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Abstract.

In this paper, Quintic spline in off-step points is used for the solution of fourth-order

boundary value problems. Spline relations and boundary formulas are developed and the convergence
analysis of the given method is 1nvestigated. Numerical illustrations are giwen to show the applicability

and efficiency of our method.
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INTRODUCTION

We consider the fourth-order boundary value problems
of the form:

u® (@) + f(2)u(e) = g(@),a <z < b, (1)

subject to the following boundary conditions:

u(a) = Ay, u(b) = As,

u'"(a) = By, u'"(b) = Ba, (2)
where f(z) and g(x) are continuous on [a, b] and A;, B;,
1 = 1,2 are real finite constants. Such types of fourth-
order boundary value problems arise frequently in the
plate deflection theory [1]. The analytical solution of
the Problem in Equation 1 for the arbitrary choice of
f(x) and g(x) cannot be determined [1-5]. We assume
that u(z) is sufficiently differentiable and that a unique
solution of the problem in Equation 1 exists [2,3,6].
Further discussions of fourth-order boundary
value problems are given in [1-3,7]. Usmani [1] dis-
cussed the existence and uniqueness solutions of such
problems when subjected to the following boundary
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conditions:
u(a) = A17 U(b) = A27
u'(a) = By, u'(b) = Bs.

Sixth order methods for solving this problem were used
by Usmani [2,3]. Methods of order two and four,
based on quintic and sextic splines, were developed by
Usmani [4,5]. Later, Usmani [6] used quartic splines
for the numerical solution of fourth-order boundary
value problems. Rashidinia [8] and Usmani et al. [9]
derived the quintic spline and non-polynomial quintic
spline methods for the solution of linear fourth-order
boundary value problems. But all the derived methods
use nodal points; only in [6] a quartic spline with off-
step points is used.

In this paper, first a direct method based on the
quintic spline for fourth-order boundary value problems
(Equation 1) is presented. Our aim is to approximate
u(z) satisfying (Equation 1) by using quintic spline
functions, € C*[a,b]. This approach will employ
consistency relations at midknot.

Then, the quintic spline formulation is derived for
the numerical solution of Equations 1 and 2. Following
that to retain the bandwidth of the coefficient matrix
of the system as five, we develop the end conditions
of O(h%). Subsequently, convergence analysis is proved
so that the matrix associated with the system of linear
equations that arises is not assumed to be monotone,
as often believed in the post. Finally, the numerical
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evidence is included to demonstrate the efficiency of
the presented method.

QUINTIC SPLINE FUNCTION

We consider a uniform mesh, A, with nodal points, z;
on [a,b] such that:

A:a:x0<a:%<x%<-~~<xN_%<a;N:b,

where z; 1 = a—l—(i—%)h, 1=1,2,--- ,Nand h = b_T“
Also, we denote a function value, u(z;) by ;.

Definition

A quintic spline function, S;(x), interpolating to a
function u(z) on [a, b] is defined as following:

1. In each subinterval, [z;, z;11], S;(x) is a polynomial
of, at most, degree five;

2. The first-fourth derivatives of S;(z) are continuous
on [a7 b],

3. SZ(II) = U(Il), 1= O(l)N

The spline function, S;(x), for z € [z;, x;41], is defined
by:

Si(z) = Z agk)(x — xi)k,

k=0

i:O71727"' 7N7 (3)

—

k
where a )

mined.

We further require that the values of the first-, se-
cond-, third- and fourth-order derivatives are the same
for the pair of segments that join at each point (x;, u;).

To derive an expression for the coefficients of
Equation 3, in terms ofu;%, Uiyt MF%, MH%, FF%

and F, 1, we first denote:

, k=0,1,--- ,5 are constants to be deter-

i

1
2
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From algebraic manipulation, we get the following
expression:

QEO) — % [5h4 (Fif% +Fi+%)

4812 (Mg + My y ) +384 (g +uiyy )]

agz) . {—hg (F

agg) = L [h2 (F

a§5) — ﬁ (Fi+% —I—Fl-_%) ,

where ¢ = 0,1,2,--- ,N. The continuity of the first

derivative implies:

M; 3 +22M, 1 + M, 1
2 2 2

2

h2
24
+ ﬁ(uz—g = 2u;_1 Fug 1),
1=2(1)N —1, (3)

Subtracting Equation 6 from Equation 5 and dividing
it by 24, we obtain:
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1
Mi_y = o5 (g = 2ui g +uipy)
h2
— 1920(Fi7% + 158Fi7% +Fi+%)~ (7)

Elimination of M;’s between Equations 6 and 7 leads
to the following useful relation:

w5 —4u; 3 +6u; 1 —du; 1 tugs
4
= 1920(Fi7% + 236F-,% + 1446Fi7%

+236F,, 1 + Fy ),
i =3(1)N —2. (8)

NUMERICAL METHOD

Now, we consider Equation 1 subject to boundary con-
ditions (Equation 2). We discretize the given system in
Equation 1 at the grid points, x;, ¢ = 3,4,--- N — 2,
and use the spline relation (Equation 8). We obtain the
(N —4) linear algebraic equation in the (N) unknowns,

uif%,i:1,2,~~~ , N, as:

1+ ——h*f, .
< + 1920h f@g>u12

236
4 oV 14
+ ( + To20™ fi-

w\w
[N

)Ui
1446 A
+ ( 360 7 ) Py
236
+ ( 44+ —h'f,, )uiH

1920
) Uit g

5 + 14469,

L4 tpe
+( T 1oz it

2364,
1920(91" + 2369,

+ 23691’4—% + gi+%)7 1= 3(1)N - 2a (9)
where f; = f(z;) and g; = g(x;).

To obtain the unique solution of the above sys-
tems, we need four more equations. By using a Taylor
series and the method of undetermined coefficients, the
boundary formulas associated with boundary condi-
tions (Equation 2) can be determined as follows:

aguo + aruy + azuz +azus + ch*uf)

—+ h4 blu( ) —+ bzu( ) + bgu( ) +t1 = O (10)
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aguo + ajuy +ayug +azus +ajuz + ' h*uf
+ ht 1u1 @ 4 b2u(3,4) + b'3u(§) + b4u(74)]

+ty =0, (11)
and:

1, L
g UN + Qg Up_ 1 —i—a2 Un_3 +a3 Upn_

w\(.

—l—a;*uN +c*h2u + h* [bx (4) Ty
! 4 " 4 " 4
+by ugvlg + by ugvlé + b, “SV),z]

+txy_1 =0, (12)

* * * * x12 I
aguN +ajuy_1 +ayuy_3 +azuy_s +c huy

b3u(4) . ]

(4)
— N-3%

+ At bfugél + byuy,

1 i
2 2

+tny =0, (13)

In order that ¢, to, ty_1 and ty are O(h®), we find
that:

<a07a17a27a376) =

5
={-6,10,-5,1, -
( ) ) ? 74)7
383 383 1
960’ 19207 1920 )’

1 1, 7, 1 1, r,

* * Ed * * *
(ao yAy 509 503,04 ,C )

(ag, @y, a3, a3,¢")

(b1752,b3) = (b’lib;b?;) = -

N N N A A
<a07a17a27a37a476):

1
— (27 _57 67 _47 ]-7 4) 3
(0, by, b, b)) = (by", by, by, by")

383 113 33 1
19207 1927 1607 1920

From the above relations, we obtain the following

equations:

383 383
1 2004 9091,
( 0 960h )m ( g 360h 3) “3

5 .
" (1 " 1920h4f5) ug = Gug — g h*ug

4

1920

+ [766g% +383g5 + gg]

6,.(6) 7 _
+ 11520h uw'® (&) + O(h"), 1 =1, (14)
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383 113,

33, 1,

wles

4

1920

1.
= —2ug — Th%u + [%@%+1w@%

T 354 (1) + O(T),

+396g% +g%] + m

i=2, (15)

1

(” 1920h4fN—5)“N—3
33

+ (—4 + h4fN_g> UN—%

160

113
+ (6"’ 192}14](]\/_%) UN—%

383 L
+ (_5+192()h4fN%)’U/N% =—2un — thu'](,
4
+1920[gN—%‘*3969N—g+11309Ng+3839N_%}
197
+ L pSuO(en_y) + O(RT),  i=N-1,
11520 )

1 4
<1+ @h ng)UNg

38
+ <—5 + 1920}14ng) uN*%

383 5 .
—+ (10 + 960h4fN_é> ’LLN_% = 6UN — thu'](,
h4
+ @ [gN_% +383gN—% +7669N_%]

181
+ —— 1% (En) + O(R7),

= N 1
11520 ! (17)

The scheme of Equation 9 along with boundary for-
mulae (Equations 14, 15, 16 and 17) yields the five
diagonal linear system of order N x N and may be
written in matrix form as:

AU =C+T, (18)
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AT = C, (19)
AE =T, (20)

where U = (u; 1), U = (ﬂi7%>, T = (tifé) and

E = (eif%) = (Uz;% —EF%) for i = 1(1)N are N-
dimensional column vectors.

Matrix A can be denoted by A = Ay + h*BF,
where:

Ap =

10 -5 1
-5 6 -4 1
1 -4 6 -4 1

1 -5 10
= p?

b

P is a monotone three diagonal matrix defined by:

3 i=j=1,N,
2 i=j=23,- ,N—1,

= 21
0  otherwise.
Matrix B is defined by:
1
B=——
1920
766 383 1
383 1130 396 1
1 236 1446 236 1
1 236 1446 236 1
1 56 246 383
1 56 245
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C =

T o .
c ,c%,~~~,cN_%] given by:

[V

4

1920

C

(7669% + 383¢g: + g%),

Lol

5. .
64, — thBl +

cs = —2A; — thBl

2

4

+ 1920

(383¢1 + 113093 + 39695 + g31),

¢y =0, i=3(1)N-2

4

h
CM_:—%Q—%HE+N%@M%+%®MJ

+1130gy_3 + 383gn_1),

5
CN—% = 6A2 — zth

4

+ ﬁ(gj\/,% + 38391\]7% + 766gN7%).

The above system in Equation 18 can be solved by any
direct or iterative methods.

CONVERGENCE ANALYSIS

Here, we investigate the convergence analysis of the
given method. Here, e; is the discretization error and
t; is the local truncation error defined by:

ti =

—mashtul? (&),  i=
i=2,

497 16,,(6) 52)
i=3(1)N -2,

T 11520
i=N-1,

(
(
—57h%ul9 (&),
(
(én), 1=N,

1111220}16“(8) Env—1)

1%?%0}16“(8)
ro <& <1,
ro <& <1,
Ty <& <wiyt, (22)
<énv-1 <zTn,
<év <IN

Tn—
Tn—

l\)\»—‘ l\j\»—t

Theorem 1

Let u(x) be the exact solution of the boundary value
problem in Equation 1 and W1, 1=1,2,---, N be the
numerical solution obtained by the difference scheme
(Equation 19). Then:

IE]ls = O(h?),

provided h*|f(x)| < 1.
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Proof

We can write error Equation 20 in the following form:
E=A'T =[Ay+h*BF|"'T
=[I+h*Ay'BF)'A;'T,

1Bl < 147 oo I Tl

IA

I+ B* AT BF] oo 1A oo 1 T lloo

-1

< ; (23)
L= 74| Alloo [l Blloo 1] 0

provided that A*||A||o || Bllso || Fllee < 1.

For our numerical procedure based on Equa-
tions 9, 14 to 17 we have B = Iy, a unit matrix, thus
[Blloo = 1.

Following [6], we have:

_ 5(b —a)t + 10(b — a)?h? + 9h*
A < ) 24
147 oo < 33173 (24)
Also, we have:
497
o S —o-h’ Mg, 2
1Tl < <orh My (25)
where Mg = maz|u®(¢)], a < € <b.

Substituting |45 lee, [IBllee and |[|T|jee from
Rations 23 and simplifying we obtain:
497¢Mgh?
1Bl < —
11520(384 — ¢|f(z)])

= 0(h?), (26)

where ¢ = [5(b — a)* + 10(b — a)?h? + 9h*], provided
that:
384
|f(@)] <

(b—a)(5+% + %)

Consequently, it follows that the prescribed numerical
method is a second-order convergent process. This
completes the proof of Theorem 1.0J

NUMERICAL ILLUSTRATIONS

To illustrate the applicability and effectiveness of our
method and also to compare our results with existing
methods, we consider the following fourth-order bound-
ary value problems. These problems have been solved
by the presented method with step lengths h = 27™,
m = 2,3,---,8, and the maximum absolute errors in
numerical solutions are listed in Tables 1 to 3. The

computed results verified that, by reducing the step size
from h to h/2, the observed errors are approximately
reduced by a factor (3)? verifying the theoretical order
of the presented method. We also compared our results
with the second-order methods in references [5,6,8-10].



58

Table 1. The maximum absolute errors in the solution of

Problem 1.

h Our Method Order
: 4.23(—4)

i 3.89(=5) 3.44
= 2.02(—5)

= 5.74(—6) 1.81
= 1.47(—6)
o 3.71(="7) 1.98

Problem 1

Consider the linear BVP in [7]:

ut(z) — u(z) = 4e”, 0<z <1,
uw(0) =1, u"(0) = 3,
u(1) = 2e, u"(1) = 4e.

The theoretical solution for this problem is:

w(z) = (14 z)e”.

This problem has been solved with different values of

h = i7-~~ ,ﬁ and the maximum absolute errors in
the solutions are tabulated in Table 1.

J. Rashidinia, R. Mohammadi and R. Jalilian

Problem 2
Consider the following linear BVP from [5,6,8,9]:

ut(z) + zu(x) = —(8 4 7r + 2°)e”, 0<z<1,
u(0) = 0, u''(0) =0,
u(1) =0, u'(1) = —4e.

The theoretical solution for this problem is:
u(z) = x(1 — z)e”.

We applied our method and compared the results
with those obtained in the quintic spline method at
grid points [5,8], the quartic spline method at off-step
points [6] and the finite difference method [9]. The
results in Table 2 show that our method is giving better
accuracy.

Problem 3
Consider the following linear BVP from [5,6,8,10]:

ut(z) — zu(z) = —(11 + 92 + 2% — 23)e”,

-l<z <,
" 2
u(-1)=0, u'(-1)=-—,
e
u(l) =0, u'(1) = —6e

Table 2. The maximum absolute errors in the solution of Problem 2.

h Our Method In [5] In [6] In [8] In [9]
1 1.54(-3) 3.51(=3) 1.61(=3) — 7.16(—3)
% 1.89(—4) 8.67(—4) 4.24(—4) 1.74(-3) 1.74(-3)
= 9.17(=5) 2.16(—4) 1.08(—4) 4.15(—4) 4.33(—4)
% 2.59(—5) 5.40(—5) 2.70(—5) 1.07(—4) 1.08(—4)
= 6.68(—6) 1.35(=5) 6.75(—6) — 2.70(—5)
== 1.68(—6) — 1.69(—6) — 6.75(—6)
=== 4.23(=T7) — 4.13(="7) — —

Table 3. The maximum absolute errors in the solution of Problem 3.

h Our Method In [5] In [6] In [8] In [10]
1 6.56(—2) 3.78(—2) 1.83(—2) — —
: 4.60(—3) 9.38(—3) 4.65(—3) 4.90(-2) 7.50(—2)
= 1.08(-3) 2.35(—3) 1.17(-3) 1.50(—2) 1.90(—2)
= 2.11(—4) 5.86(—4) 2.94(—4) 4.30(—3) 4.70(=3)
a 1.19(—4) 1.47(—4) 7.34(—5) — —
3z 1.31(=5) — 1.84(—5) — —
=z 1.83(=5) — — — —
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The theoretical solution for this problem is:
u(z) = (1 — z2%)e”.

We solved this problem by our method and compared
our results with the quintic spline method at grid
points [5,8], the quartic spline method at off-step
points [6] and the finite difference method [10]. The
maximum absolute error in the solution of problem
3 is tabulated in Table 3, showing that the error in
the solution of our method is less than in the methods
in [5,6,8,10].

CONCLUSION

As we expected, the numerical results do confirm
the second order of approximation. The maximum
absolute errors in the solution of the fourth-order two-
point boundary value problems given by our method
are smaller than the errors in the methods in [5,6,8-10].
Moreover, we found that the developed quintic spline,
using the off-step point, gives more accurate results in
comparison with the quintic spline used in grid points.
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