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Research Note

Quintic Spline Solution of Boundary Value
Problems in the Plate De
ection Theory

J. Rashidinia1;�, R. Mohammadi1 and R. Jalilian1

Abstract. In this paper, Quintic spline in o�-step points is used for the solution of fourth-order
boundary value problems. Spline relations and boundary formulas are developed and the convergence
analysis of the given method is investigated. Numerical illustrations are given to show the applicability
and e�ciency of our method.
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INTRODUCTION

We consider the fourth-order boundary value problems
of the form:

u(4)(x) + f(x)u(x) = g(x); a � x � b; (1)

subject to the following boundary conditions:

u(a) = A1; u(b) = A2;

u00(a) = B1; u00(b) = B2; (2)

where f(x) and g(x) are continuous on [a; b] and Ai, Bi,
i = 1; 2 are real �nite constants. Such types of fourth-
order boundary value problems arise frequently in the
plate de
ection theory [1]. The analytical solution of
the Problem in Equation 1 for the arbitrary choice of
f(x) and g(x) cannot be determined [1-5]. We assume
that u(x) is su�ciently di�erentiable and that a unique
solution of the problem in Equation 1 exists [2,3,6].

Further discussions of fourth-order boundary
value problems are given in [1-3,7]. Usmani [1] dis-
cussed the existence and uniqueness solutions of such
problems when subjected to the following boundary
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conditions:

u(a) = A1; u(b) = A2;

u0(a) = B1; u0(b) = B2:

Sixth order methods for solving this problem were used
by Usmani [2,3]. Methods of order two and four,
based on quintic and sextic splines, were developed by
Usmani [4,5]. Later, Usmani [6] used quartic splines
for the numerical solution of fourth-order boundary
value problems. Rashidinia [8] and Usmani et al. [9]
derived the quintic spline and non-polynomial quintic
spline methods for the solution of linear fourth-order
boundary value problems. But all the derived methods
use nodal points; only in [6] a quartic spline with o�-
step points is used.

In this paper, �rst a direct method based on the
quintic spline for fourth-order boundary value problems
(Equation 1) is presented. Our aim is to approximate
u(x) satisfying (Equation 1) by using quintic spline
functions, 2 C4[a; b]. This approach will employ
consistency relations at midknot.

Then, the quintic spline formulation is derived for
the numerical solution of Equations 1 and 2. Following
that to retain the bandwidth of the coe�cient matrix
of the system as �ve, we develop the end conditions
of O(h6). Subsequently, convergence analysis is proved
so that the matrix associated with the system of linear
equations that arises is not assumed to be monotone,
as often believed in the post. Finally, the numerical



54 J. Rashidinia, R. Mohammadi and R. Jalilian

evidence is included to demonstrate the e�ciency of
the presented method.

QUINTIC SPLINE FUNCTION

We consider a uniform mesh, �, with nodal points, xi
on [a; b] such that:

� : a = x0 < x 1
2
< x 3

2
< � � � < xN� 1

2
< xN = b;

where xi� 1
2

= a+(i� 1
2 )h, i = 1; 2; � � � ; N and h = b�a

N .
Also, we denote a function value, u(xi) by ui.

De�nition

A quintic spline function, Si(x), interpolating to a
function u(x) on [a; b] is de�ned as following:

1. In each subinterval, [xi; xi+1], Si(x) is a polynomial
of, at most, degree �ve;

2. The �rst-fourth derivatives of Si(x) are continuous
on [a; b];

3. Si(xi) = u(xi), i = 0(1)N .

The spline function, Si(x), for x 2 [xi; xi+1], is de�ned
by:

Si(x) =
5X
k=0

a(k)
i (x� xi)k; i = 0; 1; 2; � � � ; N; (3)

where a(k)
i , k = 0; 1; � � � ; 5 are constants to be deter-

mined.
We further require that the values of the �rst-, se-

cond-, third- and fourth-order derivatives are the same
for the pair of segments that join at each point (xi; ui).

To derive an expression for the coe�cients of
Equation 3, in terms of ui� 1

2
, ui+ 1

2
, Mi� 1

2
, Mi+ 1

2
, Fi� 1

2
and Fi+ 1

2
, we �rst denote:

(i) Si(xi� 1
2
) = ui� 1

2
;

(ii) Si(xi+ 1
2
) = ui+ 1

2
;

(iii) S00i (xi� 1
2
) = Mi� 1

2
;

(iv) S00i (xi+ 1
2
) = Mi+ 1

2
;

(v) S(4)
i (xi� 1

2
) = Fi� 1

2
;

(vi) S(4)
i (xi+ 1

2
) = Fi+ 1

2
: (4)

From algebraic manipulation, we get the following
expression:

a(0)
i =

1
768

h
5h4

�
Fi� 1

2
+ Fi+ 1

2

�
�48h2

�
Mi� 1

2
+Mi+ 1

2

�
+384

�
ui� 1

2
+ ui+ 1

2

�i
;

a(1)
i =

1
5760h

h
7h4

�
Fi+ 1

2
� Fi� 1

2

�
+ 240h2

�
Mi� 1

2
�Mi+ 1

2

�
+5760

�
ui+ 1

2
� ui� 1

2

�i
;

a(2)
i =

1
32

h�h2
�
Fi� 1

2
+ Fi+ 1

2

�
+8
�
Mi� 1

2
+Mi+ 1

2

�i
;

a(3)
i =

1
144h

h
h2
�
Fi� 1

2
� Fi+ 1

2

�
+24

�
Mi+ 1

2
�Mi� 1

2

�i
;

a(4)
i =

1
48

�
Fi� 1

2
+ Fi+ 1

2

�
;

a(5)
i =

1
120h

�
Fi+ 1

2
+ Fi� 1

2

�
;

where i = 0; 1; 2; � � � ; N . The continuity of the �rst
derivative implies:

Mi� 3
2

+ 22Mi� 1
2

+Mi+ 1
2

=
h2

240
(7Fi� 3

2
� 254Fi� 1

2
+ 7Fi+ 1

2
)

+
24
h2 (ui� 3

2
� 2ui� 1

2
+ ui+ 1

2
);

i = 2(1)N � 1; (5)

and the continuity of the third derivative yields:

Mi� 3
2
� 2Mi� 1

2
+Mi+ 1

2

=
h2

24
(Fi� 3

2
+ 22Fi� 1

2
+ Fi+ 1

2
);

i = 2(1)N � 1: (6)

Subtracting Equation 6 from Equation 5 and dividing
it by 24, we obtain:
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Mi� 1
2

=
1
h2 (ui� 3

2
� 2ui� 1

2
+ ui+ 1

2
)

� h2

1920
(Fi� 3

2
+ 158Fi� 1

2
+ Fi+ 1

2
): (7)

Elimination of Mi's between Equations 6 and 7 leads
to the following useful relation:

ui� 5
2
� 4ui� 3

2
+ 6ui� 1

2
� 4ui+ 1

2
+ ui+ 3

2

=
h4

1920
(Fi� 5

2
+ 236Fi� 3

2
+ 1446Fi� 1

2

+ 236Fi+ 1
2

+ Fi+ 3
2
);

i = 3(1)N � 2: (8)

NUMERICAL METHOD

Now, we consider Equation 1 subject to boundary con-
ditions (Equation 2). We discretize the given system in
Equation 1 at the grid points, xi, i = 3; 4; � � � ; N � 2,
and use the spline relation (Equation 8). We obtain the
(N�4) linear algebraic equation in the (N) unknowns,
ui� 1

2
, i = 1; 2; � � � ; N , as: 

1 +
1

1920
h4fi� 5

2

!
ui� 5

2

+
�
�4 +

236
1920

h4fi� 3
2

�
ui� 3

2

+
�

6 +
1446
360

fi� 1
2

�
h4ui� 1

2

+
�
�4 +

236
1920

h4fi+ 1
2

�
ui+ 1

2

+
�

1 +
1

1920
h4fi+ 3

2

�
ui+ 3

2

=
h4

1920
(gi� 5

2
+ 236gi� 3

2
+ 1446gi� 1

2

+ 236gi+ 1
2

+ gi+ 3
2
); i = 3(1)N � 2; (9)

where fi = f(xi) and gi = g(xi).
To obtain the unique solution of the above sys-

tems, we need four more equations. By using a Taylor
series and the method of undetermined coe�cients, the
boundary formulas associated with boundary condi-
tions (Equation 2) can be determined as follows:

a0u0 + a1u 1
2

+ a2u 3
2

+ a3u 5
2

+ ch2u000

+ h4
h
b1u

(4)
1
2

+ b2u
(4)
3
2

+ b3u
(4)
5
2

i
+ t1 = 0; (10)

a00u0 + a01u 1
2

+ a02u 3
2

+ a03u 5
2

+ a04u 7
2

+ c0h2u000

+ h4
h
b01u(4)

1
2

+ b02u(4)
3
2

+ b03u(4)
5
2

+ b04u(4)
7
2

i
+ t2 = 0; (11)

and:

a
0�
0 uN + a

0�
1 uN� 1

2
+ a

0�
2 uN� 3

2
+ a

0�
3 uN� 5

2

+ a
0�
4 uN� 7

2
+ c

0�h2u00N + h4
h
b
0�
1 u

(4)
N� 1

2

+b
0�
2 u

(4)
N� 3

2
+ b

0�
3 u

(4)
N� 5

2
+ b

0�
4 u

(4)
N� 7

2

i
+ tN�1 = 0; (12)

a�0uN + a�1uN� 1
2

+ a�2uN� 3
2

+ a�3uN� 5
2

+ c�h2u00N

+ h4
h
b�1u(4)

N� 1
2

+ b�2u(4)
N� 3

2
+ b�3u(4)

N� 5
2

i
+ tN = 0; (13)

In order that t1, t2, tN�1 and tN are O(h6), we �nd
that:

(a0; a1; a2; a3; c) = (a�0; a�1; a�2; a�3; c�)

=
�
�6; 10;�5; 1;

5
4

�
;

(b1; b2; b3) = (b�1; b�2; b�3) = �
�

383
960

;
383
1920

;
1

1920

�
;

(a00; a01; a02; a03; a04; c0) = (a
0�
0 ; a

0�
1 ; a

0�
2 ; a

0�
3 ; a

0�
4 ; c

0�)

=
�

2;�5; 6;�4; 1;
1
4

�
;

(b01; b02; b03; b04) = (b
0�
1 ; b

0�
2 ; b

0�
3 ; b

0�
4 )

= �
�

383
1920

;
113
192

;
33
160

;
1

1920

�
:

From the above relations, we obtain the following
equations: 

10 +
383
960

h4f 1
2

!
u 1

2
+
�
�5 +

383
360

h4f 3
2

�
u 3

2

+
�

1 +
1

1920
h4f 5

2

�
u 5

2
= 6u0 � 5

4
h2u000

+
h4

1920

h
766g 1

2
+ 383g 3

2
+ g 5

2

i
+

181
11520

h6u(6)(�1) +O(h7); i = 1; (14)



56 J. Rashidinia, R. Mohammadi and R. Jalilian

 
�5 +

383
1920

h4f 1
2

!
u 1

2
+
�

6 +
113
192

h4f 3
2

�
u 3

2

+
�
�4 +

33
160

h4f 5
2

�
u 5

2
+
�

1 +
1

1920
h4f 7

2

�
u 7

2

= �2u0 � 1
4
h2u000 +

h4

1920

h
383g 1

2
+ 1130g 3

2

+396g 5
2

+ g 7
2

i
+

497
11520

h6u(6)(�1) +O(h7);

i = 2; (15)

and: 
1 +

1
1920

h4fN� 7
2

!
uN� 7

2

+
�
�4 +

33
160

h4fN� 5
2

�
uN� 5

2

+
�

6 +
113
192

h4fN� 3
2

�
uN� 3

2

+
�
�5+

383
1920

h4fN� 1
2

�
uN� 1

2
=�2uN � 1

4
h2u00N

+
h4

1920

h
gN� 7

2
+396gN�5

2
+1130gN 3

2
+383gN� 1

2

i
+

497
11520

h6u(6)(�N�1) +O(h7); i = N � 1;
(16) 

1 +
1

1920
h4fN� 5

2

!
uN� 5

2

+
�
�5 +

38
1920

h4fN� 3
2

�
uN� 3

2

+
�

10 +
383
960

h4fN� 1
2

�
uN� 1

2
= 6uN � 5

4
h2u00N

+
h4

1920

h
gN� 5

2
+ 383gN� 3

2
+ 766gN� 1

2

i
+

181
11520

h6u(6)(�N ) +O(h7); i = N: (17)

The scheme of Equation 9 along with boundary for-
mulae (Equations 14, 15, 16 and 17) yields the �ve
diagonal linear system of order N � N and may be
written in matrix form as:

AU = C + T; (18)

AU = C; (19)

AE = T; (20)

where U = (ui� 1
2
), U =

�
ui� 1

2

�
, T =

�
ti� 1

2

�
and

E =
�
ei� 1

2

�
=
�
ui� 1

2
� ui� 1

2

�
for i = 1(1)N are N -

dimensional column vectors.
Matrix A can be denoted by A = A0 + h4BF ,

where:

A0 =

0BBBBBBBBBBBBBBB@

10 �5 1
�5 6 �4 1
1 �4 6 �4 1

. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .
1 �4 6 �4 1

1 �4 6 �5
1 �5 10

1CCCCCCCCCCCCCCCA
= P 2;

P is a monotone three diagonal matrix de�ned by:

pij =

8>>><>>>:
3 i = j = 1; N;
2 i = j = 2; 3; � � � ; N � 1;
�1 ji� jj = 1;
0 otherwise:

(21)

Matrix B is de�ned by:

B =
1

19200BBBBBBBBBBBBBBB@

766 383 1
383 1130 396 1
1 236 1446 236 1

. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .
1 236 1446 236 1

1 56 246 383
1 56 245

1CCCCCCCCCCCCCCCA
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C = [c 1
2
; c 3

2
; � � � ; cN� 1

2
]T given by:

c 1
2

= 6A1 � 5
4
h2B1 +

h4

1920
(766g 1

2
+ 383g 3

2
+ g 5

2
);

c 3
2

= �2A1 � 1
4
h2B1

+
h4

1920
(383g 1

2
+ 1130g 3

2
+ 396g 5

2
+ g 7

2
);

ci� 1
2

= 0; i = 3(1)N � 2;

cN� 3
2

= �2A2 � 1
4
h2B2 +

h4

1920
(gN� 7

2
+ 396gN� 5

2

+ 1130gN� 3
2

+ 383gN� 1
2
);

cN� 1
2

= 6A2 � 5
4
h2B2

+
h4

1920
(gN� 5

2
+ 383gN� 3

2
+ 766gN� 1

2
):

The above system in Equation 18 can be solved by any
direct or iterative methods.

CONVERGENCE ANALYSIS

Here, we investigate the convergence analysis of the
given method. Here, ei is the discretization error and
ti is the local truncation error de�ned by:

ti =8>>>>>><>>>>>>:
� 181

11520h
6u(6)(�1); i = 1

� 497
11520h

6u(6)(�2); i = 2;
� 1

24h
6u(6)(�i); i = 3(1)N � 2;

� 497
11520h

6u(8)(�N�1); i = N � 1;
� 181

11520h
6u(8)(�N ); i = N;

x0 < �1 < x 1
2
;

x0 < �2 < x 1
2
;

xi� 1
2
< �i < xi+ 1

2
;

xN� 1
2
< �N�1 < xN ;

xN� 1
2
< �N < xN :

(22)

Theorem 1

Let u(x) be the exact solution of the boundary value
problem in Equation 1 and ui� 1

2
, i = 1; 2; � � � ; N be the

numerical solution obtained by the di�erence scheme
(Equation 19). Then:

kEk1 = O(h2);

provided h4jf(x)j < 1.

Proof
We can write error Equation 20 in the following form:

E = A�1T = [A0 + h4BF ]�1T

= [I + h4A�1
0 BF ]�1A�1

0 T;

kEk1 � kA�1k1kTk1
� k[I + h4A�1

0 BF ]�1k1kA�1
0 k1kTk1;

kEk1 � kA�1
0 k1kTk1

1� h4kAk1kBk1kFk1 ; (23)

provided that h4kAk1kBk1kFk1 < 1.
For our numerical procedure based on Equa-

tions 9, 14 to 17 we have B = IN , a unit matrix, thus
kBk1 = 1.

Following [6], we have:

kA�1
0 k1 � 5(b� a)4 + 10(b� a)2h2 + 9h4

384h4 : (24)

Also, we have:

kTk1 � 497
11520

h6M6; (25)

where M6 = maxju(6)(�)j, a � � � b.
Substituting kA�1

0 k1, kBk1 and kTk1 from
Rations 23 and simplifying we obtain:

kEk1 � 497�M6h2

11520(384� �jf(x)j) = O(h2); (26)

where � = [5(b � a)4 + 10(b � a)2h2 + 9h4], provided
that:

jf(x)j < 384
(b� a)4(5 + 10

N2 + 9
N4 )

:

Consequently, it follows that the prescribed numerical
method is a second-order convergent process. This
completes the proof of Theorem 1.�

NUMERICAL ILLUSTRATIONS

To illustrate the applicability and e�ectiveness of our
method and also to compare our results with existing
methods, we consider the following fourth-order bound-
ary value problems. These problems have been solved
by the presented method with step lengths h = 2�m,
m = 2; 3; � � � ; 8, and the maximum absolute errors in
numerical solutions are listed in Tables 1 to 3. The
computed results veri�ed that, by reducing the step size
from h to h=2, the observed errors are approximately
reduced by a factor ( 1

2 )2 verifying the theoretical order
of the presented method. We also compared our results
with the second-order methods in references [5,6,8-10].
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Table 1. The maximum absolute errors in the solution of
Problem 1.

h Our Method Order
1
4 4.23(�4)
1
8 3.89(�5) 3:44
1
16 2.02(�5)
1
32 5.74(�6) 1:81
1
64 1.47(�6)
1

128 3.71(�7) 1:98

Problem 1

Consider the linear BVP in [7]:

u4(x)� u(x) = 4ex; 0 < x < 1;

u(0) = 1; u00(0) = 3;

u(1) = 2e; u00(1) = 4e:

The theoretical solution for this problem is:

u(x) = (1 + x)ex:

This problem has been solved with di�erent values of
h = 1

4 ; � � � ; 1
128 and the maximum absolute errors in

the solutions are tabulated in Table 1.

Problem 2

Consider the following linear BVP from [5,6,8,9]:

u4(x) + xu(x) = �(8 + 7x+ x3)ex; 0 < x < 1;

u(0) = 0; u00(0) = 0;

u(1) = 0; u00(1) = �4e:

The theoretical solution for this problem is:

u(x) = x(1� x)ex:

We applied our method and compared the results
with those obtained in the quintic spline method at
grid points [5,8], the quartic spline method at o�-step
points [6] and the �nite di�erence method [9]. The
results in Table 2 show that our method is giving better
accuracy.

Problem 3

Consider the following linear BVP from [5,6,8,10]:

u4(x)� xu(x) = �(11 + 9x+ x2 � x3)ex;

�1 < x < 1;

u(�1) = 0; u00(�1) =
2
e
;

u(1) = 0; u00(1) = �6e:

Table 2. The maximum absolute errors in the solution of Problem 2.

h Our Method In [5] In [6] In [8] In [9]
1
4 1:54(�3) 3:51(�3) 1:61(�3) | 7:16(�3)
1
8 1:89(�4) 8:67(�4) 4:24(�4) 1:74(�3) 1:74(�3)
1
16 9:17(�5) 2:16(�4) 1:08(�4) 4:15(�4) 4:33(�4)
1
32 2:59(�5) 5:40(�5) 2:70(�5) 1:07(�4) 1:08(�4)
1
64 6:68(�6) 1:35(�5) 6:75(�6) | 2:70(�5)
1

128 1:68(�6) | 1:69(�6) | 6:75(�6)
1

256 4:23(�7) | 4:13(�7) | |

Table 3. The maximum absolute errors in the solution of Problem 3.

h Our Method In [5] In [6] In [8] In [10]
1
4 6:56(�2) 3:78(�2) 1:83(�2) | |
1
8 4:60(�3) 9:38(�3) 4:65(�3) 4:90(�2) 7:50(�2)
1
16 1:08(�3) 2:35(�3) 1:17(�3) 1:50(�2) 1:90(�2)
1
32 2:11(�4) 5:86(�4) 2:94(�4) 4:30(�3) 4:70(�3)
1
64 1:19(�4) 1:47(�4) 7:34(�5) | |
1

128 1:31(�5) | 1:84(�5) | |
1

256 1:83(�5) | | | |
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The theoretical solution for this problem is:

u(x) = (1� x2)ex:

We solved this problem by our method and compared
our results with the quintic spline method at grid
points [5,8], the quartic spline method at o�-step
points [6] and the �nite di�erence method [10]. The
maximum absolute error in the solution of problem
3 is tabulated in Table 3, showing that the error in
the solution of our method is less than in the methods
in [5,6,8,10].

CONCLUSION

As we expected, the numerical results do con�rm
the second order of approximation. The maximum
absolute errors in the solution of the fourth-order two-
point boundary value problems given by our method
are smaller than the errors in the methods in [5,6,8-10].
Moreover, we found that the developed quintic spline,
using the o�-step point, gives more accurate results in
comparison with the quintic spline used in grid points.
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