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Concurrent Project Scheduling and Material
Planning: A Genetic Algorithm Approach

M. Sheikh Sajadieh1, Sh. Shadrokh1;� and F. Hassanzadeh2

Abstract. Scheduling projects incorporated with materials ordering results in a more realistic
problem. This paper deals with the combined problem of project scheduling and material ordering. The
purpose of this paper is to minimize the total cost of this problem by determining the optimal values
of activity duration, activity �nish time and the material ordering schedule subject to constraints. We
employ a genetic algorithm approach to solve it. Elements of the algorithm, such as chromosome
structure, un�tness function, crossover, mutation and local search operations are explained. The results
of the experimentation are quite satisfactory.
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INTRODUCTION

A traditional strategy was to treat project scheduling
and materials ordering separately. Based on this
strategy, project scheduling is �rst carried out and,
then by taking the activity schedule as a known
parameter, a material ordering plan is determined.
Following this method makes the project managers
not consider the trade-o�s between cost elements such
as material ordering costs, material holding costs,
procurement costs and the reward or penalty for the
project completion time and, therefore, the total cost
of the project increases.

The �rst paper in the integration of Project
Scheduling and Material Ordering (PSMO) appears
to be attributed to Aquilano and Smith [1]. They
developed a model which integrates Material Require-
ment Planning (MRP) consisting of material, lead-
times and inventory level scheduling, and the Critical
Path Method (CPM). Smith-Daniels and Aquilano [2]
extended that work by proposing a heuristic procedure
for scheduling large projects wherein requirements
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for all renewable and non-renewable resources are
incorporated. The heuristic also takes into account
variations in activity duration and precedence con-
straints.

Smith-Daniels and Smith-Daniels [3] presented
a mixed integer programming model for a PSMO
problem that o�ers an optimal scheduling of project
activities and materials orders. They demonstrated
that the latest starting time schedule provides an
optimal solution. It was also shown that the problem
can be solved optimally when it is decomposed into a
derivation of the project schedule and a derivation of
the materials ordering plan. They used the Wagner-
Whitin algorithm [4] to �nd the optimal ordering plan
of materials for a known project schedule. Erabsi and
Sepil [5] presented a heuristic procedure to determine
the tradeo� between expediting the materials ordering
and delaying the project.

Dodin and Elimam [6] extended that work by
including variable activity duration, variable project
worth, rewards for early project completion and mate-
rial quantity discounts into the model. They showed
that the variability in activity duration gives more

exibility to project scheduling, resulting in more cost
reduction and allowing for savings on the completed
activities and materials ordering cost. They formulated
the problem as a mixed integer programming model
and used some analytical results to reduce the size of
the model and improve its solution e�ciency. Compu-
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tational results show that solution times are strongly
a�ected by the increase in problem size and, therefore,
their numerical research was limited to the problems
with 30 activities at the most.

Schmitt and Faaland [7] used a heuristic for
scheduling a recurrent construction. The heuristic �rst
generates an initial schedule that dispatches worker
teams to tasks for the backlogged products and, then,
solves a series of maximal closure problems to �nd
material release times that maximize the net present
value of cash 
ows.

In this paper, we extend the PSMO problem
investigated by Dodin and Elimam [6] by developing a
Genetic Algorithm (GA) approach to �nd the optimal
solution for large scale problems. The paper is orga-
nized as follows. First, the modeling assumptions are
discussed and expected cost functions are calculated.
Then, the genetic algorithm approach is described. Fol-
lowing that, numerical results and parametric analysis
are presented. Finally, our �ndings are summarized.

PROBLEM DESCRIPTION

Assumptions

The following assumptions are used throughout this
paper to develop the model:

1. A project with N activities is considered. The
precedence relations of activities are zero-lag, �nish-
to-start and shown by an activity on the node net-
work with no loop. Activities 1 and N are dummies
that represent the project start and completion,
respectively.

2. Activity duration is considered to be a variable that
can vary from normal time to crash time.

3. The activities need M types of nonrenewable re-
sources.

4. The amount required from material m to process
activity j is independent of the activity duration.

5. All the amounts of each material needed for each
activity are ordered at the same time.

6. An all-unit discount policy is proposed for each
material.

7. The objective function elements, which are pre-
sented in the following section, are adopted from
Dodin and Elimam [6].

Mathematical Model

The purpose of this paper is to minimize the total
cost of the PSMO problem by determining the optimal
values of activity duration, activity �nish time and the
material ordering schedule subject to constraints. We

use the same notation as introduced by Dodin and
Elimam [6] for similar parameters as follows.

Indices

j = 1; � � � ; N index of project activities,
m = 1; � � � ;M index of materials,
k = 1; � � � ;Km index of discount ranges,
t = 0; � � � ;H index of time.

Parameters
a. Activity related

Pj Set of activities preceding activity j,
bj Crashing cost of activity j,
cj The cost of reducing the duration of

activity j by one period,
uj Upper bound on the duration of activity j

(normal time),
vj Lower bound on the duration of activity j

(crash time),
ej The earliest completion time of activity j,

assuming that the project starts at time zero
and the duration of each activity is equal
to its crash time,

lj The latest completion time of activity j,
assuming that the project �nishes at time H
and the duration of each activity is equal
to its crash time.

b. Material related

�mk Limit on quantity range k of material m,
�mk Cost of material m purchased in quantity

range k,
Gm Ordering cost of material m,
hm Inventory holding cost of one unit of

material m for one period,
Km Number of quantity discount ranges for

material m,
Lm Lead time of material m in periods,
Rjm Amount required from material m to

process activity j.

c. Project related

d Due date of the project after which a delay
penalty cost is paid,

H The planning horizon,
p Penalty cost per period for having the

project late beyond d,
r Reward paid per period for completing the

project before d,
s Percentage of the activity's worth

representing the holding cost, per period,
of the completed activities.
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Non-Negative Variables:

Xjt

(
1 If activity j is completed in period t.
0 Otherwise.

Pmktj

8>>>>>><>>>>>>:
1 If mth material of activity j is ordered

in period t and the total amount of
orders in this period falls within
quantity range k.

0 Otherwise.

zj Duration of activity j:

�mkt

8><>:1 If material m is ordered within quantity
range k in period t.

0 Otherwise.

Imt
Inventory level of material type m by the
end of period t.

wjt
Worth of activity j completed by the end of
period t.

Wt Worth of project by the end of period t:

Model Formulation
The PSMO problem is formulated as a Mixed Integer
Programming (MIP) model as follows:

min
NX
j=1

[bj � cj(zj � vj)]�
dX

t=eN

r(d� t)XNt

+
HX
t=d

p(t� d)XNt

H�1X
t=1

sWt

+
MX
m=1

H�LmX
t=1

Gm
KmX
k=1

�mkt

+
MX
m=1

H�LmX
t=1

KmX
k=1

NX
j=1

�mkRjmPmktj

+
MX
m=1

H�1X
t=1

hmIm:

Subject to:

liX
t=ei

tXit + zj �
ljX
t=ej

tXjt � 0; 8i 2 Pj ;

j = 1; � � � ; N; (1)

X10 = 1;

vj � zj � uj ; j = 1; � � � ; N; (2)

ljX
t=ej

Xjt = 1; j = 1; � � � ; N; (3)

wjt � [bj � cj(zj � vj)]� bj(1�Xjt);

j = 1; � � � ; N; t = 1; � � � ;H; (4)

Wt �Wt�1 +
NX
j=1

wjt; t = 1; � � � ; eN ; (5)

W0 = 0;

Wt �Wt�1 +
NX
j=1

wjt �
0@ NX
j=1

bj

1A :
tX

�=eN

XN� ;

t = eN + 1; � � � ;H; (6)

Imt = Im(t�1) +
NX
j=1

Rjm

 KmX
k=1

Pmk(t�Lm)j �Xjt

!
;

m = 1; � � � ;M; t = 1; � � � ;H; (7)

Im0 = 0; m = 1; � � � ;M;

�m(k�1)�mkt �
NX
j=1

RjmPmktj � �mk�mkt;

m = 1; � � � ;M; t = 1; � � � ;H;
k = 1; � � � ;Km; (8)

�m0 = 0;

KmX
k=1

�mkt�1; m=1; � � � ;M; t=1; � � � ;H;
(9)

KmX
k=1

H�1X
t=1

Pmktj = 1; j = 1; � � � ; N;

m = 1; � � � ;M; (10)

KmX
k=1

H�1X
t=1

tPmktj �
ljX
t=ej

tXjt � Lm;

j = 1; � � � ; N; m = 1; � � � ;M; (11)

Xjt = f0; 1g; �mkt = f0; 1g;
Pmktj = f0; 1g; 8 m; k; t; j; (12)
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zj � 0; Imt � 0; wjt � 0; Wt � 0;

8m; t; j: (13)

The total cost function consists of seven elements which
are crashing cost, reward for early project completion,
project delay penalty, completed activities holding
cost, material ordering cost, procurement cost and
inventory holding cost, respectively. Constraints 1 take
into consideration the precedence relation between each
pair of activities (i; j), where i immediately precedes
j. Constraints 2 limit activity durations between their
normal and crash time. Constraint 3 guarantees that
each activity j can only have one �nish time. Sets
of Constraints 4-6 are used to calculate activities and
project worth. Constraint 7 is a balance equation to
monitor the inventory level over the planning horizon.
Constraints 8 and 9 satisfy the discount conditions,
where the order quantity from each material per period
should be in an appropriate interval of the discount
pricing schedule and only in one interval. Constraint
10 guarantees that each material m is ordered for each
activity j just one time. Constraint 11 stipulates that
all materials required for each activity should be ready
at the activity �nish time. The sets of Constraints 12
and 13 denote the domain of variables.

One can convert the problem to a multidimen-
sional 0-1 knapsack problem (Freville [8]). For ex-
ample, if we simplify the model by assuming the
activity duration to be constant, then Constraints 4
to 6, which are used to linearize the model, can be
omitted and, thus,

PH�1
t=1 sWt will be replaced withPN

j=1 s(bj � cj(zj � vj))(
PH
t=1 tXNt �PH

t=1 tXjt) in
the objective function. Now, if we relax all constraints
except Constraints 1, 3 and 11 and also reduce the
objective function to just minimizing the completed
activity holding cost, then we reach the following
model:

min
NX
j=1

s(bj � cj(zj � vj))
 

HX
t=1

tXNt �
HX
t=1

tXjt

!
;

st:

liX
t=ei

tXit + zj �
ljX
t=ej

tXjt � 0; 8i 2 Pj ;

j = 1; � � � ; N;
ljX
t=ej

Xjt = 1; j = 1; � � � ; N;

KmX
k=1

H�1X
t=1

tPmktj �
ljX
t=ej

tXjt � Lm; j = 1; � � � ; N;

m = 1; � � � ;M;

Xjt = f0; 1g; 8j; t:
This is a multidimensional 0-1 knapsack model, which
is a known NP-hard. Since PSMO can be converted
to an NP-hard problem with some simpli�cation, so
PSMO is also NP-hard. Thus, the optimal solution can
only be achieved by exact algorithms in small instances.
Therefore, heuristic methods are needed to solve large
scale problems. We propose a genetic algorithm to
solve the problem. However, one may compare the
results of GA with other heuristic methods in order
to clear up which one is more e�cient.

GENETIC ALGORITHM

Basic Scheme

One of the most important aspects of the genetic
algorithm is the structure of its chromosomes (Geno-
type), which is explained in the following section.
Each chromosome gives a unique value to the decision
variables, which are activity durations (zj 's), activity
�nish times (fj 's) and the ordering times of materials
(otmj 's). The following is a presentation of the scheme
of the algorithm.

The genetic algorithm starts by the random gen-
eration of the initial population and by computing its
un�tness, which is the cost of its related schedule. The
size of the population, PS = 100 (N �M)�, remains
constant for all generations. Each new generation is
made from existing generations using three operations:
crossover, mutation, and local search. In the crossover
operation, Pcr percentages of pairs of parents are
randomly selected from the existing generation and,
on each pair, a crossover operation is performed.
Additionally, Pmu percentage of individuals, randomly
selected, is considered for mutation operation. More-
over, a local search operation is employed to improve
some randomly selected individuals. A local search is
used for Pl percentage of individuals. The number of
individuals generated by each run is assumed to be
equal to PS and, thus, 2Pcr + Pmu + Pl = 1.

After constructing each generation by the above
operations, we choose the members of the next gen-
eration by retaining the best Pse percentage of the
previous generation and selecting the remaining 1�Pse
percentage with transference rule.

The termination criterion is set as 150 generations
with no improvement in the best solution. If this condi-
tion has been satis�ed, then the GA stops and returns
the best individual. Otherwise, a new generation will
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be generated. Note that �, Pcr, Pmu, Pl and Pse are
adjustable parameters of the algorithm.

Chromosome Representation

Each individual, I, is constructed from a (M + 2)�N
matrix. The �rst row of this matrix represents activity
durations. The second row represents activity �nish
times and the third to (M + 2)th rows represent the
ordering times of materials for each activity. Based on
the model, all of these cells contain integer values.

I =

26666666666664

zI1 zI2 � � � zIN

f I1 f I2 � � � f IN

otI11 otI12 � � � otI1N

� � � � � � � � � � � �
otIM1 otIM2 � � � otIMN

37777777777775
:

Considering DV Imq to be the qth set of activities in
chromosome I where their mth material is ordered in
the same time, and DV Im to be the number of di�erent
sets of similar otImj in the ordering schedule of material
m, the value of un�tness function, f(I), would be

f(I) =
7P
i=1

�Ii , so that:

�I1 =
NX
j=1

[bj � cj(zIj � vj)];

�I2 = �r(d� f IN ); if f IN � d;
�I3 = p(f IN � d); if f IN > d;

�I4 = s
NX
j=1

[bj � cj(zIj � vj)](f IN � f Ij );

�I5 =
MX
m=1

GmDV Im;

�I6 =
MX
m=1

DV ImX
q=1

0@ X
m2DV Imq

Rjm

1A �mk;

if �m(k�1) �
0@ X
m2DV Imq

Rjm

1A � �mk;
k = 1; � � � ;Km;

�I7 =
MX
m=1

NX
j=1

hmRjm(f Ij � otImj � Lm):

Initial Population

We generate the initial population using two ap-
proaches. Creating initial population members in
these ways ensures that all chromosomes in the initial
population represent feasible solutions. The detailed
design of each code follows:

(a) Forward approach
The pseudo-code of this approach is given below:
A= set of activities that can be selected (their

precedence activities have been selected be-
fore).

PNi= number of precedents of activity i that
have not been selected yet.

Set j = 1

While j � N
zj  int [vj ; uj ], a discrete uniform

distribution, including vj and uj

j  j + 1

End while

Set A = f1g, j = 1, f1 = 0, PNi =
X

k2Pi 18i
While A 6= �

Select one activity from A by random (e.g. j)

fj  max
i2Pj ffig+ zj

PNi  PNi � 1 8ijj 2 Pi
PNj  �1

A A� fjg+ f8ijPNi = 0g
End while

Set m = 1, j = 1

While m �M
While j � N

otmj  int [0; fj � Lm]

j  j + 1

End while

Set j = 1, m m+ 1

End while
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(b) Backward approach
This approach is almost similar to the forward ap-
proach, except that we start from H coming back
to zero and, after generating the chromosome, all
activities are locally shifted so that the start time
of the project is equal to zero.

Crossover Operator

We use three crossover operators: one-point, two-point,
and three-point crossovers. Let Pa1 and Pa2 be a pair
of parents selected for crossovers. Two children, I1 and
I2, are de�ned from this crossover. The pseudo-code of
the one-point crossover operator is given below:

I1  Pa1, I2  Pa2

r  int [2; N � 1], selecting a breaking point

Set k = 1

While k � 2

Set lf = H, j = r + 1

While j � N
Set mf = 0, i = 0

While i � r
If i 2 Pj & f Iki > mf then mf  f Iki

i i+ 1

End while

If f Ikj �zIkj �mf<lf then lf  f Ikj �zIkj �mf
j  j + 1

End while

If lf > 0 then lf  int [0; lf ]

f Ikj  f Ikj � lf 8 j � r + 1

Set j = r + 1

While j � N
otIkmj  otIkmj � lf + a 8m
If otIkmj < 0 then otIkmj  int [0; fj�Lm]

j  j + 1

End while

k  k + 1

End while

The second and third crossover operators use the
same logic. For example, if in a two point crossover,
Pa1 and Pa2 are a pair of parents selected for crossover,
then CH1 and CH2 will be their child, assuming r1 and
r2 as breaking points (Figure 1).

Mutation Operator

We use two mutations. Let I be the chromosome that
is selected for mutation. The �rst mutation operator
selects 
 = N=5 integer numbers randomly from the
interval [2; N � 1], representing selected activities, and
an integer number, m, from the interval [1;M ]. Then, a
new ordering time of the selected material is generated
for selected activities. Using this operator, activity
durations and �nish times remain unchanged. The
pseudo-code of this operator is as follows:


  N=5

Set a = 1

While a � 

j  int[2; N � 1]

m int[1;M ]

otImj  int[0; f Ij � Lm]

a a+ 1

End while

The second mutation selects 
 = N=5 integer numbers
randomly from the interval [2; N � 1], representing
activities, and replaces the selected activity's duration
by a new random value. Thus, activity �nish times
and ordering times may need change. We use the
approaches employed for initial population generation
to update the second to the (M + 2)th rows. The
pseudo-code of this operator is as follows:


  N=5

Set a = 1

While a � 
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Figure 1. Two-point crossover example.

j  int [2; N � 1]

zIj  int [vj ; uj ]

a a+ 1

End while

Update f I and otI , using forward or backward ap-
proach.

Local Search Operator

Applying a local search, we are trying to change from
existing chromosomes to those with less un�tness, by
increasing the ordering times uniformity. This results
in less ordering costs. Moreover, higher discount
ranges may be achievable and thus, total cost may
decrease. Two local search operators are employed in
the algorithm. Considering as the selected chromosome
for a local search, the pseudo-code of the �rst operator
is as follows:

�  N:M=10

Set a = 1

While a � �
Nf  H

m int [1;M ], selecting a material

s = s0  int [2; 5], number of activities whose

ordering time will be the same

j = j0  int [s;N ]

While s � 1, obtaining minimal potential ordering
time

If f Ij � Lm � Nf then Nf  f Ij � Lm
j  j � 1, s s� 1

End while

While s0 � 1, replacing new ordering times

otImj0  Nf

j0  j0 � 1, s0  s0 � 1

End while

a a+ 1

End while

The second operator is almost the same as the
�rst except that those activities whose ordering times
should become similar are selected randomly.

Transference Rule

Using the transference rule, the next generation of chro-
mosomes is chosen from the list of existing individuals.
This way, we �rst obtain #I = f(I)=maxI f(I) and
then, a random value is generated between (0; #I) for
each individual. The individuals with fewer values are
selected for the next generation.

COMPUTATIONAL RESULTS

Computational studies on the proposed GA for the
PSMO problem have been carried out. The purpose
of these experiments was to evaluate the performance
of our GA across a variety of situations. To test the
proposed GA, we developed experiments for networks
with 10, 30, 60, 90 and 120 non-dummy activities and
1 to 4 materials. The structure of the networks as
well as activities' normal duration was generated using
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ProGen software [9]. The remaining input parameters
were generated at random from a set of parameters;
one for each of the underlying parameters.

All of the computations were performed on an
IBM-compatible PC with Pentium 4 and 2.80 GHz,
CPU speed and 512 MB RAM memory under Windows
XP as the operating system. All procedures have been
coded in C++ and compiled with the Microsoft Visual
C++ 6.0 compiler.

Parameter Setting

In order to improve the performance of GA, we use the
design of experiment techniques to �nd the good GA
set of parameters before running the GA. The prelim-
inary tests were conducted to determine appropriate
values for �, Pcr, Pmu and Pse. The experimental
layout is a full-factorial design [10], involving four
factors. This experimental layout used three levels
for each factor. The following selections for the
parameter values are used: � 2 f0:10; 0:15; 0:20g,
Pcr 2 f0:1; 0:2; 0:3g, Pmu 2 f0:1; 0:2; 0:3g and Pse 2f0:4; 0:6; 0:8g. Each row of experimental runs is one
combination of these factors and, hence, there are 81
rows. In each row, we run the GA for 4 seconds
for 10 certain instances with 60 non-dummy activities
and four resources. Thus, 810 instances were solved.
We used the average of 20 runs of each instance
for the parameter setting. The distribution of these
average values is needed for statistical analysis. Using
the Shapiro-Wilk test, the assumption of normality
distribution was strongly supported.

The average and maximum percent deviation
from minimal cost, among all combinations of param-
eter, were calculated for each row. Using the Duncan
Multiple Range test with a signi�cance level equal to
0.05, we see that there are no signi�cant di�erences
between levels of Pse.

Table 1 shows some of the good combinations
of parameter values and their results with 4-second
computing time.

After the test, it was determined that the best
results can be obtained by setting 0.2, 0.3, 0.1 and 0.8
for �, Pcr, Pmu and Pse, respectively. Based on the
relationship between Pcr, Pmu and Pl, the best value
of Pl will be 0.3.

Table 1. Good combinations of parameter values.

� Pcr Pmu Pse Av. Dev. % Max. Dev. %
0.20 0.30 0.10 0.80 1.03 1.79

0.15 0.30 0.10 0.80 1.36 2.22

0.10 0.30 0.10 0.60 1.54 2.37

0.15 0.30 0.20 0.80 1.66 2.86

0.10 0.20 0.10 0.80 1.74 2.56

0.10 0.30 0.10 0.80 1.85 3.12

0.15 0.30 0.10 0.60 2.03 3.22

Performance Analysis

For an analysis of the performance of the GA, 12
instances with 10 activities and 1 to 4 resources were
generated and tested. The parameters obtained from
the parameter setting step (the previous section) are
used for further GA runs. Table 2 shows the results
of comparing optimal solutions attained by LINGO 8.0
with the solutions proposed by GA.

We also compared the solutions obtained from GA
with the best randomly generated solutions after a time
limit. Moreover, for testing the e�ciency of the GA,
the best solution of the initial population is compared
with the best solution found by the algorithm after a
time limit. We generated 80 instances with 30, 60, 90
and 120 activities and 1 to 4 materials. The following
measures are calculated:

Reduction % = 100 (BI� BA)=BI;

Improve % = 100 (BR� BA)=BR;

where BR, BA and BI are best random solutions, the
best solution found by the algorithm, and the best
solution of initial population, respectively.

Table 3 shows that the algorithm improves the
best un�tness value obtained from the initial pop-
ulation and random generation by 32.51 and 34.85
percentages on average, respectively.

The E�ect of Local Search

In order to test the e�ect of local search, 80 instances
were generated. We obtained the best un�tness values
with and without a local search after a certain time

Table 2. GA vs. optimal results.

No. of
Activities

No. of
Materials

LINGO CPU
Time (s)

GA Av. CPU
Time (s)

Av. Dev.
%

Max. Dev.
%

10 1 36.7 0.27 0.27 0.93

10 2 133.3 0.66 0.97 2.09

10 3 604.7 1.02 1.50 2.52

10 4 2462.0 1.64 1.88 2.85
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Table 3. GA vs. random and initial values.

No. of
Activities

Time Limit
(s)

Av. Reduction
%

Min. Reduction
%

Av. Improve
%

Min. Improve
%

30 2 30.73 28.41 31.54 30.36

60 3 32.63 30.69 35.28 33.77

90 4 32.81 30.69 35.97 34.55

120 5 33.88 32.02 36.63 35.26

Table 4. E�ect of local search.

No. of
Materials

Time
Limit

(s)

Average
Percent

Improvement %
1 2 5.66

2 2 5.84

3 2 14.45

4 2 19.14

1 3 5.29

2 3 16.13

3 3 20.75

4 3 29.59

1 4 12.05

2 4 21.49

3 4 26.12

4 4 27.51

1 5 10.48

2 5 24.59

3 5 31.77

4 5 34.67

limit. The parameters of the GA without the local
search are: � = 0:2, Pcr = 0:4, Pmu = 0:2 and
Pse = 0:8. Considering FL and FWL to be the best
un�tness values for the algorithm with and without
a local search, the percentage improvement is de�ned
as 100 (FWL-FL)/FWL. The average improvement for
each set of problems is shown in Table 4.

CONCLUSION AND DIRECTIONS FOR
FUTURE RESEARCH

A model was developed to integrate the problem of
project scheduling with material ordering. This paper
is an extension of the PSMO problem investigated
by Dodin and Elimam [6] by developing a solution
approach so that the model can be solved for large
scale problems. The problem is formulated as a Mixed
Integer Programming model and a genetic algorithm
approach is employed to solve the problem. Finally,

the performance of the algorithm was evaluated by
solving di�erent instances so that the results were quite
satisfactory.

One of the future research directions is to extend
this study for stochastic supply lead-times in which the
objective function is to minimize the expected total
cost per unit time. Other discount policies can also be
considered as an extension.
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