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Eigensolution for Adjacency
and Laplacian Matrices of

Large Repetitive Structural Models

A. Kaveh1;�, M. Nouri2 and N. Taghizadieh2

Abstract. Many structural models such as grids, barrel vaults, trusses and frames with repetitive
units, known as regular structures, have structural matrices in the form of M = F (B;A;BT ). In this
paper, a simple and e�cient method is presented for calculating the eigenvalues of the adjacency and
Laplacian matrices of regular structures. These eigenvalues can be used in studying the combinatorial
properties of these structures. Examples are included to show the accuracy of the presented approach.
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INTRODUCTION

In order to calculate the eigenvalues of a matrix, the
characteristic equation of the matrix should be formed
and the corresponding equation of order n should be
solved. The solution of this equation for a large n is
not only di�cult but is also often accompanied by some
errors.

In the past decade, canonical forms have been
developed and used for the eigensolution of bi-lateral
symmetric structures [1,2]. Other canonical forms
consist of block tri-diagonal and block penta-digonal
matrices arising from more general symmetries and
regular structures [3,4]. For tri-diagonal cases, the
corresponding matrices are often in the form M =
F (B;A;B), and the eigensolution of these prob-
lems can be simpli�ed using special decomposition
methods [5,6]. An excellent review of symmetry
can be found in the work of Kangwai et al. [7].
Regular structures are those obtained by the graph
products [8]. De�nitions and concepts of product
graphs may be found in the work of Imrich and
Klavzar [9].

The adjacency, Laplacian matrices and the sti�-
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ness and mass matrices of cyclic repetitive structures
also have block tri-diagonal forms with additional
blocks at the far ends of their cross diagonal. The
presences of these blocks, simplify the process of �nding
their eigenvalues [10,11] by decomposition approaches.
For general cases, like repetitive structures or those
obtained by di�erent graph products, these matrices
have the form M = F (B;A;BT ).

One method for the eigensolution of this canon-
ical form is adding some members to matrix M to
convert BT to B in order to obtain the form M =
F (B;A;B) [6] for easy approximate decomposition
of M . There are also classic methods for solving
M = F (B;A;BT ) based on LU decomposition, pre-
conditioning, divide and counter algorithms and other
approximate methods [12-15].

In this paper, considering the properties of the
matrices of the form M = F (B;A;BT ), a special
method is developed to simplify the calculations. This
can be used in combinatorial optimization problems
such as in the ordering and partitioning of graph mod-
els using a Fiedler vector [7,16]; it can also be employed
in stability and dynamic analyses of repetitive space
structures and �nite element models.

BASIC DEFINITIONS OF GRAPH THEORY

De�nitions from Graph Theory

A graph, S(N;E), consists of a set of elements, N(S),
called nodes and a set of elements, E(S), called
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members (edges), together with a relation of incidence
which associates two distinct nodes with each mem-
ber, known as its ends. Two nodes of a graph are
called adjacent if these nodes are the end nodes of a
member. A member is called incident with a node
if it is an end node of the member [17]. The degree
of a node is the number of edges incident with the
node.

Matrices Associated with a Graph

Let S be a graph with N nodes. The adjacency matrix
A is an N�N matrix in which the entry in row I and
column j is 1, if node ni is adjacent to nj , and is zero
otherwise. This matrix is symmetric and the row sums
of A are the degrees of nodes of S.

The Laplacian matrix, L, of graph S is de�ned as:

L = D �A; (1)

where D is known as the degree matrix; it is also a
diagonal matrix in which the ith diagonal entry is equal
to the degree of node i.

The adjacency and Laplacian matrices are im-
portant matrices in the theory of graphs and their
eigenvalues and eigenvectors form the foundation of a
branch of mathematics known as the algebraic graph
theory [18-20].

BLOCK TRI-DIAGONAL MATRICES IN
STRUCTURAL MECHANICS

Many structural matrices are highly sparse and, with
an appropriate nodal ordering, one can transform these
matrices into banded forms. These matrices can then
be partitioned to produce block tri-diagonal matri-
ces [14]. The procedure is schematically illustrated in
Figure 1.

In many regular and symmetric structures and
especially in repetitive structures, by appropriate par-
titioning and nodal numbering, blocks can be produced
as shown in Figure 2.

EIGENSOLUTION OF GENERAL BLOCK
TRI-DIAGONAL MATRICES

Consider the following block diagonal canonical form:

M(n�m)(n�m) = F (B(m�m); A(m�m); BT(m�m)); (2)

where we have n blocks on the diagonal as shown in
Equation 3. We assume n to be a large number.

M =

2666666664
Am�m BTm�m
Bm�m Am�m BTm�m� � �

Bm�m Am�m BTm�m� � �
Bm�m

Am�m BTm�m
Bm�m Am�m

37777775
(n�m)(n�m)

: (3)

For calculating the eigenvalues ofM , this matrix should
be written in the following standard form:

M' = �'; (4)

and, in the developed form, we have:2666666664
A��I BT
B A��I BT

� � �
B A��I BT

� � �
B

A��I BT
B A��I

37777775 �
2666666664
'1
'2� � �
'i� � �
'n�1
'n

3777777775 = 0: (5)

Figure 1. The process of transforming a banded matrix into a block tri-diagonal matrix.
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Figure 2. Block triangular diagonal matrix of a repetitive
structure.

Expansion of the above matrix leads to:8>>>>>>>><>>>>>>>>:

� � �
� � �
B'i�2 + (A� �I)'i�1 +BT'i = 0 ! i� 1
B'i�1 + (A� �I)'i +BT'i+1 = 0 ! i
� � �
� � �

(6)

Using the above set of equations, we have the following:

From the (i� 1)th row of Equation 6, we consider:

'i�2 �= �'i�1;

and:

'i�1 �= �'i: (7)

And, from the ith row of this matrix, we de�ne:

'i�1 �= 
'i;

and:

'i �= �'i+1: (8)

The values of �, �, 
 and � can easily be found, and
since the matrix is considered to have a high dimension,
therefore, one can accept � �= 
 �= � �= �. Taking:

� �= 
 �= � �= � �= ei�; (9)

and considering Equations 8 and 9, we have:

'i�1 �= ei�'i;

and:

'i+1 �= e�i�'i: (10)

Substituting Equation 10 in the ith row of Equation 6
leads to:

ei�B'i + (A� �I)'i + e�i�BT'i = 0; (11)

(ei�B +A+ e�i�BT )'i = �'i: (12)

Equation 12 shows that the eigenvalues of matrix
M can be obtained from the eigenvalues of (ei�B +
A + e�i�BT ). Using e�i� = cos � � i sin � simpli�es
Equation 12 as:

eig(M) =
n[
j=1

eig(A+ cos(�) � (B +BT )

+ i � sin(�) � (B �BT ));

� =
j � �
n+ 1

: (13)

Employing the above relationship, the eigensolution of
large matrices becomes feasible using the properties of
its constituting small blocks.

ADJACENCY AND LAPLACIAN
MATRICES OF LARGE REPETITIVE
SYSTEMS

For tri-diagonal matrices whose cores are identical, the
corresponding adjacency matrices have the following
form:

A =

2666666664
Am�m BTm�m
Bm�m Am�m BTm�m� � �

Bm�m Am�m BTm�m� � �
Bm�m

Am�m BTm�m
Bm�m Am�m

37777775
(n�m)(n�m)

: (14)

However, the Laplacian matrix does not have this
pattern. This matrix and its eigenvalues are in the
following form, where the diagonal blocks are not
identical:
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L =

2666666664
Cm�m BTm�m
Bm�m Em�m BTm�m� � �

Bm�m Em�m BTm�m� � �
Bm�m

Em�m BTm�m
Bm�m Cm�m

37777775
(n�m)(n�m)

eig(L) =

2666666664
0
�2L
�3L� � �
�iL� � �
�nL

3777777775 : (15)

For this matrix, when the dimension of the matrix
increases, its eigenvalues approach to the eigenvalues
of the following matrix, M , with some di�erences:

M =

2666666664
Em�m BTm�m
Bm�m Em�m BTm�m� � �

Bm�m Em�m BTm�m� � �
Bm�m

Em�m BTm�m
Bm�m Em�m

37777775
(n�m)(n�m)

eig(M) =

2666666664
�1M
�2M
�3M� � �
�iM� � �
�nM

3777777775 ; (16)

i.e. when the dimension of the matrix increases,
the e�ect of the di�erence of Cm�m and Em�m in
eigenvalues of the Laplacian matrix can be neglected.
An approximate relation between the eigenvalues of the
L and the M matrices can be expressed as:

26666664
�1M
�2M
�3M� � �
�iM� � �

37777775 �=
26666664

�2L
�3L
�4L� � �

�(i+1)L� � �

37777775 : (17)

NUMERICAL EXAMPLES

Example 1

As the �rst example, we consider the adjacency and
Laplacian matrices of the graph model of a planar truss,
S, as shown in Figure 3.

The pattern of the adjacency matrix of S can be
shown as:

A(S) =

24A6�6 B6�6 06�6
BT6�6 A6�6 B6�6
06�6 BT6�6 A6�6

35
18�18

; (18)

in which the submatrices A and B are as follows:

A6�6 =

26666664
0 1 0 1 1 0
1 0 1 0 1 1
0 1 0 0 0 1
1 0 0 0 1 0
1 1 0 1 0 1
0 1 1 0 1 0

37777775 ;

B6�6 =

26666664
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 1 0 0 0 0
0 1 1 0 0 0
0 0 1 0 0 0

37777775 : (19)

The exact and approximate eigenvalues for the adja-
cency matrix of this graph are calculated and compared
in Figure 4. In this paper, Matlab is used for
the eigensolution of the matrices and the results are
referred to as exact solutions. Here, three blocks are
considered on the diagonal of the matrix. In all the
diagrams for comparison, the x-axis is (i) and the y-
axis contains eig (i).

It should be noted that the above matrix can
also be partitioned, as follows, with six blocks on the

Figure 3. A graph model S of a planar truss.
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Figure 4. Comparison of the eigenvalues of the adjacency
matrix of S.

diagonal of the matrix:

A(S) =

2664A3�3 B3�3
BT3�3 A3�3 B3�3� � � B3�3

BT3�3 A3�3

3775
18�18

;

and:

A3�3 =

240 1 0
1 0 1
0 1 0

35 ; B3�3 =

241 1 0
0 1 1
0 0 1

35 : (20)

For this case, the eigenvalues are obtained and com-
pared in Figure 5.

Now we study the eigenvalues of the Laplacian
matrix of graph S:

L(S) =

2664C3�3 B3�3
BT3�3 E3�3 B3�3� � � B3�3

BT3�3 C3�3

3775
18�18

;

Figure 5. Comparison of the eigenvalues of the adjacency
matrix using the present method with six blocks on the
diagonal and the exact approach.

E3�3 =

24 4 �1 0
�1 6 �1
0 �1 4

35 ;
B3�3 =

24�1 �1 0
0 �1 �1
0 0 �1

35 ;
C3�3 =

24 3 �1 0
�1 4 �1
0 �1 2

35 : (21)

It should be noted that for the Laplacian matrix, �rst
and end blocks of the main diagonal C are di�erent
from other middle blocks, however, for large Laplacian
matrices, considering C = E leads to accurate results
and the ith eigenvalue shifts one, i.e. the ith eigenval-
ues of the main Laplacian matrix is equal to the (i�1)th
approximated one, when C = E. A comparison of the
exact and approximate values is illustrated in Figure 6.

Example 2

Now, consider a graph with more nodes and members
than that of the previous example, as shown in Fig-
ure 7.

The Laplacian and adjacency matrices of S can
be written as:

A(S) =

2664A3�3 B3�3
BT3�3 A3�3 B3�3� � � B3�3

BT3�3 A3�3

3775
48�48

;

and:

A3�3 =

240 1 0
1 0 1
0 1 0

35 ; B3�3 =

241 1 0
0 1 1
0 0 1

35 ; (22)

Figure 6. Comparison of the eigenvalues of the Laplacian
matrix using the present method with six blocks on the
diagonal and the exact approach.
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Figure 7. A graph model, S.

L(S) =

2664C3�3 B3�3
BT3�3 E3�3 B3�3� � � B3�3

BT3�3 C3�3

3775
48�48

;

E3�3 =

24 4 �1 0
�1 6 �1
0 �1 4

35 ;
B3�3 =

24�1 �1 0
0 �1 �1
0 0 �1

35 ;
C3�3 =

24 3 �1 0
�1 4 �1
0 �1 2

35 : (23)

The eigenvalues for adjacency and Laplacian matrices
are calculated and compared in Figures 8 and 9,
respectively.

Example 3

Consider a space truss, S, as shown in Figure 10. The
pattern of the adjacency matrix of S is depicted in
Figure 11.

For this example, the number of repeated patterns
or cores of the truss is n = 19, and the matrices A and
B are as follows:

Figure 8. Comparison of the eigenvalues of the adjacency
matrix using the present method with 16 blocks on the
diagonal and the exact approach.

A =26666666666666666666666666666664

0 1 1
1 0 1 1

1 0 1 1 1 1
1 0 1 1

1 0 1 1 1 1
1 0 1 1

1 0 1 1 1 1
1 0 1 1

1 0 1 1 1
1 0 1 1

1 1 1 1 0 1
1 1 0 1
1 1 1 1 0 1

1 1 0 1
1 1 1 1 0 1

1 1 0 1
1 1 1 1 0 1

1 1 0

37777777777777777777777777777775
18�18

;

B =

26666666666666666666666666666664

0
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1

1
1

1
1

1
1

1
1

37777777777777777777777777777775
18�18

: (24)

It should be mentioned that B is in general form and
is not symmetric and the corresponding tri-diagonal
matrix is in the form A(S) = F (B;A;BT ). Thus, we
can use the proposed method for the eigensolution of
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Figure 9. Comparison of the eigenvalues of the Laplacian
matrix using the present method with 16 blocks on the
diagonal and the exact approach.

Figure 10. The model of a space repetitive truss, S.

this truss model. Then:

eig(A(S)) =
18[
j=1

eig(A+ cos(�) � (B +BT )

+ i � sin(�) � (B �BT ));

� =
j � �
20

;

and:

j = 1; 2; 3; � � � ; 19: (25)

Figure 11. Pattern of the adjacency matrix for S.

Figure 12. Comparison of eigenvalues of adjacency
matrix of presented truss model.

The exact and approximately calculated eigenvalues of
the adjacency matrix are compared in Figure 12 and
Table 1.

For comparative study, the �rst �ve and the last
�ve eigenvalues of the adjacency matrix of the truss
model are compared in Table 1.

It can be seen from Table 1 that the results of
the present method for eigensolution of the adjacency

Table 1. Comparison of the eigenvalues of the adjacency matrix of Example 3.

First Five Eigenvalues Last Five Eigenvalues

Exact Method Present Method Exact Method Present Method

-5.03963 -5.0412 6.410592 6.411105

-4.96772 -4.97384 6.439727 6.446794

-4.84988 -4.86301 6.658422 6.662591

-4.68908 -4.71087 6.818087 6.820003

-4.54520 -4.54703 6.915284 6.915773
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matrix are quite close to the eigenvalues of the exact
method.

Now, consider the Laplacian matrix of space truss
S of Figure 10. The submatrices A and B for the
Laplacian matrix of this example are as follows:

E =

2666666666666666666666666666664

2 �1 �1
�1 6 �1 �1
�1 8 �1 �1 �1 �1
�1 6 �1 �1
�1 8 �1 �1 �1 �1
�1 6 �1 �1
�1 8 �1 �1 �1 �1
�1 6 �1 �1
�1 7 �1 �1 �1
�1 2 �1 �1

�1 �1 �1 �1 7 �1
�1 �1 6 �1
�1 �1 �1 �1 8 �1

�1 �1 6 �1
�1 �1 �1 �1 8 �1

�1 �1 6 �1
�1 �1 �1 �1 8 �1

�1 �1 6

3777777777777777777777777777775

;

.

B = �

26666666666666666666666666666664

0
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1

1
1

1
1

1
1

1
1

37777777777777777777777777777775
18�18

(26)

Here, the number of the repeated substructure is
n = 19 and the eigenvalues of the Laplacian ma-
trix for this example, for the case C = E, are
compared to the results of the present method in
Figure 13.

Figure 13. Comparison of the eigenvalues of the
Laplacian matrix of S.

For this case, the �rst �ve and the last �ve
eigenvalues of the Laplacian matrix of S are compared
in Table 2.

CONCLUDING REMARKS

In this paper, a simple method is presented for calcu-
lating the eigenvalues of large adjacency and Laplacian
matrices of structural models having the canonical
form:

M = F (B;A;BT ):

Examples studied here show that the results obtained
by the present method are comparable to those of the
exact solution. The calculated eigenvalues are very
close to the exact values, and can e�ciently be used
for solution of the models whose structural matrices
are or can be transformed into the block tri-diagonal
form, M = F (B;A;BT ).

The present method can be used in combinatorial
optimization problems such as the ordering and par-
titioning of structural models. This method can also
be extended to the eigensolutions corresponding to the
calculation of the eigen-frequencies and eigen-modes
of the repetitive space structures or �nite element

Table 2. Comparison of the eigenvalues of the Laplacian matrix of S.

First Five Eigenvalues Last Five Eigenvalues

Exact Method Approximated Laplacian C = E Exact Method Approximated Laplacian C = E

Exact Method Present Method Exact Method Present Method

0.00000 0.00000 0.00000 12.17195 11.99790 12.01787

0.03081 0.02919 0.02973 12.36177 12.21275 12.22654

0.12536 0.11518 0.11342 12.50104 12.38541 12.39362

0.17899 0.20413 0.20374 12.58609 12.51176 12.51556

0.20636 0.25293 0.24926 12.58609 12.58881 12.58978
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models. The method can also be extended to �nding
the buckling load of the structures.
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