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Certain Two-Point Boundary Value Problems
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Abstract.

The smooth approzimate solution of second order boundary value problems are developed

by using non-polynomial quintic spline function. We obtained the classes of numerical methods, which are
second, fourth and siz-order. For a specific choice of the parameters involved in a non-polynomaial spline,
truncation errors are given. A new approach convergence analysis of the presented methods are discussed.

Three test examples are considered in our references. By considering the mazimum absolute errors in
the solution at grid points and tabulated win tables for different choices of step size, we conclude that our
presented methods produce accurate results in comparison with those obtained by existing methods.
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INTRODUCTION

We cousider the two-point boundary value problem:

u" + g(x)u = g(x),

u(a) = a,
u(b) = 5,
a<x<b, (1)

where g(x) and ¢(z) are continuous functions on [a, b]
and a, b, @ and 3 are arbitrary real finite constants.
Such problems arise in the theory which describes the
deflection of plates and a number of other scientific
applications. In general, it is difficult to obtain the
analytical solution of Equations 1 for arbitrary choices
of g(z) and ¢(x). We usually resort to a numerical
method for obtaining an approximate solution of the
problem (Equations 1). A more commonly used finite
difference method for solving Equations 1 numerically
is discussed by many authors and we refer the reader,
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in particular, to Fox [l], Henrici [2], Aziz et al. [3],
Bramble et al. [4], Fischer et al. [5] and Usmani [6].
The possibility of using spline functions for obtaining
a smooth approximate solution of Equations 1 is
briefly discussed by Ahlberg et al. [7]. Since then,
Albasiny and Hoskins [8], Bickley [9], Fyfe [10] and
Sakai and Usmani [11] have used the cubic spline
for obtaining approximations. Bhatta et al. [12]
have used the spline functions of degrees seven and
eight and Usmani and Wasrt [13] used the Quintic
spline. Also, Usmani and Sakai [14] used a cubic
and a quartic spline. Khan [15] used a parametric
cubic spline function to develop a numerical method
for computing smooth approximations to the solution
for second order boundary value problems. Recently,
Ramadan et al. [16] developed a sixth-order method
based on a quintic non-polynomial spline function
for the solution of high order two point boundary
value problems, but in application, they solved only
second and fourth order boundary value problems.
Their method suffers from boundary conditions and
due to this, the order of accuracy of their method is
reduced. Besides, in the convergence analysis, they
assumed more restrictions on Equations 1 and an
arising coefficient matrix.

In this paper, we have derived a uniformly conver-
gent mesh difference scheme using a non-polynomial
spline for the solution of Equations 1.  Analysis
of the methods shows a second, fourth and sixth-
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order convergent for arbitrary «, 3, p, r and s.
In this article, first, the consistency relation of our
non-polynomial quintic spline in [17] is used for the
solution of Equations 1. Then, the methods and the
development of boundary conditions are described and
classes of the methods are discussed. Following that
a new approach for convergence analysis is presented.
Here, we obtained the restriction on function ¢ only.
Finally, some numerical evidence is included to show
the practical applicability and superiority of our meth-
ods.

DESCRIPTION OF THE METHODS AND
DEVELOPMENT OF BOUNDARY
CONDITIONS

Let us consider a mesh with nodal points z; on [a,b],
such that:

Ata=20 <21 <2< <Zp_1 <Tp =D,

where h = =% for i = 1(1)n. We also denote the

function value u(x;) by u;.

For each segment [z;,2;41],7 = 0,1,2,--+ ,n — 1,
by using the non-polynomial quintic spline relation
derived in our paper [17], we have:

pMio+ 1M+ sM; + 1M1 + pMiyo

1
= pzlaltive +uis)

+2(8 — a)(wirr +ui1) + 2a —4B)us], (2)

where:
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r:2[6(2a+6)—(a1—ﬁ1}7

s=2 {é(a+4ﬂ) + (a1 —231] )

o= (812) (Besed — 1),
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At mesh point z;, the proposed differential Equations 1
may be discretized by:

M; + giv; = ¢qi, (3)
where:

Mi = S;/(Qﬁi),

gi = g(zpi)v

qi = C](l’i),
and:

u; = u(x;).

Substituting Equation 3 in spline Relation 2, we obtain:

(a+ ph?gi—a2)ui—s + (2(3 — @) + h*rgi—1)u;—1
+(200—484sh*gi)ui +(2(B—a) +h*rgip Juiss
+(a+ph®gira)uira =h* (p(qi—2)+7(gi—1) + s(a:)

+7(gi+1) + p(gi+2)), (4)
i =2(1)n — 2.

To obtain a unique solution for this system (Equa-
tion 4), we need two more equations to be associated,
so we use the following boundary conditions:

(a) Following [17], the second-order boundary formula
is:
h2
uy — 2ug + uz = E(UI{ + dul + uy ),

i=1,
Up—3 — 2un72 + Un—1

h2
= E(“Irﬁ—g +dup, o +uy_y),

i=n-1, (5)
using Equation 3, we have:

h? 4h2
(1+ g!h)“l +(=2+ 792)102

h? h?
+(1+ €93)U3 = E[(h + 4q2 + ¢3],
2 2
(1+ Egn—3)un—3 +(=2+ 7971—2)%1—2

h2
+(1+ ggn—l)un—l
2

= K[Qn—ﬁ} + 4Qn—2 + qn—1]7



130

ollowing , the fourth-order boundary formula
b) Followi 17], the f h-order bound f 1
is:

2

h
g —2us +ug = E(u'{—l—lOug—l—ug’),

i=1,
2

E(“Z—3 + 10u;, _,

Up—3 — 2“71—2 +Up—1 =

n

+ un—1)7
t=n—1, (6)
using Equation 3, we have:

h? 1042
1+ — -2
(1+ 1291)U1+( =+ 5

g2)us2

h? h?
+(1+ 593)103 = ﬁ[q1 + 10g2 + g3,
h? h?
(1+ Egnf?))unf?) +(-2+ ?97172)%172
h2
+(1+ Egn—l)unq
2

= 75 l4n— 10(gn—: n—1],
12[(1 3 +10(¢n—2) + ¢n—1]

(c) In order to obtain the sixth-order boundary for-
mula, we define the following identities:

3 5
Z apuy + h? Z bruy + tlhgugs),
k=0 k=0

i=1,

3 5
Z IRy Z bru! o+t hPul®),
k=0 k=0

in order to obtain unknown coefficients a and b in
Relations 7, by Taylor’s expansion, we obtain:

(a07a17a27a3) = (_107 197 _87 _1)7

2179

60480 )

t1 =tnh_1 = (

(b07 bla b27 b37 b47 b5)

_ (179 1057 39 41 -61 1)
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CLASSES OF THE METHODS

By expanding Equation 4 in the Taylor’s series about
x;, we obtain the following local truncation error:

ti = [é(?a +08)— (4p+ r)] h4u54)

1 1
(31 _ 0N 6,,(6)
+[180(3 a—+3) 12(6p+7‘)]hu1 ,

1
1611a + 318) — — (4 R8u(®)
* [131040< a+318) = 355 pH)] i

+0(h"), 2<i<n-2. (8)
By using the above truncation error to eliminate the
coeflicients of various powers, h, we can obtain classes

of the methods. For any choice of «, 3, p, r and

s, whose a + 8 = } and with boundary formulas

(Relations 5 to 7) we obtain the following methods.

Second-Order Method
For:

11
(aa ) - (47 4> 9
and:
p = 0.040634839941134321703,

= 0.25412730690212937985,

s = 0.41047570631347259688,

we obtain the second-order method, t; = O(h?).

Fourth-Order Method

For:
1
(Oé, ) - (77 g)a
and:
_ 1
P= 150’
_ %
"= 120
_ 66
120’

we obtain the fourth-order method, ¢; = O(RS).
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Sixth-Order Method

For
1 5
(Oé, ) - (E? E)a
and:
1
P= 360
56
~ 360’
246
3607

we obtain the sixth-order method, t; = O(h®).

CONVERGENCE ANALYSIS

In this section, we investigate the new approach con-
vergence analysis of the sixth-order associated method,
a boundary formulas (Relations 7). The given system
can be considered in matrix form as:

(i) AU=C+T,

(i) AU =C,
(i) AE=T, (9)
where:

U=(w), U=(@u), C=(c),

T=(t), E=(e),

are (n — 1)-dimensional column vectors. Matrix A4 is
defined by:

A - (A()Al + 6A0) + B7

where A is a monotone five band matrix of order n — 1,
and Ay = (a4;) is a tri-diagonal matrix defined by:

2, 1=7=1,2,---,n—1,
ai;j =4 -1, |i—jl=1, (10)
0, otherwise,

and A; = (aj;), is a tri-diagonal matrix defined by:

4, i=j=1,2,-,n—1,
a;; = ]-a |Z _]| = 17 (11)

0, otherwise,

(ApA1 +64)) =

-1
-8
18

39
40

2952

7360

672

360

_ 672

360

12

360

-1
-8

-8
-1

_ 2952

2952

B = h2QG with G = diag(g;), i =1,2,---

18

-1

_ 672

360

360

40
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,n—1, and:
(12)

-8 -1

18 -8

-8 19]
(13)

12

360

_ 612

360

1057

120
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Vector C is given by:
&

39

%‘FE

q2

( 179 1057
100 — A2 | = (g0 — il
Oa —h [240(% goax) + 120

41 61 1
+ =3 — - q4 + ;

60" T 2401 T 24P
i=1
12h2
a= =y [(g0 —gox) +564; +246q2 +56¢3 +q4],
i=2,
12h2
~ 360 [gi—2 + 56¢;—1 + 246¢; + 56¢i+1 + Git2),
Ni=3,---,n—3,
(14)
B 1217 I( B) + 56 + 246
360 dn gn gn—1 n—2

+ 56Qn73 + Qn74]7

1=n—2,
179 1057
108 — h?[—— (g, — —
Oﬁ h [240(Qn gnﬁ) + 120 gn—1
n 39 n 41 61
40 qn—2 60 dn—3 240 qn—4
e ]
24qn75 ’
1=n-—1.

Vector T is the local truncation error vector and is
defined as:

t; =
" 620147890 h8u(8)(£1)+0(h9)7 a< & <as

i=1,

261270380 hs“(s)(fi)+0(h9)7 Ti_0<E<Tiqn
. (15)
7/:2’... ’n_27

G50 W3 u® (£,_1)+O0(h°), @p_5<E1<b
1=n—1.
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Lemma 1

If M is a square matrix of order n and ||M|| < 1, then
(I +M) ! exists and ||(I + M)} < m

To explain the existence of A~™', since A =
(AgA; + 649) + B, we have to show (AgA; + 64q)
is nonsingular. By using Lemma 1 and Henrici [2], we
shall first require bounds for the element of (Ag) L.

If Ayt = (aj;), then:

Uk (17)

where the equality holds only if n is odd. Inequality
can be written as:

—1 (b—a)?
g < o (15)
Also, by using [13] we have:
1
47 < 5,
1
(AgA; +640) " = (I + 6Al)*l(GAO)*l. (19)

By using Lemma 1 (I + $A;)™! exists and we get
bounds for ||(AgA1 + 6A40) 7,

I640) 1 _ (b o
Lo [EAf T an2

(AoA; + 640) 1| < (20)

where ||.|| represents the co-norm in the matrix vector.

Lemma 2

Matrix A = (ApA; + 6A4g) + B is nonsingular, if:

11

llgll < 3b—a2’

where [|G[| < lg]| = maxa<a<p [9()]-
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Proof
Since

Al = [(A()Al + 6A0) + B]71

= [T+ (AgA; +64) Bl 1 (AgA; +64,) 1,

it is sufficient to show that [I + (AgA; + 6A40) 1 B] is
nonsingular. Moreover, we know that in the case of a
sixth-order method we can obtain:

QI < 12.

Also, using Lemma 1, if ||(AgA; +64¢) 1 B|| < 1, then
(I + (AgA; +6A9) 1 B) ! exists. Also, we get:

(I + (AoA; +640) 2B)7 !

1
(A()Al + 6A0)_1B|| ’

<
L—|
where:
(Ao A1 +640) 7" Bl < [[(AoA1 + 640) |l Bl

(b - a)®

< 2
< - (Plelllglh < 1,

and then, we have:
lgll < = O
NS 3m—ay

Theorem 1

Let u(z) be the exact solution of the boundary value
problem (Equations 1) and assume that u;, ¢ =

1,2,---,n — 1 be the numerical solution obtained by
solving the system (Equation 9 (iii)), then we have:
1]l = O(h°),
. 11 1
(promded lg(x)] < 30— a2’ a= 15
5 1 56 246
ﬁzia = =50 = aan |-
12 360 360 360
Proof

The main purpose is to drive a band on ||E||. Using
Equation 9 (ii) and Lemma 2, we have:

E=A"'T
= [+ (AgA; +6A40) 1 B] Y (AgA; + 64,) T,
I|E|l <||[I + (AgA1 + 640) "Bl |

[1(AoAs + 640) HII|T- (21)
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By using Lemma 1, we get:

(Ao As +640) |||
— ll(Ao A1 +640)~ B’

1l < - (22)

provided ||[(AgA; + 6A40) 1 B]|| < 1, also we have:

2179h8 My

23
60480 (23)

17| <

where Mg = maXaéggb |u(8)(f)|
Using Equations 20, 22, 23 and Lemma 2, we
obtain:

2179(b — a)?h® Mg

Ell < = O(h® 24
IE] < 60480(44 — 12(b — a)?||g]|) (5, (24
provided that:
11
_ 2
loll < 55—y (25)

NUMERICAL ILLUSTRATIONS

In order to test the viability of the proposed methods,
based on a non-polynomial spline, and to demonstrate
its convergence computationally, we consider the fol-
lowing four test boundary value problems.

Example 1

We consider the following boundary-value problem:

W' =u+2?-2,
with the exact solution, u(x) = QSS;::((S) —x
This problem has been solved using our methods
with different values of n = 8,16,32,64 and the
maximum absolute errors in solutions are tabulated in
Table 1.

2

Table 1. Observed maximum absolute errors for

Example 1.

Second-Order | Fourth-Order | Sixth-Order
nla=5B=%|a=gB=;|a=1408=57
8 1.09 x 107* 5.22 x 1078 8.75 x 1071
16| 3.06 x 1079 2.31 x 107° 5.74 x 10713
32| 811x10°° 1.34 x 10719 2.30 x 10714
64| 2.09x10°° 8.42 x 10712 3.68 x 10714
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Table 2. Observed maximum absolute errors for Example 2.
Second-Order Fourth-Order
n a = i, B = % a = %, B = % Fourth-Order [13]
8 2.42 x 1073 2.64 x 107° 1.10 x 107°
16 6.80 x 107* 1.26 x 1077 1.09 x 1077
32 1.80 x 107 7.41 x 107° 7.51 x 107°
64 4.65 x 107° 4.65 x 10710 4.81 x 1071
128 1.18 x 1075 2.95 x 10711 3.03 x 1071
256 2.98 x 107 1.78 x 10712 1.85 x 10712
512 7.47 x 1077 4.35 x 10713 6.48 x 10713
1024 1.87x1077 4.60x10°13 7.64 x 10713
Sixth-Order
n a = i, B = % Seventh-Order [12]
8 8.02 x 107? 1.44 x 1077
16 5.01 x 10711 1.41 x 107°
32 1.16 x 10712 1.23 x 107!
64 2.55 x 10719 1.01 x 10713
Example 2 Example 4

We consider the following boundary-value problem:

v =u — dxe®,

u(0) = u(1l) =0,
with the exact solution, u(z) = (1 — x)e”.

We applied our methods to solve this problem
with n = 8,16, 32,64, 128,256,512,1024 and the com-
puted solutions are compared with the exact solution
at grid points. The maximum absolute errors at the
nodal points, max|u(x;) — u,|, are given to compare
with [12,13]. The observed maximum absolute errors
are tabulated in Table 2.

Example 3

We consider the following example in [12,14,15]:
22 =2u -z, u(2) = u(3) =0,
with the exact solution, u(z) = %‘

We applied our methods to solve this problem
for n = 8,16,32,64 and the computed solutions are
compared with the exact solution at grid points. The
observed maximum absolute errors are tabulated in
Table 3. In this table we compared our results with
the results given in [12,14,15]. This shows that our
results are more accurate.

We consider the following example in [16]:

with the exact solution, u(z) = (% — 1) sin z.

We applied our sixth-order method to solve this
problem for n = 8,16,32 and 64. The computed
solutions are compared with the exact solution at grid
points. The observed maximum absolute errors are
tabulated in Table 4. In this table, we compared our
results with the results obtained by the methods in [16]
and also with the results obtained by [18,19] which are
reported in [16]. This shows that our results are more
accurate.

CONCLUSION

The approximate solutions of second-order linear
boundary-value problems using a non-polynomial
spline, show that our methods are better in the sense
of accuracy and applicability. These have been verified
by the maximum absolute errors, max |e;|, given in the
tables.
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Table 3. Observed maximum absolute errors for Example 3.
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Second-Order Fourth-Order
n a=31,8=7; Second-Order [14] a=%,8=4% Fourth-Order [14]
8 3.30 x 1077 417 x 1077 9.21 x 107% 1.74 x 1077
16 9.25 x 107° 1.04 x 107° 4.11x 1077 1.10 x 10°®
32 2.45 x 10°° 2.61 x 10°° 2.29 x 1010 6.85 x 10~ 1°
Sixth-order
n | Fourth-Order [15] a=%,8=3 Seventh-order [12]
8 1.74 x 1077 1.78 x 107° 1.31 x 107°
16 1.09 x 107® 1.62 x 107" 1.56 x 10710
32 6.85 x 107 *° 7.15x 10712 1.53 x 10712
64 - 3.68 x 10717 1.33x107'*
Table 4. Observed maximum absolute errors for Example 4.
n | Sixth-Order | Ramadan [16] | Islam [18] | Al-Said [19]
7.35 x 1077 7.24 x 107° 237 x107° | 6.49x 107"
16 | 1.68 x 107" 1.16 x 10710 1.60 x 107°% | 1.70 x 107*
32 | 5.06x107" 1.82x 107" | 1.03x 107" | 4.15%x10°°
64 | 4.12x 107" 6.51x107'* | 6.60x10°° | 1.82x 1077
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