 9. Error estimation with respect to angle �0.

Figure 10. Nineteen terms of Maclaurin series in several r0 and �0 for H and G integrands in linear shape function of
potential function.
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Figure 11. The error estimation of H and G integration by comparing with analytical integration in linear shape function
of potential function.

Figure 12. The error estimation of H and G integration using Schaum's formula (Equation 11) in linear shape function of
potential function.
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Table 2. Comparing Romberg and Gauss integration error in nearly singular integrals.

Integration
Method

(Integrand)

Romberg
(H Integrand)

Gauss
(H Integrand)

Romberg
(G Integrand)

Gauss
(G Integrand)

Error 0.00209 0.97251 2.67E-05 0.05208

In the same section it was mentioned that the
Romberg method is used for nearly singular integrals
in the constant element. To ensure that this method
is accurate, Romberg is compared with 6 point Gauss
integration in nearly singular integrals. Maximum
absolute errors by comparing analytical integrations
are shown in Table 2.

Figure 13 shows that the Romberg method is
more accurate than Gauss integration (6 point) for the
source point near the element. But, the error decreases
signi�cantly at other source points for both methods.

Figure 14 illustrates the errors of singular inte-

Figure 13. Error estimation by comparing analytical
solution for (a) H integrand and (b) G integrand.

Figure 14. The error estimation of singular integrals by
comparing composing Romberg and midpoint rule with
analytical solution.

grals (G integrand) in the geometrically linear element
and some interpolations of potential functions. The
value of the H integral is zero for the geometrically
linear element and, therefore, the errors are zero
too.

CONCLUSIONS

This study has been focused on obtaining nearly
singular criteria for the source point position in BEM
integrals. The nearly singular integrals in BEM are
not a new subject, but the conditions of near sin-
gularity have not been completely discussed in other
literature.

It is necessary to provide some constraint for
the type of integration method used in computer
programming, such that in one case the 6 point Gauss
integration method is used and in another the Romberg
method is applied.

In cases of geometrically linear elements, the
condition r0 > 1 is used for applying Gauss integration.
The opposite of this situation (situations in which
Gauss integration is not accurate as mentioned in
this article) occurs in the following cases: (1) The
angle between two adjacent elements is tight; (2) the
boundary of domain comes nearly together at one or
some points; (3) the boundary includes thin walls with
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Figure 15. Some examples in which Gauss integration is
not accurate for some elements and source points.

thicknesses less than element length etc. Examples of
these cases are:

1. Inviscid ow over a triangle, according to Figure 15.
2. Inviscid ow in a ventury, according to Figure 15.
3. Inviscid ow over a thin wall, according to Fig-

ure 15.
4. Some large amplitude water waves.

As mentioned above, the points which may violate
the conditions are usually corner points. Therefore,
it is better to initially identify these points, because
adding the condition line to the code and checking that
for each node and element also increases CPU time.
As is well known, BEM decreases CPU time, but this
condition can weaken this property. By indicating the
near singular element and applying these criteria, it
is possible to prevent the increment of CPU time and
increase the accuracy of the results.

Using the Romberg method is not the best
method, but it is very accurate and simple. These
procedures can extend to other types of element.
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