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Passive Devices for Wave Induced Vibration
Control in O�shore Steel Jacket Platforms

A.A. Golafshani1;� and A. Gholizad2

Abstract. Performances of tuned mass dampers and friction dampers to mitigate the wave induced
vibrations in jacket type o�shore platforms have been compared in this study. Due to the random nature
of ocean waves, a full stochastic analysis method has been used to evaluate the response of the structures
equipped with these devices. A stochastic linearization technique has been used to take the nonlinear
behavior of friction dampers into account. The developed mathematical formulation has been applied to
evaluate the response of realistic models, and to �nd out the optimal values for the adjustable parameters
of friction dampers. The results have been veri�ed in comparison with time domain nonlinear analyses
results. Also, a computer utility has been provided in FORTRAN to perform the spectral fatigue analysis
of platforms and together with a Genetic Algorithm utility, it has been used to �nd out the optimal
parameters of a tuned mass damper to dissipate the wave induced vibrations of the platforms. Although
the e�ciency of both dissipative systems increases for more 
exible platforms due to the dominancy of the
dynamic response, the functionality of TMD devices is more dependent on the dynamic characteristics of
the platform; friction dampers seem to be more e�cient for �xed steel jacket platforms.

Keywords: Steel jacket platforms; Power spectral analysis; Friction damper; Stochastic linearization;
Tuned mass damper; Genetic algorithm.

INTRODUCTION

Novel types of vibration control mechanisms have been
widely studied and some have been implemented to
improve the dynamic behavior of structures. However,
comprehensive review of these studies, reported by
Spencer and Nagarajaiah [1], shows that most of
this research has focused on the protection of tall
buildings and long span bridges against seismic or wind
excitations. Only a small part of this research is related
to �xed o�shore platforms.

The �rst group of studies on this topic was
published by Abdel-Rohman [2], who investigated the
e�ciency of some active and passive control mecha-
nisms to moderate the dynamic response of a steel
jacket platform due to wave-induced forces. Terro et
al. [3] employed an active tuned mass damper with
velocity feedback to minimize deck displacements in a
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sample steel jacket platform. Suhardjo and Kareem [4]
tried some active control mechanisms, such as active
tendons. Subsequently, Li et al. [5] made some
improvements in their methodology. Zribi et al. [6]
used the Lyapanov theory and a state feedback robust
control to design an active tuned mass damper. Hui
Ma et al. [7] considered the AMD mechanism and
designed a control law with a feedforward and feedback
optimal control algorithm to reduce the displacement
and velocity responses of jacket type o�shore platforms.

Fatigue damage is the most important criteria for
joint design in o�shore platforms located in areas with
relatively high ratios of operational sea-states to maxi-
mum design environmental events. Therefore, utilizing
control mechanisms with the aim of increasing fatigue
life may be more preferable to mere deck displacement
and acceleration control. Moreover, considering the
excessive cost of underwater fabrication and welding,
using a control mechanism to improve the fatigue life of
existing o�shore platforms, which are overloaded with
extra piping and equipment, would be an attractive
idea.

Since the control mechanism used for fatigue dam-
age mitigation will interact with the main structure
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during a considerable part of the platform life span,
implementation of an active control technique with a
permanent power source would not be practical in such
cases; utilizing some kind of passive or semi-active
control mechanisms that can be installed on existing
platforms is often preferable.

Moreover, considering the excessive cost of un-
derwater fabrication and welding, which obstructs
practical techniques for the rehabilitation of o�shore
platforms, the use of passive control mechanisms would
be an attractive idea to improve the dynamic behavior
of existing o�shore platforms.

In a passive control approach, Hsien Hua Lee [8]
utilized viscoelastic dampers as bracings to improve
the dynamic performance of an o�shore platform,
and Patil and Jangid [9] compared the e�ciency of
viscoelastic, viscous and friction dampers as energy
dissipating devices to moderate the dynamic response
of steel jacket platforms. They have considered an
additional sti�ness and damping due to the utilization
of viscoelastic and viscous dampers, but the system of
inclusion of the nonlinear behavior of friction dampers
in spectral analyses has not been clari�ed in their
published article.

A TMD was ordered in 2005 to be designed for
the seismic rehabilitation of the Sakhalin-I drilling
platform and it is the only reported o�shore application
of TMD devices.

Power spectral analysis is one of the most conven-
tional methods for the analysis of o�shore structures
under random wave excitation. It yields more realistic
and reliable results, especially for long-term fatigue
analysis and is therefore recommended in most o�-
shore engineering standards. The linear time invariant
response of the structure and zero mean stationary
Gaussian random excitation are principal assumptions
in this approach; hence, the practice of this method
for nonlinear structures needs proper approximating
techniques, such as the Fokker-Plank method and
stochastic linearization [10]. The theoretical basis
for the last one was �rstly introduced by Booton,
Kazakov [10] and Caughey [11] in the 1950s and has
found extensive applications in the stochastic analysis
of nonlinear dynamic systems. An extensive review of
the studies on this topic [12] and an introduction to
some of its practical applications have been reported
by Socha [13]. The stochastic linearization technique
exercised in this study relies on the minimization of the
mean square error which was �rst introduced by Atalik
and Utku [14].

SCOPE OF THE CURRENT STUDY

The objective of this paper is to evaluate the perfor-
mance of �xed o�shore platforms, utilized with some
passive devices and excited by random wave induced

forces. Full stochastic spectral analysis has been used
for this purpose and a stochastic linearization method
has been employed to take the nonlinear behavior of
friction dampers into consideration. Time domain non-
linear analyses have been performed, as well, to verify
the results of this approximate method. An arti�cial
record of sea wave time history has been generated
in accordance with the considered PSD function, and
the structural model has been analyzed under resultant
lateral loading using Open-Sees software, which facili-
tates the modeling of nonlinear and hysteretic element
behavior.

TMD e�ciency for the dissipation of wave in-
duced vibrations has been examined using a simpli�ed
lumped mass model of platforms. Also, a computer
utility has been provided in FORTRAN to perform
a more precise power spectral fatigue analysis of
platforms and has been used together with a genetic
algorithm utility to �nd out the optimal parameters of
tuned mass dampers. Topside displacement has been
considered as an objective function for this minimiza-
tion problem and TMD tuning and damping ratios are
the adjustable parameters of this device, which have
been considered as optimization parameters. Explicit
inclusion of the dynamic characteristics of TMD ne-
cessitates the consideration of non-classical damping
in the structural analysis. The prepared program has
been validated in comparison with existing reliable
software.

This study has been done with the aim of ap-
preciation passive vibration control devices to mitigate
the accumulative fatigue damage in steel jacket type
platforms.

FRICTION DAMPERS

Friction dampers are passive control devices with an
e�ective performance in energy dissipation including
relatively low cost and ease of installation. The
displacement-dependency of the energy dissipation rate
in friction dampers is a major di�erence between these
and other types of damping device. Their resultant
damping force is independent of the velocity response
of the structure and the frequency content of excita-
tions and this makes them suitable for low frequency
excitations, such as sea wave loading. Highly nonlinear
and force limited action is the dominant characteristic
of these devices. Diversiform friction dampers with
various con�gurations have been invented and utilized
for vibration control applications with a few practical
applications against seismic excitations.

A novel friction damper device, which can be eas-
ily installed on existing structures, has been innovated
by Mualla and Belev [15]. They have presented an
analytical description of its behavior that follows an
idealized hysteretic loop as shown in Figure 1.
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Figure 1. Con�guration of friction damper innovated by
Mualla and Belev [15].

Hysteretic Devices Under Random Excitations

The governing equations of motion for the structure
utilized with friction dampers can be derived from the
schematic diagram as shown in Figure 2, and can be
written as Equation 1 in which [M ], [C] and [K] are the
mass, damping and sti�ness matrices of the primary
structure, respectively:

[M ]f�xg+ [C]f _xg+ [K]fxg+ fgg = ffg; (1)

[C] =
2�i
!i

[K]; i = 1; � � � ; n; (2)

fxg = fxn(t); xn�1(t); � � � ; x1(t)gT ; (3)

fgg = fgn(t); gn�1(t); � � � ; g1(t)gT ;

ffg = ffn(t); fn�1(t); � � � ; f1(t)gT : (4)

where �i and !i are the damping ratio and the nat-
ural frequency of the ith vibration mode; gn(t), is
the hysteretic restoring force resulted from the nth
friction damper as shown in Figure 2; and fn(t) is the
random environmental excitation on the nth degree of
freedom.

One needs to introduce some additional appropri-
ate variables fzg as shown in Figure 2 to express the
restoring forces, gn(t), as an explicit and non-hysteretic
function of the new set of variables:

gn(t) = kfn[zn(t)� xn�1(t)]: (5)

The sliding phase in the friction damper deformation
begins when zn(t) � xn�1(t) reaches �yn and, at this
stage _zn(t) � _xn�1(t) changes to zero from its value
of _xn(t) � _xn�1(t) in the sticking phase. The sliding
phase terminates when _xn(t)� _xn�1(t) reverses its sign
and the value of the restoring force moves back from
� kfnyn toward zero.

A classical way for an approximate solution of
the vibration in a randomly excited nonlinear system
is the method of stochastic linearization, in which the
nonlinear equation of motion is replaced by an equiva-
lent linear one. The di�erences between the nonlinear
equations and their linear equivalents are zero mean
stochastic processes, which have been considered as
error functions. The variances of these error functions
should be minimized in the linearization technique that
has been used in this article. The following linear forms

Figure 2. Force-deformation diagram for friction damper after Mualla and Belev [15].
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have been introduced in this problem:

_zn(t)� _xn�1(t) = an(zn(t)� xn�1(t))

+ bn( _xn(t)� _xn�1(t))

+ cn(xn(t)� xn�1(t)) + dn; (6)

gn(t) = kfn(zn(t)� xn�1(t))

= pn(zn(t)� xn�1(t))

+ qn( _xn(t)� _xn�1(t))

+ rn(xn(t)� xn�1(t)) + sn: (7)

With the assumption of fx(t)g and fz(t)g as jointly
zero mean Gaussian processes, applying the lineariza-
tion technique [14] will result in:

an = E
�
@( _zn(t)� _xn�1(t))
@(zn(t)� xn�1(t))

�
= �2

Z 1
0

�p _xn(t)� _xn�1(t);zn(t)�xn�1(t)(�; yn)d�;
(8)

bn = E
�
@( _zn(t)� _xn�1(t))
@( _xn(t)� _xn�1(t))

�
=1�2

Z 1
yn

Z 1
0
p _xn(t)� _xn�1(t);zn(t)�xn�1(t)(�; �)d�d�;

(9)

cn = E
�
@( _zn(t)� _xn�1(t))
@(xn(t)� xn�1(t))

�
= 0; (10)

dn = E( _zn(t)� _xn�1(t)) = 0: (11)

Using a jointly Gaussian probability density function
for p _xn(t)� _xn�1(t);zn(t)�xn�1(t) gives the following ex-
pressions for the coe�cients of the aforementioned
linearized equations:

an = �2
� _xn� _xn�1

�zn�xn�1

ân; (12)

ân =
Yn� _xn(t)� _xn�1(t);zn(t)�xn�1(t)p

2�
exp

��Y 2
n

2

�
� �

�
Yn� _xn(t)� _xn�1(t);zn(t)�xn�1(t)

Rn

�
+
Rn
2�

exp
��Y 2

n
2R2

n

�
; (13)

Yn =
yn

�zn�xn�1

;

Rn =
q

1� �2
_xn(t)� _xn�1(t);zn(t)�xn�1(t);

bn = 1� 2
Z 1
yn=�zn�xn�1

e�r2=2p
2�

�dr;

� = �

0@ r� _xn(t)� _xn�1(t);zn(t)�xn�1(t)q
1� �2

_xn(t)� _xn�1(t);zn(t)�xn�1(t)

1A : (14)

Doing the same for pn, qn, rn and sn leads to:

pn = kfnbn; (15)

qn = �2kfn
�zn�xn�1

� _xn� _xn�1

q̂n; (16)

q̂n =
�Ynp

2�
�
��Yn
Rn

�
+
Rn
2�

exp
��Y 2

n
2R2

n

�
; (17)

rn = 0; (18)

sn = 0: (19)

Since only the steady state response is of interest to us
and in order to escape from time domain methods, one
can use a state-space representation of this system, as
given by:

_Y +AY = Q: (20)

The state vector, Y , and state matrix, A, may be
described by:

Y =

8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

zn � xn�1
...

z2 � x1
z1

xn � xn�1
...

x2 � x1
x1

_xn � _xn�1
...

_x2 � _x1
_x1

9>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>;

;

Q =

8<: f0g
f0g

[M ]�1
n�nffgn�1

9=; ;
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A =

24 �[a]n�n [0]n�n
[0]n�n [0]n�n

[M ]�1
n�n[p]n�n [M ]�1

n�n[K]n�n

�[b]n�n�[I]n�n
[M ]�1([C]n�n + [q]n�n)

35 : (21)

Since the wave excitations and the resultant responses
of o�shore structures can be modeled by zero mean
Gaussian processes, the second moment autocorrela-
tion and covariance functions give a complete descrip-
tion of such stochastic processes. Therefore, these
parameters are required to be found for the response
of the structure.

Right Multiplying the state space equation of
motion by Y T and adding the resultant equation with
its own transpose leads to a new equation. Taking the
expected value of both sides of this equation gives the
state space covariance equation:

d
dt
E(Y Y T ) +AE(Y Y T ) + E(Y Y T )AT

= E(QY T ) + E(Y QT ): (22)

The �rst term of this equation refers to the non-
stationary part of the response, which can be neglected,
considering the stationary part of the response only.
Trying to simplify this equation, one can substitute the
right hand side of Equation 22:

E[Q(t)Y T (t)]=E[Q(t)Y T (0)]+
Z t

0
E[Q(t)QT (�)]d�

�A
Z t

0
E[Q(t)Y T (�)]d�: (23)

Since the response at each time is not a�ected by
excitations which will occur at the coming times, then
Y (0) is independent of Q(t) and the �rst and last terms
of the aforementioned equation can be eliminated as
follows:

E[Q(t)Y T (t)] =
Z 0

t
E[Q(t)QT (t� s)]ds

=
Z t

0
RQQ(s)ds; (24)

where RQQ(s) is the autocorrelation function of the
excitation with a power spectral density function of
SQQ(!):

RQQ(s) =
Z +1

�1
SQQ(!)ei!sd!: (25)

The same result can be derived similarly for
E[Y (t)QT (t)] and Equation 26 can be rewritten as:

AE(Y Y T ) + E(Y Y T )AT

= 2
Z +1

0

Z +1

�1
SQQ(!)ei!sd!ds: (26)

E(Y Y T ) is a symmetric matrix which contains all vari-
ances and the covariance of state variables. If friction
dampers are utilized in nf stories, N = 2�n+nf state
variables will be required to formulate the problem
associated with the stochastic vibration of such a
system. The above presented equation is symmetric
on both sides, so a set of N(N + 1)=2 simultaneous
nonlinear scalar algebraic equations are available that
are coupled with 3�nf nonlinear equations consequent
on Equations 11, 13 and 15.

n equations, corresponding to components (nf +
i; nf + n + i), i = 1; � � � ; n of Equation 26, lead to
E((xi � xi�1)( _xi � _xi�1)) = 0, i = 1; � � � ; n which is
evident for any stationary process as (xi�xi�1). Also,
components (i; i) i = 1; � � � ; nf yield:

aiE((zi�zi�1)2)+biE((zi�zi�1)( _xi� _xi�1))=0;

i = 1; � � � ; n: (27)

Substitution of these equations with Equation 12 re-
sults in:

2âi � bi�zi�zi�1; _xi� _xi�1 = 0; i = 1; � � � ; n: (28)

This equation may be solved together with Equa-
tions 13 and 14 to give �zn�zn�1; _xn� _xn�1 , ân, bn and
q̂n as functions of yn=�zn�xn�1 which have been shown
in Figure 3.

These simpli�cations facilitate the solution of the
main problem for every yn=�zn�xn�1 . Although this
set of scalar equations can be solved with numerical
methods, its complexity quickly diminishes when the
friction devices are to be installed at a few stories.

WAVE FORCES MODELING AND TIME
DOMAIN ANALYSES

Knowing the water particle velocity and acceleration
in the vector notation, the wave induced forces on a
cylindrical member can be calculated by the Morrison
equation. The linearized form of the Morrison equation
is [16]:

p(t) = �CmV _Un(t) +
1
2
�CdA�u

r
8
�
Un(t); (29)

where p(t) is wave force per unit length of the mem-
ber; Cd and Cm are drag and inertia coe�cients,
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Figure 3. �zn�zn�1; _xn; _xn�1 , â, bn and q̂ as functions of yn=�zn�xn�1 .

respectively; V and A are the displaced volume of the
cylinder and the projected area normal to the member
axis, both per unit length of the member; � is sea
water density; Un(t) refers to the velocity of the 
uid
normal to the structural member which can be derived
according to relevant wave theories; and �u is the
standard deviation of the velocity.

Hf�(!) is de�ned as the transfer function from
wave height to the resultant force on the unit length of a
cylindrical member. Considering wave height as a zero
mean stationary random process with power spectral
density function S�(!), the PSD function of the hot
spot stress, Sf (!), can be obtained as:

Sf (!) = jHf�(!)j2 S�(!): (30)

The most popular wave spectrum that is especially
suited for open sea areas is well known as the Pierson-
Moskowitz wave spectrum [16] and is used in this study
as:

S�(!) =
124:37H2

s
T 4
z

!�5 exp
��497:5

T 4
z

!�4
�
; (31)

in which Hs is signi�cant wave height and Tz is
the wave zero up crossing period. To validate the

results of the stochastic linearization method, time
domain nonlinear analyses have been performed using
arti�cially generated sea waves recorded in accordance
with the considered PSD function. The following
equation is the basis for generation of the so-called
arti�cial random record [17].

�(x; t) =
NX
n=1

q
4S��(!n)�! cos(knx� !nt+ �n):

(32)

�n is the random phase angle from the interval between
0 and 2�. An original PSD function, arti�cially
generated record and regenerated PSD function are
shown in Figure 4.

The nonlinear behavior of a friction damper has
been modeled in OpenSees software. Analysis results
under cyclic loading have been compared with the
results reported by Mualla et al. [15] to validate the
OpenSees model. The results which are available from
Figure 5, denote an acceptable conformity.

NUMERICAL RESULTS

In the current study, the usage of friction devices has
been examined to moderate the dynamic response of
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Figure 4. a) Original and regenerated PSDF b)
Arti�cially generated wave record.

Figure 5. a) OpenSeas model time domain analysis
result; b) Analysis result after Mualla and Belev [15].

three realistic jacket type platforms shown in Figure 6.
The �rst one is the North Rankin \B" platform, which
has been designed to be located at a 125 meter depth
of water in Western Australia. The second one is
the 95 meter high \Foroozan" six leg platform, which
has been located in the Persian Gulf. The ponderous
topsides of these two platforms have been installed with
a 
oat-over technique, which requires the omission of
bracings at sea water level in one direction. This causes
relatively high 
exibility for the upper elevation of the
platform in that direction. Therefore, the auxiliary
friction device has been utilized in this position for
these two platforms. The last one is a four leg,
K braced jacket type platform at a water depth of
68 meters whose structural characteristics have been
taken from Dalane [18]. All existing K braces have
been utilized with friction dampers to evaluate their
e�ciency on this platform.

The structural model of the platforms has been
simpli�ed as a multi-degree of freedom system. An
adequate number of modes have been considered such
that a satisfactory value of the accumulative mass
participation factor of the main structures vibrations
is included. The lumped mass values and structural
sti�ness, as shown in Table 1, have been determined
in a manner to provide the same natural period and
kinetic energy for each intended mode of vibration.

The numerical solution of nonlinear equations
corresponding to these systems and consequent on

Figure 6. Sample steel jacket platforms, dynamic mode
shapes and simpli�ed MDF system.
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Table 1. Sample platforms dynamic characteristics.

Platforms
NRB FRZ Dalane

Period (Sec.) 4.8 2.7 1.5

K1 (MN/m) 400 335 58

K2 (MN/m) 430 365 50

K3 (MN/m) 39 32 53

m1 (Ton) 9000 1450 1000

m2 (Ton) 11000 2050 1200

m3 (Ton) 31000 6100 3100

Equation 26 results in six sets of solution. Only one
of these solutions leads to real and positive values for
probabilistic variables of this problem according to all
values of y3=�z3�x2 . The results related to this solution
are shown in Figure 7, which shows the variance of
FRZ topside displacement according to di�erent values
for the adjustable parameters of the hysteretic device;
also the variance of topside velocity changes in a
similar manner. The variance of topside displacement
is an important value, especially in the power spectral
analysis of o�shore platforms, because of its direct
correlation with accumulative fatigue damage.

The concavity of these surfaces implies optimal
values for adjustable parameters of the friction damper.
These optimal values are clear in the following dia-
grams and are de�nitely dependent on the dynamic
characteristics of the primary structure and also on
the intensity of environmental excitations. An optimal
value of Y3 = 0:85 � �Z3�X2 for the sliding initiation
de
ection of the auxiliary system is inferred in Figure 8
for FRZ and the optimal value of Y3 = 0:9 � �Z3�X2

Figure 7. Topside displacement variance for di�erent
regulations of friction damper.

Figure 8. Topside displacement variance for di�erent
tuning of friction damper.

for NBR. The same optimal values are resulted for the
response velocity control according to Figure 9. Since
�Z3�X2 is dependent on the intensity of excitations,
this optimal value for Y3 will increase for more intense
sea states. The allocation of higher values for the
sliding de
ection of the friction damper leads to more
exertion of auxiliary bracings. It can be understood
from Figure 10 that they will act as ordinary bracings
for Y3 > 3:0 � �Z3�X2 . Also, the optimum sti�ness
of the auxiliary system in its sticking phase may be
drawn from Figure 11, as Kf3 = 3:85 �K3 for FRZ
and Kf3 = 4:2 � K3 for NRB. The e�ciency of the
hysteretic system is more sensitive to the tuning of the
sliding initiation de
ection rather than to the bracing
sti�ness, and deviation from its optimal value may lead
to the ine�ectiveness of the friction damper.

The utilization of an optimally tuned friction
damper on FRZ and NRB platforms resulted in a
36% and 48% reduction in the variance of the topside
displacement, respectively, also a 40% reduction in the
variance of its velocity. This represents the e�ective-
ness of this device to moderate the dynamic response
of o�shore platforms subject to wave induced excita-
tions. The utilization of auxiliary devices on the third
platform does not exhibit a remarkable performance
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Figure 9. Topside velocity variance for di�erent tuning of
friction damper.

Figure 10. Auxiliary bracing de
ection variance for
di�erent tuning of the friction damper.

for vibration control and only a 16% reduction in the
topside displacement variance has been resulted in the
best regulation of the friction devices. It is mostly
due to the rigidity of this platform and its quasi-static
response.

Sample platform models have also been analyzed
in the time domain considering di�erent adjustments
for friction dampers. Comparative results, which

Figure 11. Topside displacement variance for di�erent
sti�ness in sticking phase.

Figure 12. Time domain analysis result for the platform
utilized with friction damper

have been summarized for the Foroozan platform in
Figure 12, comply with the results in Figure 8.

TMD Equipped Platform Under Wave
Excitations

TMDs are simple passive control devices which have
been installed on a large number of civil structures
some of which have been listed by Holmes [19]. TMDs
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have been found to be reliable and e�ective in reducing
the vibration response of excited structures. They
exude a good performance to control a single mode of
structural vibration that can be demonstrated with a
single degree of freedom system. Therefore, the deriva-
tion of closed form expressions for optimum tuning and
damping ratios that are available in literature, has been
based on the equation of motion of an SDOF system
equipped with a TMD as shown in Figure 13.�

1 + � �
� �

��
�x
�y

�
+
�
2�x!x 0

0 2�y!y

��
_x
_y

�
+
�
2�x!x 0

0 2�y!y

��
x
y

�
=
�
fx=mx

0

�
; (33)

Figure 13. Steel jacket platform utilized with a TMD
and its equivalent SDOF system.

� =
my

mx
; �x =

cx
2mx!x

; �y =
cy

2my!y
;

!x =
r
kx
mx

; !y =

s
ky
my

;

where � is the mass ratio between TMD and the
SDOF system; �x and !x are the damping ratio and
the natural frequency for the SDOF, respectively; and
�y and !y are the same for the auxiliary control
mechanism.

The e�ciency of TMDs in the reduction of vi-
bration amplitude was �rst investigated by Den Har-
tog [20]. Warburton [21] completed his studies to
�nd the optimum parameters for TMDs attached to
undamped SDOF systems subjected to various types of
excitation, such as harmonic force, harmonic support
motion or white noise random excitations. In all
cases, the object is to bring the resonant peak of the
amplitude down to its lowest possible value, which
leads to optimum parameters. In the case of white
noise excitation, setting the derivatives of the response
function, with respect to !y and �y, equal to zero,
results in optimal tuning and damping parameters for
the TMD device:

!y opt = !x

p
1 + �=2
1 + �

;

�y opt =

s
�(1 + 3�=4)

4(1 + �)(1 + �=2)
: (34)

All the above mentioned optima have been derived
under simplifying assumptions for a primary structure
and imposed excitations, so they are only dependent
on the mass ratio while practical applications confront
other types of response and excitation which lead to
more complicated optimization problems that can be
solved by numerical schemes. An o�shore platform
which is under sea wave excitation is one of these cases.

The expected value of topside displacement can
be found by using the transfer function of the wave
load, Hf�(!), and the wave spectrum by:

E[x2] =
Z +1

�1
jHx�(!)j2 S&(!)d!: (35)

The optimal tuning and damping parameters of the
auxiliary device that minimize this equation are also
dependent on the shape of the wave spectrum in
addition to the dynamic characteristics of the primary
structure, and this is the major concern of this study
in comparison with traditional and seismic application
of TMDs. From the two common parameters used to
describe a wave spectrum, the mean zero up crossing
period of waves Tz evidently a�ects the optimal values
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Figure 14. Suppression of the displacement range by a
TMD with a constant sti�ness ky = 0:02 kx and damping
�y = 0:02.

of these parameters and this is apparent in Figure 14
which demonstrates the e�ciency of a TMD for sup-
pression of the vibration in a SDOF system excited
with random waves described with a P-M spectrum.
The natural frequency of the corresponding primary
system is !x = 2:0 rad/sec. Although using the
TMD with � > 0:1 has a positive performance in
all sea-states, in a practical range of mass ratios, the
functionality of TMD is very sensitive to sea-state
conditions.

The zero up-crossing periods of the exciting waves
also a�ect the optimal tuning ratio of TMD as shown
in Figure 15, but according to Figure 16, it does not
have a considerable e�ect on the optimal value of the
TMD damping ratio.

It is well known that passive control systems

Figure 15. Suppression of the displacement range by a
TMD with a constant mass ratio � = 0:05 and damping
�y = 0:02.

Figure 16. Suppression of the displacement range by a
TMD with a constant mass ratio � = 0:05 and sti�ness
ky = 0:02 kx.

are only operative for structures with a remarkable
dynamic response, whereas for low rise platforms, the
quasi static response contribution becomes dominant,
because their e�ective frequency band of dynamic
response stands apart from the narrow frequency band
of the wave induced forces PSD function as shown in
Figure 17. Therefore, an optimally designed TMD to
moderate the peak value of the response function of
such a primary structure does not necessarily reduce
the variance of the displacement response under sea
wave excitation, and the optimal tuning of TMD
is dependent on the peak frequency of the exciting
spectrum as is clear in Figure 18a.

Further overlapping of the frequency response
function and the exciting forces spectrum raises the ef-
�ciency of TMD as is clear in Figure 18b. However, the
dependency of optimal tuning on the peak frequency of

Figure 17. Wave height and resultant forces PSD
functions and controlled and uncontrolled SDOF systems'
frequency response functions.
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Figure 18. Displacement response PSD functions for a SDOF system considering P �M spectrum with Tz = 4:0 s and
Hs = 4:0 m for exciting waves. (a) T = 3:25 s; (b) T = 3:5 s; (c) T = 3:75 s and (d) T = 4:0 s.

the exciting forces spectrum persists up to the nearness
of the natural frequency of the structure to the peak
frequency of the exciting forces spectrum, and this is
discernible from Figure 18c. But, in close vicinity to
these two frequencies, suppression of the peak value of
the response function �nds more relevancy.

The optimal parameters for a TMD to minimize
the displacement response of a SDOF under random ex-
citations can be determined by numerical approaches.

According to the foregoing discussions, the opti-
mum TMD parameters to moderate the displacement
response of �xed o�shore platforms under sea wave
excitations are dependent on the sea-state, whereas the
high probability of occurrence for moderate sea-states
raises their participation in fatigue damage accumula-
tion. Furthermore, a large amount of kinetic energy
is exerted on the structure in savage sea-states, so all
sea-states are decisive in fatigue damage accumulation
in o�shore structures and the de�ciency of the control
system in each sea-state may taint its performance

in fatigue damage mitigation. Improvement in the
functionality of the TMD for fatigue damage mitigation
in an o�shore platform has been summarized in Table 2.
The generalized mass, associated with the principal
dynamic mode of the platform and the corresponding
frequency of vibration, has been considered as the
parameters of the primary SDOF system. The P-M
wave height spectrum with parameters related to open
seas and a North Atlantic wave scatter diagram has
been employed in these calculations.

The e�ciency of the control system is de�ned as:

E�ciency = 1

� fatigue damage with control mechanism
fatigue damage without control mechanism

:

In the studied model, using the optimum mass for the
TMD device in each sea-state has caused a signi�cant
improvement in its performance.
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Table 2. Variable mass TMD and its functionality in comparison with constant TMD for a primary structure with
mx = 2450 tons, !x = 2:1 rad/sec and �x = 3%.

Sea-State
De�nition

Sea-State
Occurrence

E�ciency of Constant
TMD, � = 0:05

Optimal TMD
ky = 0:024kx,

Optimal
TMD

Tz sec Hs m (%) ky = 0:024kx, cy = 0:05cx cy = 0:05cx E�ciency

1.95 0.30 7.2 39.0% � = 0:024 45.2%

3.34 0.88 22.4 35.1% � = 0:025 43.1%

4.88 1.88 28.7 32.0% � = 0:034 36.5%

6.42 3.25 15.5 28.1% � = 0:055 33.2%

7.96 5.00 18.7 12.3% � = 0:064 31.7%

9.75 7.50 6.1 2.5% � = 0:075 30.2%

12.07 11.50 1.2 -4.5% � = 0:081 29.3%

13.32 14.00 0.2 -11.4% � = 0:085 28.5%

Aggregative: 26.6% 36.7%

CONCLUSION

Analytical studies have been performed aiming to eval-
uate and compare the e�ciency of friction dampers and
TMDs as passive devices for fatigue damage mitigation
in o�shore steel jacket platforms.

Although the e�ciency of both dissipative sys-
tems increases for more 
exible platforms due to the
dominancy of the dynamic response, the functionality
of TMD devices is more dependent on the dynamic
characteristics of the platform; and friction dampers
seem to be more e�cient for �xed steel jacket plat-
forms.

Optimal values for the adjustable parameters of
the TMD are strongly dependent on sea-state condi-
tions de�ned with wave spectrum parameters, Tz and
Hs. Using the optimal tuning ratio for each sea-state
causes a considerable increase in TMD e�ciency and,
considering the predictability of sea-states, this can be
addressed as an advantage for o�shore application of
TMDs, in comparison with their seismic applications.

An optimally regulated friction damper results
in a considerable reduction in the topside displace-
ment variance and the variance of its velocity. This
predicates an excellent e�ectuality of friction dampers
for prolonging the fatigue life of this type of o�shore
platform.

As a case study, the e�ciency of TMD has
been examined to moderate the dynamic response of
a realistic jacket type platform. The utilization of
optimally tuned TMD on this platform resulted in a
26.6% reduction in maximum fatigue damage. This
e�ciency can be increased up to 36.7%, using variable
tuning of the auxiliary device in each sea-state.
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