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Research Note

Convergence Analysis of Spline Solution of
Certain Two-Point Boundary Value Problems

J. Rashidinia1;�, R. Jalilian2 and R. Mohammadi1

Abstract. The smooth approximate solution of second order boundary value problems are developed
by using non-polynomial quintic spline function. We obtained the classes of numerical methods, which are
second, fourth and six-order. For a speci�c choice of the parameters involved in a non-polynomial spline,
truncation errors are given. A new approach convergence analysis of the presented methods are discussed.
Three test examples are considered in our references. By considering the maximum absolute errors in
the solution at grid points and tabulated in tables for di�erent choices of step size, we conclude that our
presented methods produce accurate results in comparison with those obtained by existing methods.
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INTRODUCTION

We consider the two-point boundary value problem:

u00 + g(x)u = q(x);

u(a) = �;

u(b) = �;

a � x � b; (1)

where g(x) and q(x) are continuous functions on [a; b]
and a, b, � and � are arbitrary real �nite constants.
Such problems arise in the theory which describes the
de
ection of plates and a number of other scienti�c
applications. In general, it is di�cult to obtain the
analytical solution of Equations 1 for arbitrary choices
of g(x) and q(x). We usually resort to a numerical
method for obtaining an approximate solution of the
problem (Equations 1). A more commonly used �nite
di�erence method for solving Equations 1 numerically
is discussed by many authors and we refer the reader,
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in particular, to Fox [l], Henrici [2], Aziz et al. [3],
Bramble et al. [4], Fischer et al. [5] and Usmani [6].
The possibility of using spline functions for obtaining
a smooth approximate solution of Equations 1 is
brie
y discussed by Ahlberg et al. [7]. Since then,
Albasiny and Hoskins [8], Bickley [9], Fyfe [10] and
Sakai and Usmani [11] have used the cubic spline
for obtaining approximations. Bhatta et al. [12]
have used the spline functions of degrees seven and
eight and Usmani and Wasrt [13] used the Quintic
spline. Also, Usmani and Sakai [14] used a cubic
and a quartic spline. Khan [15] used a parametric
cubic spline function to develop a numerical method
for computing smooth approximations to the solution
for second order boundary value problems. Recently,
Ramadan et al. [16] developed a sixth-order method
based on a quintic non-polynomial spline function
for the solution of high order two point boundary
value problems, but in application, they solved only
second and fourth order boundary value problems.
Their method su�ers from boundary conditions and
due to this, the order of accuracy of their method is
reduced. Besides, in the convergence analysis, they
assumed more restrictions on Equations 1 and an
arising coe�cient matrix.

In this paper, we have derived a uniformly conver-
gent mesh di�erence scheme using a non-polynomial
spline for the solution of Equations 1. Analysis
of the methods shows a second, fourth and sixth-
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order convergent for arbitrary �, �, p, r and s.
In this article, �rst, the consistency relation of our
non-polynomial quintic spline in [17] is used for the
solution of Equations 1. Then, the methods and the
development of boundary conditions are described and
classes of the methods are discussed. Following that
a new approach for convergence analysis is presented.
Here, we obtained the restriction on function g only.
Finally, some numerical evidence is included to show
the practical applicability and superiority of our meth-
ods.

DESCRIPTION OF THE METHODS AND
DEVELOPMENT OF BOUNDARY
CONDITIONS

Let us consider a mesh with nodal points xi on [a; b],
such that:

� : a = x0 < x1 < x2 < � � � < xn�1 < xn = b;

where h = b�a
n for i = 1(1)n. We also denote the

function value u(xi) by ui.
For each segment [xi; xi+1]; i = 0; 1; 2; � � � ; n � 1,

by using the non-polynomial quintic spline relation
derived in our paper [17], we have:

pMi�2 + rMi�1 + sMi + rMi+1 + pMi+2

=
1
h2 [�(ui+2 + ui�2)

+ 2(� � �)(ui+1 + ui�1) + (2�� 4�)ui]; (2)

where:

p = �1 +
�
6
;

r = 2
�

1
6

(2�+ �)� (�1 � �1

�
;

s = 2
�

1
6

(�+ 4�) + (�1 � 2�1

�
;

� =
�

1
�2

�
(� csc � � 1);

� =
�

1
�2

�
(1� � cot �);

�1 =
1
�2

�
1
6
� �

�
;

�1 =
1
�2

�
1
3
� �

�
:

At mesh point xi, the proposed di�erential Equations 1
may be discretized by:

Mi + giui = qi; (3)

where:
Mi = S00i (xi);

gi = g(xi);

qi = q(xi);

and:
ui = u(xi):

Substituting Equation 3 in spline Relation 2, we obtain:

(�+ ph2gi�2)ui�2 + (2(� � �) + h2rgi�1)ui�1

+(2��4�+sh2gi)ui+(2(���)+h2rgi+1)ui+1

+(�+ph2gi+2)ui+2 =h2(p(qi�2)+r(qi�1) + s(qi)

+ r(qi+1) + p(qi+2)); (4)

i = 2(1)n� 2:

To obtain a unique solution for this system (Equa-
tion 4), we need two more equations to be associated,
so we use the following boundary conditions:

(a) Following [17], the second-order boundary formula
is:

u1 � 2u2 + u3 =
h2

6
(u001 + 4u002 + u003);

i = 1;

un�3 � 2un�2 + un�1

=
h2

6
(u00n�3 + 4u00n�2 + u00n�1);

i = n� 1; (5)

using Equation 3, we have:

(1 +
h2

6
g1)u1 + (�2 +

4h2

6
g2)u2

+ (1 +
h2

6
g3)u3 =

h2

6
[q1 + 4q2 + q3];

(1 +
h2

6
gn�3)un�3 + (�2 +

4h2

6
gn�2)un�2

+ (1 +
h2

6
gn�1)un�1

=
h2

6
[qn�3 + 4qn�2 + qn�1];
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(b) Following [17], the fourth-order boundary formula
is:

u1�2u2+u3 =
h2

12
(u001 +10u002 +u003);

i = 1;

un�3 � 2un�2 + un�1 =
h2

12
(u00n�3 + 10u00n�2

+ u00n�1);

i = n� 1; (6)

using Equation 3, we have:

(1 +
h2

12
g1)u1 + (�2 +

10h2

12
g2)u2

+ (1 +
h2

12
g3)u3 =

h2

12
[q1 + 10q2 + q3];

(1 +
h2

12
gn�3)un�3 + (�2 +

10h2

12
gn�2)un�2

+ (1 +
h2

12
gn�1)un�1

=
h2

12
[qn�3 + 10(qn�2) + qn�1];

(c) In order to obtain the sixth-order boundary for-
mula, we de�ne the following identities:

3X
k=0

akuk + h2
5X
k=0

bku00k + t1h8u(8)
0 ;

i = 1;

3X
k=0

akun�k + h2
5X
k=0

bku00n�k + tn�1h8u(8)
n ;

i = n� 1; (7)

in order to obtain unknown coe�cients a and b in
Relations 7, by Taylor's expansion, we obtain:

(a0; a1; a2; a3) = (�10; 19;�8;�1);

t1 = tn�1 = (
2179
60480

);

(b0; b1; b2; b3; b4; b5)

=
�

179
240

;
1057
120

;
39
40
;

41
60
;
�61
240

;
1
24

�
:

CLASSES OF THE METHODS

By expanding Equation 4 in the Taylor's series about
xi, we obtain the following local truncation error:

ti =
�

1
6

(7�+ �)� (4p+ r)
�
h4u(4)

i

+
�

1
180

(31�+ �)� 1
12

(16p+ r)
�
h6u(6)

i ;

+
�

1
131040

(1611�+ 31�)� 1
360

(4p+ r)
�
h8u(8)

i

+O(h9); 2 � i � n� 2: (8)

By using the above truncation error to eliminate the
coe�cients of various powers, h, we can obtain classes
of the methods. For any choice of �, �, p, r and
s, whose � + � = 1

2 and with boundary formulas
(Relations 5 to 7) we obtain the following methods.

Second-Order Method

For:

(�; �) =
�

1
4
;

1
4

�
;

and:

p = 0:040634839941134321703;

r = 0:25412730690212937985;

s = 0:41047570631347259688;

we obtain the second-order method, ti = O(h4).

Fourth-Order Method

For:

(�; �) = (
1
6
;

1
3

);

and:

p =
1

120
;

r =
26
120

;

s =
66
120

;

we obtain the fourth-order method, ti = O(h6).
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Sixth-Order Method

For

(�; �) = (
1
12
;

5
12

);

and:

p =
1

360
;

r =
56
360

;

s =
246
360

;

we obtain the sixth-order method, ti = O(h8).

CONVERGENCE ANALYSIS

In this section, we investigate the new approach con-
vergence analysis of the sixth-order associated method,
a boundary formulas (Relations 7). The given system
can be considered in matrix form as:

(i) AU = C + T;

(ii) AU = C;

(iii) AE = T; (9)

where:

U = (ui); U = (ui); C = (ci);

T = (ti); E = (ei);

are (n � 1)-dimensional column vectors. Matrix A is
de�ned by:

A = (A0A1 + 6A0) +B;

where A is a monotone �ve band matrix of order n�1,
and A0 = (aij) is a tri-diagonal matrix de�ned by:

aij =

8><>:2; i = j = 1; 2; � � � ; n� 1;
�1; ji� jj = 1;
0; otherwise;

(10)

and A1 = (a�ij), is a tri-diagonal matrix de�ned by:

a�ij =

8><>:4; i = j = 1; 2; � � � ; n� 1;
1; ji� jj = 1;
0; otherwise;

(11)

B = h2QG with G = diag(gi), i = 1; 2; � � � ; n� 1, and:

(A0A1 + 6A0) =26666666666666664

19 �8 �1
�8 18 �8 �1
�1 �8 18 �8 �1

. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .
�1 �8 18 �8 �1

�1 �8 18 �8
�1 �8 19

37777777777777775
;
(12)

Q =266666666666666666666666666666664

1057
120

39
40

41
60

�61
240

� 672
360 � 2952

360 � 672
360 � 12

360

� 12
360 � 672

360 � 2952
360 � 672

360

. . . . . . . . .

. . . . . .

. . .

1
24

� 12
360

. . . . . .

. . . . . . . . .

. . . . . . . . . . . .

� 12
360 � 672

360 � 2952
360 � 672

360 � 12
360

� 12
360 � 672

360 � 2952
360 � 672

360

1
24

�61
240

41
60

39
40

1057
120

377777777777777777777777777777775

:
(13)
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Vector C is given by:

ci

=

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

10�� h2

"
179
240

(q0 � g0�) +
1057
120

q1 +
39
40
q2

+
41
60
q3 � 61

240
q4 +

1
24
q5

#
;

i = 1;

�� 12h2

360
[(q0�g0�)+56q1+246q2+56q3+q4];

i = 2;

�12h2

360
[qi�2 + 56qi�1 + 246qi + 56qi+1 + qi+2];

i = 3; � � � ; n� 3;

� � 12h2

360
[(qn � gn�) + 56qn�1 + 246qn�2

+ 56qn�3 + qn�4];

i = n� 2;

10� � h2[
179
240

(qn � gn�) +
1057
120

qn�1

+
39
40
qn�2 +

41
60
qn�3 � 61

240
qn�4

+
1
24
qn�5];

i = n� 1:

(14)

Vector T is the local truncation error vector and is
de�ned as:

ti =8>>>>>>>><>>>>>>>>:

2179
60480h

8u(8)(�1)+O(h9); a < �1 < x5

i = 1;
173

262080h
8u(8)(�i)+O(h9); xi�2<�i<xi+2

i=2; � � � ; n� 2;
2179
60480h

8u(8)(�n�1)+O(h9); xn�5<�n�1<b
i=n�1:

(15)

Lemma 1

If M is a square matrix of order n and kMk < 1, then
(I + M)�1 exists and k(I + M)�1k < 1

(1�kMk) .
To explain the existence of A�1, since A =

(A0A1 + 6A0) + B, we have to show (A0A1 + 6A0)
is nonsingular. By using Lemma 1 and Henrici [2], we
shall �rst require bounds for the element of (A0)�1.

If A�1
0 = (a�ij), then:

a�ij =

8><>:
j(n�i)
n ; i � j;

i(n�j)
n ; i � j;

(16)

and we get:

nX
j=1

a�ij =
iX

j=1

j(n� i)
n

+
nX

j=i+1

i(n� j)
n

� (n)2

8
; (17)

where the equality holds only if n is odd. Inequality
can be written as:

kA�1
0 k � (b� a)2

8h2 : (18)

Also, by using [13] we have:

kA�1
1 k � 1

2
;

(A0A1 + 6A0)�1 = (I +
1
6
A1)�1(6A0)�1: (19)

By using Lemma 1 (I + 1
6A1)�1 exists and we get

bounds for k(A0A1 + 6A0)�1k,

k(A0A1 + 6A0)�1k � k(6A0)�1k
1� k 1

6A1k =
(b� a)2

44h2 ; (20)

where k:k represents the 1-norm in the matrix vector.

Lemma 2

Matrix A = (A0A1 + 6A0) +B is nonsingular, if:

kgk < 11
3(b� a)2 ;

where kGk � kgk = maxa�x�b jg(x)j.
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Proof
Since

A�1 = [(A0A1 + 6A0) +B]�1

= [I + (A0A1 + 6A0)�1B]�1(A0A1 + 6A0)�1;

it is su�cient to show that [I + (A0A1 + 6A0)�1B] is
nonsingular. Moreover, we know that in the case of a
sixth-order method we can obtain:

kQk � 12:

Also, using Lemma 1, if k(A0A1 + 6A0)�1Bk < 1, then
(I + (A0A1 + 6A0)�1B)�1 exists. Also, we get:

k(I + (A0A1 + 6A0)�1B)�1k

<
1

1� k(A0A1 + 6A0)�1Bk ;
where:

k(A0A1 + 6A0)�1Bk � k(A0A1 + 6A0)�1kkBk

� (b� a)2

44h2 (h2kQkkgk) < 1;

and then, we have:

kgk < 11
3(b� a)2 : �

Theorem 1

Let u(x) be the exact solution of the boundary value
problem (Equations 1) and assume that ui, i =
1; 2; � � � ; n � 1 be the numerical solution obtained by
solving the system (Equation 9 (iii)), then we have:

kEk � O(h6); 
provided jg(x)j < 11

3(b� a)2 ; � =
1
12
;

� =
5
12
; p =

1
360

; r =
56
360

; s =
246
360

!
:

Proof
The main purpose is to drive a band on kEk. Using
Equation 9 (ii) and Lemma 2, we have:

E = A�1T

= [I + (A0A1 + 6A0)�1B]�1(A0A1 + 6A0)�1T;

kEk �k[I + (A0A1 + 6A0)�1B]�1k
k(A0A1 + 6A0)�1kkTk: (21)

By using Lemma 1, we get:

kEk � k(A0A1 + 6A0)�1kkTk
1� k[(A0A1 + 6A0)�1B]k ; (22)

provided k[(A0A1 + 6A0)�1B]k < 1, also we have:

kTk � 2179h8M8

60480
; (23)

where M8 = maxa���b ju(8)(�)j.
Using Equations 20, 22, 23 and Lemma 2, we

obtain:

kEk � 2179(b� a)2h6M8

60480(44� 12(b� a)2kgk) � O(h6); (24)

provided that:

kgk < 11
3(b� a)2 : (25)

NUMERICAL ILLUSTRATIONS

In order to test the viability of the proposed methods,
based on a non-polynomial spline, and to demonstrate
its convergence computationally, we consider the fol-
lowing four test boundary value problems.

Example 1

We consider the following boundary-value problem:

u00 = u+ x2 � 2; u(0) = 0; u(1) = 1;

with the exact solution, u(x) = 2sinh(x)
sinh(1) � x2.

This problem has been solved using our methods
with di�erent values of n = 8; 16; 32; 64 and the
maximum absolute errors in solutions are tabulated in
Table 1.

Table 1. Observed maximum absolute errors for
Example 1.

n
Second-Order
� = 1

4 ; � = 1
4

Fourth-Order
� = 1

6 ; � = 1
3

Sixth-Order
� = 1

12 ; � = 5
12

8 1:09� 10�4 5:22� 10�8 8:75� 10�11

16 3:06� 10�5 2:31� 10�9 5:74� 10�13

32 8:11� 10�6 1:34� 10�10 2:30� 10�14

64 2:09� 10�6 8:42� 10�12 3:68� 10�14
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Table 2. Observed maximum absolute errors for Example 2.

n
Second-Order
� = 1

4 , � = 1
4

Fourth-Order
� = 1

6 , � = 1
3 Fourth-Order [13]

8 2:42� 10�3 2:64� 10�6 1:10� 10�6

16 6:80� 10�4 1:26� 10�7 1:09� 10�7

32 1:80� 10�4 7:41� 10�9 7:51� 10�9

64 4:65� 10�5 4:65� 10�10 4:81� 10�10

128 1:18� 10�5 2:95� 10�11 3:03� 10�11

256 2:98� 10�6 1:78� 10�12 1:85� 10�12

512 7:47� 10�7 4:35� 10�13 6:48� 10�13

1024 1.87�10�7 4.60�10�13 7:64� 10�13

n
Sixth-Order

� = 1
12 , � = 5

12 Seventh-Order [12]

8 8:02� 10�9 1:44� 10�7

16 5:01� 10�11 1:41� 10�9

32 1:16� 10�12 1:23� 10�11

64 2:55� 10�15 1:01� 10�13

Example 2

We consider the following boundary-value problem:

u00 = u� 4xex; u(0) = u(1) = 0;

with the exact solution, u(x) = x(1� x)ex.
We applied our methods to solve this problem

with n = 8; 16; 32; 64; 128; 256; 512; 1024 and the com-
puted solutions are compared with the exact solution
at grid points. The maximum absolute errors at the
nodal points, maxju(xi) � uij, are given to compare
with [12,13]. The observed maximum absolute errors
are tabulated in Table 2.

Example 3

We consider the following example in [12,14,15]:

x2u00 = 2u� x; u(2) = u(3) = 0;

with the exact solution, u(x) = (19x�5x2� 36
x )

38 .
We applied our methods to solve this problem

for n = 8; 16; 32; 64 and the computed solutions are
compared with the exact solution at grid points. The
observed maximum absolute errors are tabulated in
Table 3. In this table we compared our results with
the results given in [12,14,15]. This shows that our
results are more accurate.

Example 4

We consider the following example in [16]:

u00 = u+ (4� 2x2) sinx+ 4x cosx;

u(0) = u(1) = 0;

with the exact solution, u(x) = (x2 � 1) sinx.
We applied our sixth-order method to solve this

problem for n = 8; 16; 32 and 64. The computed
solutions are compared with the exact solution at grid
points. The observed maximum absolute errors are
tabulated in Table 4. In this table, we compared our
results with the results obtained by the methods in [16]
and also with the results obtained by [18,19] which are
reported in [16]. This shows that our results are more
accurate.

CONCLUSION

The approximate solutions of second-order linear
boundary-value problems using a non-polynomial
spline, show that our methods are better in the sense
of accuracy and applicability. These have been veri�ed
by the maximum absolute errors, max jeij, given in the
tables.
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Table 3. Observed maximum absolute errors for Example 3.

n
Second-Order
� = 1

4 , � = 1
4 Second-Order [14]

Fourth-Order
� = 1

6 , � = 1
3 Fourth-Order [14]

8 3:30� 10�5 4:17� 10�5 9:21� 10�8 1:74� 10�7

16 9:25� 10�6 1:04� 10�5 4:11� 10�9 1:10� 10�8

32 2:45� 10�6 2:61� 10�6 2:29� 10�10 6:85� 10�10

n Fourth-Order [15]
Sixth-order

� = 1
12 , � = 5

12 Seventh-order [12]

8 1:74� 10�7 1:78� 10�9 1:31� 10�8

16 1:09� 10�8 1:62� 10�11 1:56� 10�10

32 6:85� 10�10 7:15� 10�13 1:53� 10�12

64 - 3:68� 10�15 1.33�10�14

Table 4. Observed maximum absolute errors for Example 4.

n Sixth-Order Ramadan [16] Islam [18] Al-Said [19]

8 7:35� 10�9 7:24� 10�9 2:37� 10�5 6:49� 10�4

16 1:68� 10�11 1:16� 10�10 1:60� 10�6 1:70� 10�4

32 5:06� 10�13 1:82� 10�12 1:03� 10�7 4:15� 10�5

64 4:12� 10�15 6:51� 10�14 6:60� 10�9 1:82� 10�5
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