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Hydrodynamic Analysis of Non-Planing
and Planing Hulls by BEM

H. Ghassemi1;� and A.R. Kohansal1

Abstract. A three-dimensional, potential-based Boundary Element Method (BEM) is developed for
the hydrodynamic analysis of non-planing and planing hulls in steady conditions. The method uses
constant-strength doublet and source distributions over the body surface and source distributions on the
free surface. Numerical computations are �rst applied to analyze the hydrodynamic characteristics and
the free surface waves are generated by the mathematical non-planing model (Wigley hull), which is well
known in ship hydrodynamics. The second type is a planing model, namely 4666, the experimental data
of which were carried out by Clement and Blount [1]. Some numerical results of wave elevation, pressure
distribution, lift and resistance are presented. Validations show that the computed results are in good
agreement with experimental data and other numerical approaches.
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INTRODUCTION

When a body moves near a free surface, its created
wave pattern is one of the most interesting and more
commonly evident phenomena. The energy spent in
building this pattern comes from the work done by
the body opposed to the wave resistance. A free
surface allied with the water waves exists due to the
gravity e�ect that is dealt to the pressure resistance
component. As a result, the body is subjected to a
resistance force known as the wave resistance, which
is one of the most important resistance components
in still water at the domain of a Froude number
less than 0.5. When the Froude number is greater
than 0.5, the hydrodynamic condition is changed and
induced dynamic pressure is caused to lift up the body.
Therefore, it passes the hump condition, gets a ride on
the free surface and the wave e�ect is diminished [2].

Generally, resistance of the non-planing hull is
categorized into two main components, i.e. wave
making resistance and viscous resistance (form and
frictional resistance), while for the planing hull, re-
sistance components are frictional resistance, induced
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dynamic pressure resistance and spray resistance. The
numerical prediction of hull resistance is very di�cult,
but it has less cost than experiment measurement. This
actuality expresses the attempts involved in developing
numerous theoretical approaches to evaluate resistance
components accurately. This research work is divided
into two parts. The �rst part is concentrated on the
wave pattern and resistance of the non-planing hulls
and the second part is focused on the dynamic pressure
(induced lift and resistance) and spray resistance of the
planing hulls.

The prediction of the wave pattern and resistance
of a non-planing hull (Wigley) has challenged math-
ematicians and hydrodynamicists for over a century.
The Boundary Element Method (BEM) establishes the
basis for the majority of computational algorithms de-
veloped in recent years. This method may be classi�ed
into two categories. The �rst one uses the Kelvin wave
source as the elementary singularity. The main advan-
tage of such a scheme is the automatic satisfaction of
the radiation condition. The theoretical background
of this method was reviewed by Wehausen [3], while
computational aspects can be found in the literature
and in a series of wave resistance DTNSRDC Work-
shops edited by Noblesse and McCarthy [4]. The
second category of BEM schemes uses the Rankine
source as the elementary singularity. This procedure
was �rst presented by Dawson [5]. Since then, it has
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been applied widely as a practical method and many
improvements have been made to account for nonlinear
wave e�ects. The Finite Element Method (FEM) has
also been occasionally used to solve the free-surface
potential ow problem in two- and three-dimensional
domains [6]. Also, other work has been carried out
using boundary element methods to deal with free-
surface ows [7-12].

The need for an increase in the speed and payload
of marine transportation has led to many research de-
velopments on High Speed Marine Vehicles (HSMVs).
A planing craft is a HSMV, which may generate lift
force by a well-designed hull. Numerical modeling of
this problem is an important subject in ship design and
naval architecture. Experiments have shown that the
deadrise angle and the well-designed bottom shape of
the hull are very important in planing crafts. The e�ect
of the deadrise angle on hydrodynamic force, impact
loading on the hull and high planing e�ciency has led
to a rational deadrise angle between 10�� �� � 15�.
Although the low deadrise angle and chine enhance
the seakeeping performance, they may instigate other
insu�ciency problems like more slamming and porpois-
ing (i.e. combined heaving and pitching instability).
The form of stern is another aspect that is important
in craft design. The transom stern is a common choice
used in planing crafts. A number of advantages of
this stern type are weight reduction, manufacturing
e�ciency and a possible resistance decrease in the
speed range of craft operation.

Prediction of the resistance of a planing hull
should be carried out in the �rst part of the designing
process in order to estimate the required power for
the propulsor and main engine. In past years, nu-
merous experimental experiences have been performed
by many researchers. Savistky [13] has made a great
contribution to the understanding and modeling of a
planing hull. He developed regression formulas based
on prismatic hull form model tests to estimate the hy-
drodynamic forces. Clement and Blount [1] conducted
an extensive set of model tests on a systematic series
(Series 62 model 4666). This work remains one of the
de�nitive sources of planing hull empirical information.
Katayama et al. [14] performed resistance tests on
prismatic planing hulls at various speeds and reported
lift, resistance and moment coe�cients.

From the numerical point of view, naval architects
continue to improve the e�ciency of computational
tools to analyze high-speed planing hulls. Several valu-
able methods, using various computational techniques,
have been developed in the past two decades. Lai and
Troesch [15] applied a vortex lattice method to the
planing body using the slender body theory. Zhao et
al. [16] introduced the strip theory for steady planing
in calm water. Savander et al. [17] used the boundary
value problem for steady planing surfaces and obtained

reliable relations between the perturbation potential
and vortex distribution. Recently, Xie et al. [18]
reported a study of the hydrodynamic problem of a 3-D
planing surface using the vortex theory and the �nite
element approach. Rahmanian [19] applied the BEM
for the hydrodynamic analysis of a planing hull and
obtained the induced hydrodynamic lift and resistance
in the steady condition. Hydrodynamic analysis of the
planing hull at high Froude numbers was performed by
Wang and Rispin [20] and Cheng and Wellicome [21].
Sadathusseini et al. reported the numerical simulation
of free-surface waves and wave induced separation
for the surface piercing hydrofoil of the NACA0012
section [22]. Recently, the combined method of a
numerical and practical approach for hydrodynamic
predictions of planing crafts has been executed by
Ghassemi and Ghiasi [23], also Ghassemi et al. [24]
addressed a nonlinear free surface boundary condition
for the submerged lifting and non-lifting bodies using
BEM.

The objective of this paper is to continue the
development of a three-dimensional potential-based
BEM for the hydrodynamics analysis of non-planing
and planing hulls. Numerical results include pressure
distributions, wave elevation, lift and resistance. It
is shown that the results obtained by the present
method are in good agreement with other numerical
and experimental data.

MATHEMATICAL FORMULATIONS

Let us consider a closed computational domain 

with boundary S and the unit normal vector n̂ to
S, being oriented into 
, as depicted in Figure 1. A
Cartesian coordinate system, o� xyz, is established as
the reference frame, with the origin �xed on the mean
free surface as illustrated in Figure 2. The horizontal
and vertical axes, ox and oz, are along and at a right
angle to the direction of motion. The origin, o, is taken
as the base plane at transom. The body is moving with
a constant speed VS in the x-direction on a calm water
surface.

Figure 1. Application of Green's theorem for the general
body.
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Figure 2. Coordinate system for planing and non-planing
hulls.

Traditional ideal ow assumptions that ignore the
e�ect of viscosity and compressibility are utilized. The
double-body potential consists of inow potential and
ow due to the presence of the body. Total velocity
potential �(x; y; z) is expressed as:

�(x; y; z) = �1(x; y; z) + �(x; y; z); (1)

where �1(x; y; z) = ~VS :~x is incoming velocity po-
tential, ~x is the position vector and �(x; y; z) is the
velocity potential due to interaction between the inow
potential, the body and the free surface. So, total
potential can be written as follows:

�(x; y; z) = ~VS :~x+ �(x; y; z): (2)

Both total and perturbation velocity potentials satisfy
the Laplace equation in domain 
:

r2� = r� = 0: (3)

Boundary Conditions

A boundary value problem can be constructed by
identifying boundary conditions on the boundary SB [
SF as follows:

i. Flow tangency condition on the body surface SB :
The normal component of the velocity on the hull
surface must be zero.

@�
@n

= 0) @�
@n

= � ~VS :~n on SB ; (4)

where ~n = nxî+ny ĵ+nz k̂ denotes the unit normal
vector to the boundary, de�ned as positive when
pointing into the uid region.

ii. Radiation condition: There is no perturbation
velocity in the far �eld upstream:

�(x; y; z)! x ~VS ; far away upstream: (5)

Free surface boundary condition: the boundary
conditions on the free surface are the Kinematic
Free Surface Boundary Condition (KFSBC) and
the Dynamic Free Surface Boundary Condition
(DFSBC).(

@�
@x :

@�
@x + @�

@y :
@�
@y � @�

@z = 0 on z = &;
g� + 1

2 (r�:r�� U2) = 0 on z = &;
(6)

Consequently, the combined free surface boundary
condition is de�ned as follows:

g
@�
@z

+r�:r
�

1
2
r�:r�

�
= 0 on z = &; (7)

where g is gravitational acceleration. The bound-
ary value problem formulated above is nonlinear,
due to the free surface boundary condition and
the unknown position of the corresponding bound-
ary. The fully non-linear problem can be solved
iteratively, or solved with a linearized free surface
condition. Dawson [5] suggested a double body
ow as the base ow to linearize the free surface
condition. Linearized forms of free surface condi-
tions have also been considered in this work. In the
Neumann-Kelvin problem, the ow is linearized,
with respect to the uniform forward speed ~VS . The
following linearized free surface equation can be
obtained as:

(�)xx �K0�z = 0 on SF ; (8)

where K0(K0 = g=V 2
S ) is the wave number. The

ow potential � is typically computed by a uniform
free surface condition and the wave elevation is
next obtained explicitly by the dynamic condition,
whereas in the di�raction problem, the kinematic
and dynamic conditions are generally implemented
separately. To compute the free surface boundary
condition �x can be calculated by a four-point
upwind di�erence scheme.

iii. Far �eld condition: No disturbances are for the far
�eld region, while the potential is bounded for far
downstream as the radiation condition:

lim jr�j = 0; when r !1; (9)

iv. Kutta condition at the transom stern (special
boundary condition for planing hull crafts): A
Kutta condition should be satis�ed at the trailing
edge of the transom stern (Figure 2b). It means
that the ow should be separated at the edge of
the transom and can be expressed as follows:����PTE � Patm

Patm

���� < "; (10)
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Figure 3. Transom stern con�guration and boundary
condition.

where PTE and Patm indicate the pressure values at
the Transom Edge (TE) and atmospheric pressure,
respectively (Figure 3). The drying process of a
transom stern has been known to be a function
of many variables, such as draft Froude number
(FT ) breadth to draft ratio (B=T ), buttock/trim
angle and deadrise angle. However, in the planing
condition, the transom is fully dried or ventilated.
In order to develop an expression for potential
derivation at the transom edge, the corresponding
wave elevation in linearized form can be obtained
as:

z = �(x; y) =
VS
2g

�
@�
@x

�
: (11)

Since the separation should be occurred at the transom,
it can be written as:

� = h =
1
2g

[VS :�X ] : (12)

Then:

�x =
2gh
VS

: (13)

Potential � is calculated by the boundary element
method, which is based on Green's identity. In general,
the boundary surface includes the body surface (SB)
and the free surface (SF ). Thus, the perturbation
potential � is given by the following integral expression,
with points Q (source point) on S and P (�eld point)

in domain 
:

4�E�(P ) =
Z
SB

�
�(Q)

@G
@n
� @�(Q)

@n
G
�
dS

�
Z
SF

�
@�(Q)
@n

G
�
dS; (14)

where @
@n is normal derivative in respect to point Q and

E is a solid angle that can be de�ned as follows:

E =

(
1=2 for P on SB ;
1 for P on SF :

(15)

G is Green's function, which might be expressed
in the form G = 1=r + 1=r0. Here, r is the
distance between �eld point P and source point
Q
�
r =

p
(x� �)2 + (y � �)2 + (z � �)2

�
and r0 is the

distance between �eld point P and the image of
the source point relative to the mean free sur-
face

�
r0pq =

p
(x� �0)2 + (y � �0)2 + (z � � 0)2

�
where

(�; �; �) and (�0; �0; � 0) are coordinates of point q and q0
respectively.

NUMERICAL IMPLEMENTATION

Discretized Formula

To obtain an approximate solution for integral Equa-
tion 14, the wetted body surface and free surface are
discretized into quadrilateral elements. The discretized
form of integral Equation 14 for the wetted surface of
the body can be expressed as:

4�E�(Pi)=
NBX
j=1

(i 6=j)

�(Qj)[DBij ]�
NBX
j=1

�@�(Q)
@n

�
j
[SBij ]

�
NFX
j=1

�
@�(Q)
@n

�
j

[SFij ]; Pi 2 SB ; (16)

where:

DBij =
Z
SB

@Gij
@n

dSj ; SBij =
Z
SB

GijdSj ;

SFij =
Z
SF

1
rij
dSj ; (17)

and NB and NF are the number of elements on
the wetted hull surface and free surface, respectively.
The wetted surface adjustment is obtained through an
iterative procedure. The velocity component (@�=@n)
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is known on the body surface from Equation 4, while
it is unknown on the free surface. Due to the
linearized free surface condition, it can be de�ned as
@�=@n = �@�=@z = ��. The inuence coe�cients
(DBij ; SBij ; SFij) are calculated by a numerical pro-
cedure. The matrix form of Equation 16 can be written
as:�

A B
C D

�
:
�f�gNB�1f�gNF�1

�
=
�
R
S

�
; (18)

where:

A = [� �DB]NB�NB ;

B = [SF ]NB�NF ;

C = [DBxx]NF�NB ;

D = [�K0� + SFxx]NF�NF ;

R = [SB]NB�NB :f� ~VS :n̂gNB�1;

S = [SBxx]NF�NB :f� ~VS :n̂gNB�1: (19)

Here, �ij is the Kronecker delta function, and
the second derivative of the inuence coe�cients
(DBxx; SBxx; SFxx) are computed by a four-point
�nite di�erence operator. Also, a four-point upstream
operator is introduced to satisfy the condition of no
waves propagating upstream [4]. The total number of
unknowns are NB + NF (= NT ). NB is the number of
unknown potential (�) on the wetted body surface and
NF is the number of unknown velocity components (�)
on the free surface.

A formal solution of the matrix Equation 17
may be given by the direct solution methods of LU
decomposition or Gaussian elimination. Once pertur-
bation potential � is found, the induced velocity may
be determined by the derivative of the perturbation
potential, ~vt = r�.

Semi-Empirical for the Spray Resistance
Computations

The spray phenomenon is the impact of a body with
still water, which generates \upwash" at the bow. It
is very di�cult to recognize the characteristics of the
spray to be calculated continuously by BEM. There-
fore, an additional technique is required to consider this
component. Savitsky et al. [25] determined spray drag
in a performance prediction method for high-speed
planing hulls. He proposed the following relationship
between the wetted length, trim angle and deadrise
angle:

LK � LC =
B
�

tan�
tan �

; (20)

where LK is keel wetted length, LC is chine wetted
length, B is hull breadth and � and � are deadrise
and trim angle, respectively. Recently, Bowles and
Denny [26] have presented an analytical model tool
for predicting the water surface disturbance in close
proximity to the bow of a planing hull, by the following
equation:

LK � LC =
B
2

tan�
tan �

1�
1

1+tan(�) tan(�=2)

�1=2
+ 1

: (21)

The hull is assumed to run in steady state in calm
water, i.e. with constant speed VS , draft and trim
angle � . The ow velocity component normal to the
keel is U = VS sin � . The principal characteristics in
the chine-dry region is illustrated in section E � E
(Figure 4). It is shown that the water surface is
deformed and the pile-up is close to the hull. At the
spray root, i.e. the intersection between the piled-up
water line and the hull, a spray-jet is formed. The
peak of the hydrodynamic pressure distribution relates
to the formation of the jet. In the chine-wet region
(section F � F ), the sideway ow separates at the
sharp chine where the hydrodynamic pressure adjusts
to atmospheric pressure.

The hydrodynamic pressure of the spray is pro-
portional to the geometrical con�guration of the hull,
such as the deadrise, the trim and the chine wet/dry
regions and operation conditions, such as the speed
and the water wave. In the present paper, the fol-
lowing practical method is utilized to determine spray
resistance. The spray surface may be approximated as
follows:

ASpray = K1(LK � LC)B= cos�; (22)

where K1 is a constant value that depends on the hull
speed and is given as follows:

K1 =

8><>:0:2 if Fnr < 3
0:4 if 3 � Fnr < 5
0:7 if Fnr � 5

(23)

Then, the pressure due to the spray can be calculated
by the following equation:

PS = K2:P (at bow of the keel); (24)

where:

K2 =

8><>:2 if b(y) < 0:5 B
1:5 if 0:5 B � b(y) < 0:9 B
1:2 if 0:9 B � b(y) � B

(25)

and P is the pressure obtained from Equation 28 at the
nearest element to the spray root and B and b(y) are
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Figure 4. Scheme of the spray and its ow.

speci�ed in Figure 4. In the present paper, the spray
resistance and lift generated by the spray is estimated
separately by the following equations:

LSpray = PSASpray cos �;

RSpray = PSASpray sin �: (26)

Hydrodynamic Pressure and Forces

The pressure on the hull surface is calculated by
Bernoulli's equation as follows:

P
�

= �gz � 1
2
r� � r�

= �
�
gz +

�
1
2
r�� ~VS

�
:r�

�
; (27)

P = ��ghz + 0:5�
�

2~VS :~vt � ~vt:~vt
�
: (28)

The �rst term in the right part of Equation 28 is the
hydrostatic pressure, Ph, and hz is immersion of the
hull surface position. The second term is the dynamic
part of pressure, Pd, which is generated by the induced
velocity. The hydrodynamic lift forces (Ld), buoyant
force (Ls) and induced resistance (Ri) acting on the
hull can be obtained by integrating the pressure over
the entire wetted surface:

Ld = 0:5 �
Z
SB

�
2~VS :~vt � ~vt:~vt

�
nzdS;

Ls =
Z
SB

�ghzdS;

Ri = 0:5 �
Z
SB

�
2~VS :~vt � ~vt:~vt

�
nxdS; (29)

where ~n(nx; ny; nz) is the outward unit normal vector
on the wetted body surface.

Resistance and Lift

The total resistance (RT ) of the non-planing craft is the
summation of the two components, i.e. wave-making
resistance RW and viscous resistance RV :

RT(non - planing) = RW +RV : (30)

RW is determined from normal pressure acting on the
wetted hull surface. This component is a function of
the Froude number, but RV is the tangential force
acting on the wetted hull surface and depends on the
Reynolds number. The �rst part of the paper is focused
on determination of the pressure and wave-making
resistance.

The total resistance (RT ) of the planing craft is
the summation of the three components, i.e. spray re-
sistance, RSpray, induced resistance, Ri, and frictional
resistance, RF .

RT(planing) = RS +Ri +RF ; (31)

where RF is determined by the ITTC empirical for-
mula [27]. RSpray and Ri are obtained by Equations 26
and 29, respectively.

For the planing craft, the volumetric Froude
number is a very important parameter that is de�ned
as:

Fnr =
VSp
gr1=3

; (32)

where r is the volume displacement. Mass displace-
ment is de�ned by �(= �r) which is equal to the
weight of the craft. For the planing craft, when the
speed increases (Fnr > 2), the hull of the craft rises up
and goes into the planing condition, which causes the
wetted surface to diminish and the frictional resistance
to come down. On the planing condition, the weight
of the craft is supported mostly by hydrodynamic
force (lift) and less by hydrostatic force (buoyant). In
general, the weight of the craft is supported by the lift
and the buoyant (� = W = Lift + Buoyant). Under a
displacement condition (low speed), the weight is equal
to the buoyant (� = W = Buoyant), but under a full
planing condition (high speed), the weight is equal to
lift (� = W � Lift).

A number of non-dimensional coe�cients of pres-
sure (CP ), hydrodynamic lift (CLd), buoyant (CLs) and
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induced resistance (CRi) are used. They are de�ned as:

CP =
P

1
2�V

2
S
; CLd =

Ld
1=2�V 2

SSB
;

CLs =
Ls

1=2�V 2
SSB

; CRi =
Ri

1=2�V 2
SSB

; (33)

where SB is the wetted body surface.
The wave pro�le can be obtained by the Taylor

series expansion as:

� = �VS
g
@�
@x

on SF : (34)

After calculating velocity r�(= ~VS+r�), the pressure
coe�cient can be evaluated as:

CP = 1�
�r�
VS

�2

= 1�
�

1� r�
VS

�2

: (35)

Now, including the waterline integral, the wave-making
coe�cient (CW ) can be obtained as:

CW = �
�V 2

S
R
SB

CPnxdS + �g
H
WL

�2nxdl

�SBV 2
S

: (36)

NUMERICAL RESULTS AND DISCUSSION

Non-Planing Hull

The Wigley model is a mathematical displacement
(non-planing) model and is popular in ship hydrody-
namics. Many experimental and numerical results can
be found in the literature for this model. We employed
this model to compare numerical results at low Froude
numbers. The standard Wigley hull is a mathematical
hull form, the geometric surface of which can be de�ned
as:

y = �B
2

"
1�

�
2x
L

�2
#�

1� � z
T

�2
�
; (37)

where L is the hull length, B the full hull beam and T
the hull draft. For the standard Wigley hull used in this
computation, the length-to-beam ratio, L=B, is 10 and
the beam-to-draft ratio, B=T , is 1.6. Since the body
is symmetric, one-half of the computational domain is
used for numerical treatment. The elements from one
hull length upstream to 2.5 hull lengths downstream,
cover the free surface domain. The transverse extension
of the free surface is about 1.6 hull length. The
number of elements on the hull and free surfaces are
taken as being 25 � 7 and 104 � 18, respectively.
A four-point upstream di�erence operator is used in
both longitudinal and transverse directions to advent
disturbances in the downstream direction.

Figure 5. Comparison of pressure distribution along a
Wigley hull at Fn = 0:289; 0:316.

Figure 5 shows a comparison of the pressure
distribution along the Wigley hull for various Froude
numbers, 0.289 and 0.316. It is found that the positive
pressure values are concentrated on the small areas in
the vicinity of the bow and the stern of the hull, and
the negative pressure values are occurred on the rest of
the hull.

Figure 6 presents comparisons of the wave ele-
vations along the hull between the experimental mea-
surements and the numerical results from the current
solutions for Froude numbers of 0.267 and 0.316,
respectively. The experimental measurements are for
a model-�xed Wigley hull and given in [28]. The wave
elevations along the hull have satisfactory agreement
with the experimental measurements. In particular,
at all Froude numbers, they completely approach the
experimental data.

The prediction of the wave pro�le and wave
pattern is very valuable in hull optimization, par-
ticularly in designing the ends of non-planing hulls.
The computed perspective wave patterns view and
free surface contours for the standard Wigley hull, at
Froude number of 0.25, are shown in Figure 7. This
is a three-dimensional view of the free surface pro�les,
and elevation of the free surface is clearly observed.
The bow and stern wave systems, both containing
the divergent and transverse wave patterns, are in
good agreement with the Kelvin wave pattern. There
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Figure 6. Comparison of wave elevation along Wigley
hull at Fn = 0:267; 0:316.

Figure 7. Free surface deformation and wave contours
along Wigley hull at Fn = 0:25.

are no wave reections at the side- and downstream-
boundaries, since they are open boundaries for the
computational domain. In Figure 8, the predicted
values of wave resistance are compared with those of
experiments [7]. The wave resistance curve shows a
compatible variation with respect to the Froude num-
ber, and is consistent with experimental measurements.

Planing Hull

In order to validate the numerical method for planing
hulls, a planing at plate is selected. Figure 9 shows
the mesh arrangements on a planing at plate. The at

Figure 8. Comparison of the wave-making resistance of
the Wigley hull.

Figure 9. Mesh arrangements on planing at plate
(N = 20;M = 10; L=B = 2:0).

plate with L=B = 2 is discretized into 200 elements
(20 � 10) and the free surface is also discretized into
1800 elements (60 � 30). Numerical results show
that the number of given elements are enough for a
at plate and give a fairly converged solution. The
pressure distribution on the center line of the hull is
shown in Figures 10 and 11 for Fn = 2:24 (Fn =
VS=
p
Lg) and L=B = 1, L=B = 2, respectively. It is

shown that the results of the present computations are
in good agreement with other researcher's numerical
results [20].

Figure 10. Comparison of pressure distribution on
planing at plate at center line (L=B = 1; Fn = 2:24).
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Figure 11. Comparison of pressure distribution on
planing at plate at center line (L=B = 2; Fn = 2:24).

The planing hull model 4666 is chosen to validate
the numerical calculations. This planing hull has
length-beam ratio 3.06, length 21.5 m, displacement
� (or weight = W ) 45 tones and mean deadrise angle
12.5 degree. Its body plan is illustrated in Figure 12.
The hull is running with a steady forward motion in
calm water at various volumetric Froude numbers from
1 to 6. The hydrodynamic pressure produced on the
bottom of the body is calculated at various speeds,
using a potential ow based boundary element method.
At fully-planing speed, the hydrodynamic lift should
be almost the same as the weight of the hull. When
the speed increases, the hull will rise up and a new
draft can be read. Therefore, due to di�erent wetted
surfaces, a new mesh system should be generated on the
wetted surface for each speed. Under the semi-planing
condition, the spatial technique was applied to obtain
the draft at each speed.

Generation of accurate coordinates for each ele-
ment on the body surface is more important in the
BEM. A rough element division of the surface will
a�ect the results of the pressure distribution. Then, it
needs to have a smoother surface with a high precision
interpolation for coordinates of the planing hull. In
this case, the body is divided into a number of small
quadrilateral elements. Figure 13 shows the mesh
surface of the model. The model mesh shown in this
�gure is generated from the keel line to the chine line.

Figure 12. Body plan of the planing hull model 4666.

Figure 13. Mesh surface of the planing hull model 4666
(from bottom view).

The side is not included in this mesh surface, because
it does not a�ect the hydrodynamic force as well as the
spray force. In the calculations, the number of elements
in longitudinal (NL) and transverse (NT ) directions are
considered 30 and 20, respectively. In total, 600 to
650 (depends on the transom wetted surface) elements
on the hull surface plus 1800 elements on the free
surface have been coordinated in the computations.
The transom at the stern needs special treatment to
assure the continuity of the normal vector on the body
surface. For a volumetric Froude number greater than
approximately 2.5, the ow separates from the transom
and dry conditions are imposed.

Hydrodynamic pressure is computed by the in-
duced velocity on the bottom of the planing hull. Fig-
ures 14 and 16 show the pressure distribution de�ned
in Equation 31, which includes both hydrodynamic and
hydrostatics terms for two volumetric Froude numbers
of 3.35 and 5.0 at various longitudes strip-wise from
bow to stern (x=L=0 is at stern).

The calculated longitudinal variation of the hy-
drodynamic and hydrostatic (buoyancy) components of
the sectional lift coe�cient are shown in Figures 15 and
17 for two speeds obtained by corresponding pressure.

Figure 14. Distribution of pressure coe�cient at various
longitudinal strip-wise, Fnr = 3.35 for planing hull model
4666.
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As can be seen from these �gures, if the Froude number
is increased, the buoyant lift coe�cient decreases, while
the hydrodynamic lift coe�cient grows signi�cantly.
Figure 18 shows variations of the hydrodynamic lift

Figure 15. Distribution of buoyant and hydrodynamic
lift coe�cient, Fnr = 3.35 for planing hull model 4666.

Figure 16. Distribution of pressure coe�cient at various
longitudinal strip-wise, Fnr = 5.0 for planing hull model
4666.

Figure 17. Distribution of buoyant and hydrodynamic
lift coe�cient, Fnr = 5.0 for planing hull model 4666.

coe�cient as a function of volumetric Froude number.
It is shown that when the volumetric Froude number
exceeds 3.5, the hull is running to be fully in a planing
condition and the lift is nearly the same as the weight
of the hull.

The hull is raised up due to hydrodynamic pres-
sure, so the physical condition of the hull is changed
at various speeds. The wetted length and trim are
changed. When the speed increases, the wetted length-
beam ratio (� = Lw=B) diminishes as shown in
Figure 19. The center of pressure is almost constant
and equals 6.4 m from the transom at all speeds
(xCP = 6:4). The craft is stable if the longitudinal
center of gravity is located on the center of pressure
(xCP = xCG). Otherwise, the craft crops up the
pitching and longitudinal instability, which is out of
range of the present research. We considered that the
craft is moving with constant speed (steady condition),

Figure 18. Hydrodynamic lift coe�cient in terms of
Froude numbers for planing hull model 4666.

Figure 19. Wetted length-beam ratio (� = Lw=B) in
terms of Froude numbers for planing hull model 4666.
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while longitudinal instability may occur at an unsteady
condition and would need new aspects of numerical
evaluation.

The calculated trim angle is given in Figure 20
as a function of the Froude number. This �gure
provides trim comparison, which is slightly in good
agreement with experimental data [1]. The maximum
trim angle is between 5 to 6 degree in experiment
and numerical results, respectively. When the speed
increases, the trim angle diminishes. The trim angle
is about 1.5 to 2 degree at Fnr = 6:0. The pressure
distribution on the bottom of the prismatic planing hull
is shown in Figure 21. It is obvious that high pressure
is generated at the bow and low pressure occurs at
the stern. The resistance-weight ratio components
at various volumetric Froude numbers are presented
in Figures 22. It is found that the resistance curve
has a primary hump at around Fnr = 1:7 and a
primary hallow (take-o� point) at around Fnr =
3, increasing moderately when the speed increases.
The computed resistance-weight ratio shows favorable
agreement with the experimentally determined val-
ues.

Figure 20. Comparison of trim angle in terms of Froude
numbers for planing hull model 4666.

Figure 21. Pressure distribution on the bottom of the
planing hull at Fnr = 3:7 or Fn = 1:5.

Figure 22. Resistance-weight ratio (RT =W ) in terms of
Froude numbers for planing hull model 4666.

CONCLUSIONS

This paper employed a potential based boundary ele-
ment method to analyze the hydrodynamic characteris-
tics of three-dimensional planing and non-planing hull
surfaces. A special technique is practically used for the
spray resistance. Two hull forms, i.e. a non-planing
model (Wigley) and a planing hull, have been selected
to compare computation results with analytical or ex-
perimental data. Generally, the following conclusions
can be drawn:

� Comparison of calculated pressure distributions and
wave elevation; the wave resistance of the Wigley
hull are well in agreement with experimental data.

� An additional boundary condition (like the Kutta
condition) is required for a planing hull. It is
physically important to reach the pressure that
is atmospheric pressure at the transom. This is
completely di�erent regarding a non-planing hull.

� The e�ects of varying the Froude number are ex-
amined for a planing hull. It is found that the
hydrodynamic lift to weight ratio (L=W ) for the
planing hull is about 60% and 85% at Fnr = 3.0
and Fnr = 5.0, respectively.

� The center of pressure is almost constant at all
speeds and is placed at the center of gravity (xCP =
xCG = 6.4 m). Otherwise, pitching moment and
longitudinal instability may occur.

Our future plan is to work on a continuous numerical
calculation including the spray term.
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