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Research Note

Synthesis of Cable Driven Robots' Dynamic
Motion with Maximum Load Carrying Capacities:

Iterative Linear Programming Approach

M.H. Korayem1;�, Kh. Naja�2 and M. Bamdad1

Abstract. In this paper, the general dynamic equation of motion of Cable Driven Robots (CDRs) is
obtained from Lagrangian formulation. A computational technique is developed for obtaining an optimal
trajectory to maximize the dynamic load carrying capacity for a given point-to-point task. Dynamic
equations are organized in a closed form and are formulated in the state space form. In order to �nd
the Dynamic Load Carrying Capacity (DLCC) of CDRs, joint actuators torque, and robot workspace
constraints for obtaining the positive tension in cables are considered. The problem is formulated as a
trajectory optimization problem, which fundamentally is a constrained nonlinear optimization problem.
Then, the Iterative Linear Programming (ILP) method is used to solve the optimization problem. Finally,
a numerical example involving a 6 d.o.f CDR is presented and, due to validation, the results of the ILP
method are compared with the optimal control method.
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INTRODUCTION

Cable driven robots are a special form of parallel robot,
in which the rigid links are replaced by the cables.
Cable Driven Robots (CDRs) have some advantages
over conventional serial and parallel robots. They have
a rather large workspace, low inertia properties and a
high payload to weight ratio. On the other hand, the
main disadvantage of CDRs is that the cables are only
capable of pulling, which can cause instabilities in their
motion.

One of the early works in Robocrane was devel-
oped by NIST (National Institute of Standard Technol-
ogy) in order to automate a crane for lifting operations.
It is particularly a cable-driven manipulator based on a
modi�cation of the 6 degrees of freedom (d.o.f) Gough-
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Stewart platform, where the linear actuators have been
replaced by cables [1].

Alp and Agrawal determined the statically reach-
able workspace for a 6 d.o.f spatial cable CDR, which
has been built and tested [2]. With the ever-growing
application of these robots, one of the questions pro-
duced is: \what is the optimal trajectory with regard
to maximum allowable payload?" The main aim of
this paper is to �nd a proper answer to the above
question.

The Dynamic Load Carrying Capacity (DLCC)
of a manipulator is de�ned as the maximum pay-
load that the manipulator can repeatedly carry in
a de�ned trajectory. However, to determine the
maximum allowable load of a robot, the inertia ef-
fect of the load along a desired trajectory, as well
as the manipulator dynamics, must be taken into
account. The literature on determining DLCC on
di�erent types of robotic system is fairly rich. Wang
and Ravani o�ered a method for determining the
maximum load capacity of �xed base robots, and
treated the problem as the optimization of trajectory.
In this method, the torque capacity of actuators
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is considered as the main constraint [3]. Korayem
and Gariblu acquired the maximum load capacity
of manipulators for two points at a certain time
by considering the joint actuator torque, kinematical
redundancy and non-holonomic constraints. They
have dealt with the problem using iterative linear
programming [4].

Korayem and Nikoobin employed an indirect ap-
proach, based on the open loop optimal control for
obtaining the optimal trajectory of robot manipula-
tors, to maximize the load carrying capacity for a
given point-to-point task [5]. Korayem and Bamdad
determined the dynamic load carrying capacity of
CDRs, regarding the tensile capacity of cables and
the actuator torque capacity for a given trajectory
in a speci�ed time [6]. The �nite element method
is used for describing the dynamics of the system
and the maximum payload of kinematically redundant

exible manipulators was computed [7-8]. Korayem
and Shokri determined the maximum payload ca-
pacity for a 6UPS-Stewart platform, by considering
the joint actuator torque capacity and the motion
accuracy [9].

In this paper, a method is developed for determin-
ing the maximum dynamic payload of CDRs between
two given end points of their workspace. The load car-
rying capacity of a robotic system between two points
at a speci�ed time does not have a unique value; it
depends directly on the selected trajectory between two
points. Therefore, the main aim of this paper is to �nd
an optimum trajectory, such that the maximum load
can be carried between two end points at a speci�ed
time, by considering the actuators torque and robot
workspace constraints. An objective function is de�ned
and the nonlinear state space dynamic equations are
linearized. Then, the iterative linear programming
method is used to numerically solve the linearized
trajectory optimization problem. Finally, a numerical
example involving a 6 d.o.f CDR is presented and the
results are discussed.

MATHEMATICAL MODELING OF CDRS

In this study, the well-known NIST robocrane, as a 6
d.o.f cable driven robot, was considered. This robot is
an inverted Stewart platform, in which rigid legs are
replaced by cables. Its suspended movable platform
(or end-e�ector) and �xed support are two equilateral
triangles, as shown in Figure 1.

The end-e�ector is kinematically constrained by
maintaining tension in all six cables, which terminate
in pairs at the vertices of the �xed support. The
orientation and position of the end-e�ector are deter-
mined by a six-actuator system, in which each cable is
controlled separately. In order to study the kinematics
and dynamics of a robocrane, two frames are used:

Figure 1. Free-body diagram for the robocrane with
point masses.

1. The inertial coordinate, FN , with its origin in the
center of the �xed support (with vertices A, B and
C).

2. The body coordinate, FB , which is similarly con-
nected to the center of mass of the end-e�ector
(with vertices D, E and F ).

Here, fqg is introduced as follows:

fqg = [xD; yD; zD; xE ; yE ; zE ; xF ; yF ; zF ]: (1)

The elements of generalized coordinates fqg are the
Cartesian coordinate of vertices of the end-e�ector, as
written in the reference coordinate. These generalized
coordinates are not independent and, since the robot
has six degrees of freedom, three constraint equations
are necessary. These constraint equations are as
follows:8><>:(xD � xE)2 + (yD � yE)2 + (zD � zE)2 = (2b)2

(xE � xF )2 + (yE � yF )2 + (zE � zF )2 = (2b)2

(xD � xF )2 + (yD � yF )2 + (zD � zF )2 = (2b)2 (2)

In order to derive kinetic and potential energies, in
terms of the discussed generalized coordinates, it will
be easy to use point masses instead of distributed mass.
Otherwise, complex terms will appear in the rotational
part of the kinetic energy. As shown in Figure 1, four
point masses are located instead of a distributed mass
in the end-e�ector: a single point mass (m1) at the
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center of the mass and three identical masses (m2) at
the vertices of the end-e�ector. By considering the
inertia speci�cation of these systems, (m1) and (m2)
can be determined as follows:(

m1 + 3m2 = m
2m2b2 = Ixx

) m1 = 9m2 =
3
4
m: (3)

The kinetic and potential energies of the robot are
derived in terms of the discussed generalized coordi-
nates. The general dynamic equations of motion can
be obtained from Lagrangian formulation [10]:

d
dt

�
@K(q; _q)

@ _q

�
� @K(q; _q)

@q
+
@V (q)
@q

= Qi +
3X
j=1

�Jcij ;

i = 1; 2; � � � ; 9: (4)

It leads to;

[D(q)]9�9f�qg9�1 + fGg9�1 = fQg9�1

� [p]T9�6fTg6�1 � [Jc]T9�3f�g3�1: (5)

Equation 5 is written in the following form:

[D(q)]f�qg+ fGg � fQg = �[J ]
�
T
�

�
; (6)

where [D(q)] is the inertia matrix, fG(q)g is the gravity
vector, [J(q)] is the Jacobian matrix, fTg is the vector
of cables tension and f�g is the Lagrange multiplier
vector.

Since the dynamic modeling of CDRs is concerned
with relating the motion end-e�ector to the required
active actuator torque, the forces in the cables are
derived using the dynamic equations of the end-e�ector
and actuators. In this paper, the dynamic behavior
of the lumped actuators (each actuator includes a
motor and pulley system) is also considered. The
free body diagram for the ith actuator is shown in
Figure 2.

The combined motor and cable pulley dynamics
equations can be expressed as [11]:

� � �evl = r:T; (7)

�evl = Ja:�� + Ca: _�; (8)

where r is the identical cable pulley radius for each
actuator. The lumped actuator rotational inertias for
each actuator and the viscous damping coe�cients at

Figure 2. Free-body diagram for the ith actuator [11].

each motor shaft are also included to provide a linear
model for the system friction with:

Ja = diag(J1; � � � ; Jm); (9)

Ca = diag(C1; � � � ; Cm): (10)

In this case study, the dynamic equation is given as
follows:n �

r�

o
= [JT ]:r:

 
[D]f�qg+ fGg

+
�

1
r

�
[pT ]fJa �� + ca _�g

!
: (11)

LINEARIZATION OF THE STATE SPACE
DYNAMIC EQUATION

In order to obtain the numerical solution of the non-
linear constrained trajectory optimization problem, in
order to increase the load carrying capacity, dynamic
Equation 11 can be rewritten as:

�q =
�
r:[D(q)] + [p]T

�
Ja:
�
@�
@q

����1

:
�
J
n �
r�

o
�[p]T

�
Ja

d
dt

�
@�
@q

�
_q + Ca _�

�
� rfGg

�
= f(~q; ~_q; �;mL): (12)

By de�ning the state vector as q = [x1; x2]T , where
x1 = (q1; q2; � � � ; qn)T and x2 = ( _q1; _q2; � � � ; _qn)T ,
Equation 12 becomes:
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~_q =
� ~_x1
~_x2

�
=
�

~x2

f( ~X(j); ~�(j);mL)

�
= ~F ( ~X(j); ~�(j);mL): (13)

Equation 13 is the state space representation of the
dynamic Equation 12, where ~X is a 2n� 1 vector and
f(X; �;mL) consists of n nonlinear functions. The dis-
cretized form of the state space dynamic Equation 13
is:
~X(j + 1)� ~X(j)

h
= ~F ( ~X(j); ~�(j);mL); (14)

where h = (tf�ti)
m , tf , ti are the start and end time

of the robot motion and m is the number of set
points used to discretize the end-e�ector trajectory.
The nonlinear function, f(X; �;mL), at the (k + 1)th
trajectory, is expanded in a Taylor series about the
(k)th trajectory. After neglecting the higher order
(nonlinear) terms, the following equation is obtained:

~X(j+1) = [Gj ] ~X(j)+[Hj ]�(j)+ ~BjmL +Dj ; (15)

where the matrices [Gj ], [Hj ] and �j , Dj vectors are
given in [13].

X(j + 1) can be written as a linear combination
of the load mL and the torque ~�(i), i = 1; 2; 3; � � � ; j.
Equation 15 then becomes:

~X(j + 1) = ~Xh(j + 1) + ~�jmL +
jX
i=1

[�ji]�(i);

j = 1; 2; � � � ;m: (16)

This equation is the basic linearized dynamic equation,
where:
~Xh(1) = ~X(t1); (17)

~Xh(j + 1) = [Gj ] ~Xh(j) + ~Dj ; (18)

~�1 = ~B1; (19)

~�1 = [Gj ]~�j�1 + ~�1; (20)

[aji] = [Gj ][aj�1;i];

for i < j; (21)

[aji] = [Hj ];

for i = j: (22)

FORMULATION OF THE OPTIMIZATION
PROBLEM

In this section, the complete problem formulation
is presented for synthesizing dynamic robot motion

with maximum load carrying capacities. The com-
plete formulation of such a problem is given be-
low:

1. The robot geometric parameters and the mass of
the end-e�ector;

2. The initial and �nal states:

~x1(ti) = ~q(ti) = ~x1i;

x2(ti) = ~o; (23)

~x1(tf ) = ~q(tf ) = ~x1f ;

x2(tf ) = ~o; (24)

where o is an n� 1 null vector;
3. Total cycle time, rT = tf � ti.
Constraints of problem:

1. The state space Equation 13 should be satis�ed;
2. The joint actuator torques constraint:

~�min( ~X(j)) � ~�(j) � ~�max( ~X(j)); (25)

where ~�min( ~X(j)) and ~�max( ~X(j)) are in general
nonlinear functions representing the torque-speed
characteristics of the actuators;

3. The workspace constraint:

~x�1 � ~x1(t) � ~x+
1 : (26)

At the moment of moving of the end-e�ector, it is
bounded to be within the limitation of the robot
workspace. The generalized coordinate, assumed
to be chosen from inside the 3D volume [10], is the
workspace limitation. x+

1 and x�1 are the upper and
lower bound of the generalized coordinates, respec-
tively. The obtained optimal trajectory should not
exceed this limitation, because this causes cables to
lose their positive tensions;

4. The upper bound of payload m+
L : That is the

smaller value of the static load carrying capacity
calculated at the two end positions.

The objective function is maximizing the dynamic
load carrying capacities, mL, along with �nding the
optimal trajectory, x�(t).

The trajectory synthesis formulation is a non-
linear optimization problem. It is written in a form
slightly di�erent from a general optimal control prob-
lem, where the objective function has an integral
form. In the above formulation, the objective function
consists of a single variable, mL, which is not a function
of time. This variable is also a single valued quantity
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for the entire trajectory. It should be pointed out,
however, that mL is implicitly included in the nonlinear
state space equation.

ITERATIVE LINEAR PROGRAMMING
(ILP) FORMULATION

The ILP method uses linear programming to solve
the linearized equations for each iteration. The
linear programming problem can be formulated as
follows.

At �rst, the �nal state reaching the condition from
Equation 16 can be obtained as:

~X(m+ 1) = ~Xh(m+ 1) + ~�mmL

+
mX
i=1

[ami]~�(i)=X(tf ): (27)

Equation 27 can be written as:

~�mmL + [E]~� = ~X(tf )� ~Xh(m+ 1); (28)

where:

[E] =
�
[�m1] [�m2] � � � [�mm]

� 2 R(2n�nm);
(29)

~� =
�
~�(1); ~�(2); � � � ; ~�(m)

� 2 R(nm�1): (30)

It should be noted that [E] and Xh(m+1) in the above
equation are computed based on the values of the state
and control variables of the previous iteration. Since
X(tf ) is also given, the only unknowns in Equation 28
are mL and ~� vectors. In order to facilitate the LP
solution, Equation 28 can be written by two sets of
inequalities.

~�mmL + [E]~�m � ~e
� ~X(tf )� ~Xh(m+ 1); (31)

~�mmL + [E]~�m + ~e

� ~X(tf )� ~Xh(m+ 1); (32)

where ~e = [epos1; epos2; � � � ; evel1; evel2; � � � ]T is a 2n
vector, and the �rst n elements (epos) represent the
�nal position error tolerances, and the last n elements
(evel) represent the velocity error tolerances. This
modi�cation introduces two more variables (epos; evel)
and 2n inequality constraints. If actuators are per-
manent magnet DC motors, the torque-speed charac-
teristic function, ~�min( ~X(j)) and ~�max( ~X(j)), can be

approximated by the following equations:

~�(j) � ~�max( ~X(j)) = ~K1 � [K2] _�(j);

j = 1; 2; � � � ;m; (33)

~�(j) � ~�min( ~X(j)) = � ~K1 � [K2] _�(j);

j = 1; 2; � � � ;m; (34)

where k1 = �stall is an n�1 constant vector, k2 = �stall
!0

is an n � n diagonal constant matrix obtained from
the equivalent motor constants and !0 is the maximum
no-load speed of the actuator. The \max" or \min"
in the superscripts indicates whether the actuator is
saturated at its upper or lower bound. Note that both
stall torques and the maximum no-load speed of the
actuators must be speci�ed in order to determine an
actuator torque bound.

The main drawback of CDRs is the unilateral
actuation imposed by the cables. Since cables can
only apply tensile force, this limitation can cause
excessive deviation from the prescribed trajectory, even
if the joint torque constraint is not violated. A
more successful approach should maximize the load-
carrying capacity and allowable cable tension bound
attained for the end-e�ector trajectory. The desired
trajectory is characterized as the set of points that the
centroid of the end-e�ector can reach with tensions in
all suspension cables. The following assumption is used
for the points on the trajectory:

1. The maximum tension is considered for all cables.
2. The cables must be capable of exerting a positive

wrench on the platform. All cable tensions must be
non-negative to equilibrate the end e�ector for an
applied force.

3. All active cables must remain in tension to be
e�ective for the equilibrium or dynamic motions.
The feasible points are speci�ed by imposing the
following inequalities [12]:

0 � Ti � Tmax; i = 1; :::;m: (35)

In a pseudostatic condition, the tension in the
cables is equal or greater than ~�min( ~X(j))=r. When
the dynamic e�ects are considered, one or more cable
can become slack, despite a positive ~�min( ~X(j)), and
online cable tension estimation is needed. Referring
to the dynamic term, Equation 7 clari�ed that higher
minimum torques are needed. If the bias term, �vel,
is positive, all cable force components are forced to
be zero at the minimum. It can be shown that, for
each actuator, ~�min( ~X(j)) = �vel. If �vel were negative,
the minimum torque required to ensure that the cor-
responding cable was in tension could be negative for
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one or more actuators, since all torque actuators were
forced to be positive. Therefore, constraints are needed
for the online actuator torques control, which can be
written as follows:

~�min( ~X(j)) = maxf�vel; 0g: (36)

Writing these constraints in matrix form leads to:

~� � ~bu =

�����������
~K1 � [K2]~_�k(1)
~K1 � [K2]~_�k(2)

...
~K1 � [K2]~_�k(m)

�����������
; (37)

�~� � ~bl = maxf�vel; 0g; (38)

where ~bl and ~bu are, respectively, the lower and upper
bound vectors of the actuators. By a change of
variables, as below, the problem can be converted to
a standard linear programming problem:

~Y = ~bu � ~� ; or ~� = ~bu � ~Y ; ~Y � 0: (39)

Substituting Equation 39 into Equation 37 leads to:

~Y � ~bu �~bl: (40)

Using Equation 16, the workspace constraint is given
by Inequality 26 written as:

~x�1 � ~X1h(j + 1) � ~�1jmL +
jX
i=1

[a1ji]~�(i)

� ~x+
1 � ~X1h(j + 1);

j = 1; 2; � � � ;m; (41)

where �1j , X1h(j + 1) are the upper n � 1 vectors
of �j and Xh(j + 1), respectively, and [�1ji] is the
upper n � n sub-matrix of [�ji]. Equation 41 can
be written in the following form by letting [Aj ] =
[�1j1; �1j2; � � � ; �1jj ; 0; 0; � � � ; 0] and rearranging terms
which can be written as follows:

~�1jmL � [Aj ]~Y � ([~x+
1 � ~X1h(j + 1)]� [Aj ]~bu);

j = 1; 2; � � � ;m; (42)

�~�1jmL + [Aj ]~Y � ([ ~X1h(j + 1)� ~x�1 ] + [Aj ]~bu);

j = 1; 2; � � � ;m; (43)

where [Aj ] is a n� nm matrix.
As mentioned above, the upper bound of load

m+
L is determined from SLCC (Static Load Carrying

Capacity) at the two end points. Since the robot must

completely stop at the two end points, the maximum
DLCC for the trajectory cannot be greater than the
SLCC at either one of the end positions. This means
that:
m+
L = minfmSLi;mSLfg; (44)

and:
mL � m+

L ; (45)

where mSLi and mSLf are the SLCC at the initial
and �nal positions, respectively. Combining all the
constraints and writing the result in a matrix form
gives:266664

1 0 0
[0] [1](nm�nm) [0]

��1j(nm�1) �[Aj ](nm�nm) [0]
�m(2n�1) �[E](2n�nm) �[I](2n�2n)��m(2n�1) [E](2n�nm) [I](2n�2n)

377775

�
8<: mL
~Y(nm�1)
~e(2n�1)

9=; �
8>>>>><>>>>>:

m+
L

~Ylim it(nm�1)
~Xlim it(nm�1)

~X+
f
~X�f

9>>>>>=>>>>>; : (46)

And the dimensions of the matrices and vectors are as
follows:

[(2nm+ 4n+ 1)� (2n+ nm+ 1)]

� f(2n+ nm+ 1)� 1g
� f(2nm+ 4n+ 1)� 1g; (47)

where �1j , [Aj ] and Xlim it can be obtained from
Inequalities 42 and 43 using the method described
above, and:
~Ylim it = ~bu �~bl;
~X+
f = [X(tf )�Xh(m+ 1)]� [E]bu;

~X�f = [Xh(m+ 1)�X(tf )] + [E]bu:

The objective function of this LP problem is de�ned
as:
Z = maxfCTV g; (48)

where C = [1; 0; 0; � � � ;�Wpos;�Wvel] with Wpos;Wvel

> 0 (weighting factors) and ~V = [mL; ~Y ; ~epos; ~evel] with
~Y � 0.

The load carrying capacity, mL, can be maxi-
mized by this objective function, and simultaneously
the position and velocity errors at the end points of
the trajectory are minimized. Since the objective
function (Equation 48) and the constraints equation
(Equation 46) are both linear, we have a standard
linear programming problem.
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COMPUTATIONAL ALGORITHM

The computing method for the optimal trajectory
problem is formulated, as shown in Figure 3. First,
initialize the trajectory. This step involves guessing
an initial control and state variable trajectory. A
good initial guess may be obtained by using polyno-
mial trajectories to connect the two end points. By
discretizing the initial trajectory into m set points,
the corresponding linearized constraint coe�cients are
computed and, then, an iterative linear programming
subroutine is invoked to update mL, ~Y and ~e. Using
these updated variables, the new trajectory, Xk+1(j),
is synthesized. Then, the termination conditions are
checked:

maxfepos; evelg � "e; (49)

maxfj ~Xk+1(j)� ~Xk(j)j; j = 2; � � � ;mg � "x; (50)��mk+1
L �mk

L
�� � "m; (51)

where "e; "x and "m are prede�ned small positive
constants. If the termination conditions are satis�ed,
then, the updated trajectory is optimal, and the
corresponding value of mL is the maximum allow-
able load that can be carried by the cable driven
robot. Otherwise, the program jumps to step 2
in ILP method 
owchart shown in Figure 3. Also,
satisfying the termination criterion means that lin-
earization errors are eliminated (or signi�cantly re-
duced) when the ILP method converges to the optimal
solution.

In general, because of the discretization (trunca-
tion) error of the di�erence equation, the continuous
state space equation will be satis�ed only if the time
interval is \su�ciently small".

SIMULATION

A simulation study is presented to investigate the
application and e�ciency of the proposed algorithm. A
cable driven robot with 6 d.o.f is considered, as shown
in Figure 1 [13].

For simulation, a cable driven robot must carry
a load from an initial point with coordinate X0 =
[�0:1;�0:1; 1:5; 0; 0; 0] to the �nal point in the robot
workspace with coordinate XF = [0:1; 0:1; 1:8; 0; 0; 0],
during overall time tf = 1 s. The velocities and
accelerations at the start and end points are zero.
The path parameter unknowns are determined, so that
the initial and �nal conditions are satis�ed. The
trajectory used for an initial guess in simulation is a
polynomial of the �fth order. In this simulation, it is
assumed that there is no exerted external wrench on
the robot.

Figure 3. ILP method 
owchart for computing optimal
trajectory.

Geometrical and mechanical characteristics used
in the simulation are listed in Table 1 and the
other used parameters relative to the robot actua-
tors, consisting of motors and pulleys, are given in
Table 2.

By discretizing the trajectory to m = 20 set
points, the procedure for synthesizing the optimum
trajectory converged after eleven iterations, and the
maximum allowable carrying load without violating
either of the constraints is mL = 75:52 kg.

Figure 4 gives the trajectory of the center of mass
of the end-e�ector for the optimal trajectory and initial
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Table 1. Geometrical parameters of robot.

Parameter Value Units

End-e�ector mass m = 15 kg

Half of the side of the upper triangle (�xed base) a = 0:3
p

3 m

Half of the side of the lower triangle (end-e�ector) b = (1=2)a m

Ixx = Iyy = m b2
6

Moment of inertia (end-e�ector) Izz = 2Ixx kg.m2

Ixy = Izx = Iyz = 0

Table 2. Simulation parameter for actuators.

Parameter Value Units

Pulley radius r = 5� 10�2 m

Motor shaft viscous damping coe�cient C = 0:01 Nms

Lumped actuator rotational inertia J = 8� 10�4 kg.m2

Stall torque �stall = 10 Nm

Maximum no-load speed !0 = 1910 Rpm

Figure 4. Motion of center of mass of end-e�ector on
x� y coordinates.

guess in the xy plane. Figure 5 shows the variation
of the z coordinate in time. The initial and �nal
optimal positions and velocities of the vertices of the
end-e�ector that are used as generalized coordinates
in the dynamic equations can be depicted. One of
them is shown in Figure 6. Figure 7 gives the linear
programming solution of mL at each iteration. The
corresponding initial path and the �nal optimal path
in Cartesian 3D space are given in Figure 8. Figure 9
presents the optimal torques related to the optimal
trajectory with regard to the upper and lower bounds
of the actuator torque.

As mentioned above, in the linearization pro-
cess of the ILP method, the higher order (nonlinear)
terms in the Taylor series are neglected and because
CDRs have nonlinear dynamics, errors as a result

Figure 5. Motion of center of mass of end-e�ector on
z-coordinates.

of neglecting higher order terms will exist in the
solution process. Tensions of cables are computed for
di�erent masses from an initial guess until optimal
trajectory during the process of obtaining the opti-
mal trajectory for ensuring robot stability. Also, as
mentioned above, Equation 38 causes the actuators
torque to be a non-negative value. Regarding the
optimal trajectory and corresponding actuators torque
variations, it is realized that, while the end e�ector
moves along the optimal trajectory, the coupling inertia
of the load is minimized. Simultaneously, at most
parts of the trajectory, actuators work close to their
maximum torque capacity, and the actuators torques
have a non-negative value in total operating time,
resulting in an increase in the conveyable load of the
CDR.
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Figure 6. Position and velocity of vertex D.

Figure 7. Optimal maximum dynamic payload in each
iteration.

CONCLUSION

In this paper, a computational algorithm is developed
to obtain a numerical solution to the optimization
problem associated with synthesizing optimal trajec-
tories in CDRs. This was achieved by torque capacity
constraints in addition to considering the workspace
constraint of a robot. A simulation case study of

Figure 8. Initial and optimal trajectory in 3D view.

CDR was presented to investigate the e�ciency of the
algorithm. It is seen that, while the CDR moves along
the optimal trajectory, the coupling inertia of the mass
is minimized without violating either of the constraints.
Moreover, during the motion, actuators are working
with full or near to full capacity. As understood from
the simulation, the load carrying capacity is increased
from an initial value 15 kg to mL = 75:52 kg.
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Figure 9. Optimal torques of six motors related to optimal trajectory.
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