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A New Category of Relations:
Combinationally Constrained Relations

S.M.T. Rohani Rankoohi1 and S.H. Mirian Hosseinabadi2;�

Abstract. The normalization theory in relational database design is a classical subject investigated
in di�erent papers. The results of these research works are the stronger normal forms such as 5NF,
DKNF and 6NF. In these normal forms, there are less anomalies and redundancies, but it does not mean
that these stronger normal forms are free of anomalies and redundancies. Each normal form discussion
is based on a particular constraint. In this paper, we introduce relations which contain a new kind of
constraint called \combinational constraint". We distinguish two important kinds of this constraints,
namely Strong and Weak. Also we classify the Combinationally Constrained Relations as Single and
Multiple. We introduce all kinds of such relations and specify them using their quantitative properties,
formally. It can be shown that these relations are in 5NF or 6NF and still they contain redundancies and
have some anomalies.

Keywords: Relation; Constrained attribute; Free attribute; Combinational constraint; Combinationally
constrained relation; Weak combinational constraint; Strong combinational constraint.

INTRODUCTION

The subject of normalization in the process of re-
lational database design and even in the process of
object-oriented database design is a classical and well-
known subject. In everyday-life applications and,
in particular, when we have many relations and a
large amount of data, normalization of relations is
still one of the important phases in the designing of
application systems. However, there are situations and
applications in which non-normal relations are more
e�cient.

The main objective of the normalization process
is to reduce the redundancy and anomalies as much
as possible. Di�erent normal forms are introduced,
among which the strongest form is 6NF [1,2] (leave
aside Domain Key Normal Form (DKNF) which is not
reachable in practice [3]). Based on the main objective
of the normalization process [4], a relation which is in
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5NF should have less redundancies and be free of 4NF
relation anomalies. This is the same in 6NF which is
the latest and strongest normal form.

As we will see later in the related works, the
research on the normalization theory was done until
the late 80s, but less in the 90s. In particular, there
is not much theoretical research on the subject of
5NF and 6NF relation schemas. Each normal form
discussion is based on a particular constraint, for
example in the 4NF relations, there exists a special
semantic constraint, i.e. the so called \Cyclic Nature
Constraint [4]".

In this paper, we introduce another kind of con-
straint in relations, which we call the \combinational
constraint". First, we introduce two types of this con-
straint, namely Strong and Weak. Then, we distinguish
two kinds of relation, namely Single and Multiple. And
�nally, based on these two types, we introduce various
kinds of Combinationally Constrained Relations and
investigate some of their quantitative properties. In
our future paper, we will show that these relations
are in 5NF or 6NF and despite their high level of
normality, they can have a lot of redundancies and
some anomalies.

From now on, we use the basic symbols given
in Table 1. The complete set of symbols that are
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Table 1. Basic Symbols

Symbol De�nition

C Combinational constraint

R Combinationally Constrained Relation

r Body of R
c The number of C in a r

#r Cardinality of R
(the number of tuples in r)

n Degree of relation

[A]t Attribute(s) A of tuple t

[[A]]t Value of attribute(s) A in tuple t

P Power set

; Empty set

presented and used in this paper will be given in the
nomenclature at the end of paper. To present the
formal de�nitions, we use the First Order Logic and
Predicate Calculus and follow the notation suggested
by Spivey in the Z notation manual [5].

The rest of the paper is organized as follows:
First, an overview of related works is given. Then,
basic de�nitions and concepts are introduced. Next,
the main categories of R, namely Strong, Weak, Single
and Multiple R, are discussed. This is followed by
other kinds of R, and their properties. Subsequently,
a case study is given to show that there are ev-
eryday used relations having this type of semantic
constraint. Finally, the conclusion and future works
are discussed.

RELATED WORKS

Each normal form in the normalization theory is based
on a speci�c constraint. Beside Codd classical normal
forms (1NF, 2NF and 3NF), in stronger normal forms
these constraints are:

� In BCNF: Each determinant must be a candidate
key;

� In 4NF: \Multivalued dependencies" must not exist;

� In 5NF: \Join dependencies" not implied by the
candidate keys must not exist;

� In 6NF: Join dependencies must not exist, either im-
plied by the candidate keys or by non-key attributes.

But, the constraint we introduce in this paper, namely
combinational constraint, to the best of our knowledge,
has not been considered before. It can be shown that,
although some of the Combinationally Constrained
Relations are in 5NF and even some in 6NF, these
relations still contain a lot of redundancies and, as a
result, they have anomalies.

Many of the advanced normal forms are due
to Fagin. Speci�cally the discussion on 4NF, 5NF
(PJNF) and DKNF can be found in [6-8]. Since
their introduction, many database texts have discussed
them [3,4,9-11], but mostly through a simple example.
During the 1980s, there were a number of research
works on relational database design, particularly on
decomposition and join dependency. The decompos-
ability phenomenon for relations with a degree of n,
where n > 2, was �rst noted in [12]. The work of
Gyssens can also be mentioned in this respect [8,13,14].
The justi�cation for 4NF can be found in [15]. Other
work by Vincent on normal forms [16-19] are also
notable. Since 2000, there have been a number of
works done on the decomposition of relations and
in [20], a justi�cation for inclusion dependency can be
found. In [21], partitioned normal form relations are
discussed. An information theory based approach for
normal forms (4NF and 5NF) is proposed in [22]. The
6NF is solely introduced in [1,2].

BASIC DEFINITIONS AND CONCEPTS

In this section, the concept of R as well as other
preliminary concepts are introduced.

De�nition 1

Combinationally Constrained Relation
Let R(A1; A2; � � � ; An) be a relation schema and n and
k two integers such that n > 2 and 2 � k � n� 1. R is
combinationally constrained if, and only if, R satis�es
the following conditions:

1. Attributes A1; A2; � � � ; An take their values from
the disjoint domains D1; D2; � � � ; Dn, respectively.

2. The body of R satis�es the following two time-
independent constraints:

(a) The cardinality of R(#r) is greater than or
equal to Cnk = n!

(n�k)!�k! , i.e. the number of
combinations of k from n.

(b) The values of each attribute in Cn�1
k�1 tuples of

r are equal. We call such attributes, in each
tuple, \combinationally constrained attributes"
and the set of such attributes for each tuple, t,
is denoted by [AC ]t.

As said before, we call such a relation a Combination-
ally Constrained Relation, which is denoted by R.�

It is worthy to mention that there are many
subsets of D1 �D2 � � � � �Dn which satisfy the above
constraints and they are not rare in practice. We
will show some samples of these relations in our case
study.
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De�nition 2

Constraint Degree
The constraint degree of R is de�ned as the number of
attributes under the C in r and we denote it by #AC
cardinality of AC).�
De�nition 3

Free Attributes
In each tuple of r there exists the same number of
attributes that are not combinationally constrained,
which we call Free. The set of \free attributes" of a R
in each tuple t is denoted by [AF ]t, and the number of
such attributes is shown by #AF (cardinality of AF ).�

Motivating Example

Here, we discuss a real example to show the e�ect of
such a constraint on a relation. We will continue this
example in the case study. Consider a university as a
micro real world. Assume the following entities in this
environment: Professor, Course, Department, Book,
Room. Consider the following semantic rules:

� A professor may teach more than one course in a
term;

� A professor may teach in more than one department;
� A course may be o�ered in more than one section;
� A course may be taught based on more than one

book.

We assume that the reader of this paper is familiar with
the database conceptual modeling (for example, with
the EER method) and skip this phase. The relational
database for such an environment may include the
following relations:

� PROFESSOR (P#, PNAME, � � � ),
� COURSE (C#, CTITLE, � � � ),
� DEPARTMENT (D#, DTITLE, � � � ),
� BOOK (B#, BTITLE, � � � ),
� ROOM (R#, RCAP, � � � ),
� � � �
The following relation shows the relationship among
three entities, namely, PROFESSOR, COURSE and
DEPARTMENT.

PCD (P#; C#; D#):

The semantic of the relation PCD is: Professor p
teaches course c in department d. The above relation-
ship can have some more attributes, e.g. Y T : year-
term and S#: section number.

PCDA (P#; C#; D#; Y T; S#):

The semantic of the relation PCDA is: Professor p
teaches section s of course c in department d in year-
term yt.

Figure 1 shows a sample body for PCDA which
has a R. We categorized this relation as a Single and
Strong (see the next section for details) R (denoted
by �s) with the degree of �ve (i.e. n = 5) and its
constraint degree is equal to 4 (i.e. #AC = 4 and
#AF = 1). For instance, in the �rst tuple of the
body of PCDA given in Figure 1, we have: Professor
p = 1001 teaches section s = 2 of course c = 40100 in
department d = 40 in year-term yt = 851.

This relation and, in general, all Combinationally
Constrained Relations of degree n and with Constraint
Degree n � 1 is in 6NF. In fact, it can be proved
that every combination of n � 1 attributes of such
a relation is a candidate key. For example, the
candidate keys of the relation shown in Figure 1
are fP#; C#; D#; Y Tg, fP#; C#; D#; S#g,
fP#; C#; Y T; S#g, fP#; D#; Y T; S#g, and
fC#; D#; Y T; S#g. It is obvious that there is
just one extra attribute in this relation in addition to
its candidate key. On the other hand, it is in 5NF
because it does not contain any Cyclic Constraint [4].
Therefore, according to the de�nitions given in [1,2], it
is in 6NF. But, still, this relation has anomalies such
as:
� Update operation: If the user wants to change

the value of one of the attributes, s/he has to
update four out of �ve tuples, otherwise the existing
combinational constraint will be violated. This
means that a tuple-level operation is transformed
to a set-level operation.

� Delete operation: If the user deletes one or more
tuples from such a relation, the combinational con-
straint will disappear. This means that the deletion
operation is not possible at all unless all the tuples
of the relation are deleted.

� Insert operation: If the user inserts an arbitrary
tuple into this relation, the Simple Combinational
Constraint will disappear and the relation will have
a combinational constraint from a di�erent category.
It is possible to insert another set of tuples consisting

Figure 1. �s - Single Strong R.
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of another C into this relation. In fact, in these
cases, the relation will have a Multiple R (see next
subsection for di�erent categories of R relations).

It should be noted that the combinational con-
straint imposes a type of \domain constraint" [8] (vice
versa is not true). From this point of view, it can be
said that the above mentioned anomalies are due to the
domain constraints too.

A General View

Now, we give a general view of the categorization that
is introduced for the relations having combinational
constraints. A R, based on its constraint degree, can
be categorized as Strong or Weak. In the case of Weak
R, it is possible to have more than one C in the relation
R. We introduce two types of relations, namely Unary
and Doubly (or Binary) Weak R. A Doubly Weak R
can be Symmetric or Asymmetric. A Symmetric or
Asymmetric Doubly Weak R can be Pure or Impure.
From another point of view, a R can be Single or
Multiple. To �nd other kinds of R, we combine the

main categories of R, namely Strong and Weak and
Single and Multiple together. In the speci�cation-
generalization tree shown in Figure 2, all kinds of R
are introduced. The formal de�nitions of all kinds of
R are given next.

STRONG AND WEAK R
A R, based on its constraint degree, can be categorized
as Strong or Weak. In the following, we give the
de�nitions of Strong and Weak R.

De�nition 4

Strong R
A R is strong when its constraint degree is equal to
n� 1, i.e.:

n � 3 ^ (c = 1 () #AC = n� 1 ^#AF = 1):

We represent such a constraint by Cs and the relation
with such a constraint by Rs.�

Figure 2. The speci�cation-generalization tree of all kinds of R
.
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Example 1

In the relation R1(A;B;C;D) with the body shown in
Figure 3, there is a Cs where #AC = 3 and #AF = 1.
The cardinality of this relation is C4

3 = 4 and, in C3
2 = 3

tuples, the values of each combinationally constrained
attribute are equal. Figure 3 shows the AC and AF of
each tuple in the appropriate columns.�

De�nition 5

Weak R
A R is Weak when there are less than n� 1 attributes
under the C, i.e.:

n � 4 ^ 2 � #AC < n� 1 ^ 1 < #AF � n� 2:

Such a constraint is denoted by Cw and the relation
with such a constraint is represented by Rw.�

Example 2

In relation R2(A;B;C;D;E) with the body shown in
Figure 4, there is a Cw where #AC = 3 and #AF = 2.
The number of tuples of this relation is C5

3 = 10 and

Figure 3. A sample of Strong R(Rs) (n = 4, #r = 4,
#AC = 3, #AF = 1).

Figure 4. A sample of Weak R (Rw) (n = 5, #r = 10,
#AC = 3, #AF = 2).

in C4
2 = 6 tuples, the values of each combinationally

constrained attribute are equal.�
For understanding the Rw, the frequency of in-

dexes of attribute values in the tuples of the relation
R2 (shown in Figure 4) should be noticed. For
example, the values of attribute A in six tuples have
the index (1), since the values of each combinationally
constrained attribute in six tuples must be equal.

Unary and Doubly Rw
In the case of Rw, it is possible to have more than
one C in relation R. We now introduce two types of
relation, namely Unary and Doubly (or Binary) Rw.
Theoretically, we can have a relation in which the
number of Cs are more than two. We call these types
of relation c-ary, i.e.:

c > 2^
(8i : 1 � � � c � (#AC)i < n� 1 ^ (#AF )i > 1);

but we will not consider them in this paper for the sake
of brevity.

De�nition 6

Unary Rw
A Rw is unary if there is no other set of attributes dis-
tinct from the set of previously constrained attributes
in which another C can be found. In other words, the
values of each free attribute in at least two tuples are
not equal. This proves that there is only one Cw in Rw,
i.e.:

c = 1 () 9 t1; t2 : r j t1 6= t2 � [[AF ]]t1 6= [[AF ]]t2 :

The relation with such a constraint is denoted byRwu .�

De�nition 7

Doubly Rw
A Rw is doubly if there is only one set of attributes dis-
tinct from the set of previously constrained attributes
in which another C can be found. In other words, the
values of free attributes in Cn�1

#AF�1 tuples are equal.
This means there are two Cw included in relation R,
i.e.:

c = 2 () 9 r1 : Pr j #r1 = Cn�1
#AF�1�

8t1; t2 : r1 j t1 6= t2 � [[AF ]]t1 = [[AF ]]t2 :

The relation having such a constraint is denoted byRwd .
The number of constrained attributes under constraint
Ci is denoted by (#AC)i, i 2 f1; 2g.�
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Symmetric and Asymmetric Rwd
A Rwd can be Symmetric or Asymmetric. The following
de�nitions specify them formally.

De�nition 8

Symmetric Rwd
A Rwd is Symmetric if the two Cws have distinct sets
of constrained attributes with the same constraint
degrees, i.e.:

(#AC)1 = (#AC)2 ^ 8t : r � [(AC)1]t \ [(AC)2]t = ;:
The relation having such constraints is denoted by
Rwxd .�

De�nition 9

Asymmetric Rwd
A Rwd is Asymmetric if the two Cws have distinct
sets of constrained attributes with di�erent constraint
degrees, i.e.:

(#AC)1 6= (#AC)2 ^ 8t : r � [(AC)1]t \ [(AC)2]t = ;:
The relation having such constraints is represented by
Rwyd .�

Example 3

Relation R3 in Figure 5 has two Cwd s (i.e. (#AC)1 =
3, (#AF )1 = 2, (#AC)2 = 2, (#AF )2 = 3). Since
(#AC)1 6= (#AC)2, then it is an example of Rwyd .�

It is obvious that in the presence of two Cws,
each time that one of two Cws is considered, (#AC)i,
i 2 f1; 2g attributes in each tuple are under that Cw
and (#AF )i � n� (#AC)i attributes do not have that
constraint and are free with respect to that Cw.

Pure and Impure Rwxd or Rwyd
A Symmetric or Asymmetric Rwd can be Pure or
Impure. For the de�nition of ImPure Rwd , we need
to de�ne the concept of absolutely free attributes.

De�nition 10

Absolutely Free Attributes
In a Doubly WeakR, Symmetric (Rwxd ) or Asymmetric
(Rwyd ), there can be at least one extra attribute which
is not under either of the two Cws. We call such
attributes `Absolutely free attributes' and the set of
such attributes in a relation is denoted by AFa . The
number of AFa in a relation is shown by #AFa (the
cardinality of AFa )�

The following de�nitions specify Pure and Impure
Rwd formally.

De�nition 11

Pure Rwd
Rwxd or Rwyd is Pure if there is not an attribute in the
relation under either of the two Cws, i.e.:

n � 4 ^ (#AFa = 0 () (8i : 1 � � � 2 � (#AC)i
+ (#AF )i = n)):

Such a relation is denoted by Rwxdp or Rwydp .�

De�nition 12

Impure Rwd
A Rwxd or Rwyd is Impure if there is at least one
attribute in the relation which is not under the two

Figure 5. A sample of Asymmetric Doubly Weak R(Rwyd ) (n = 5, #r = 10, (#AC)1 = 3, (#AC)2 = 2).
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Cws, i.e.:

n � 5 ^ (#AFa > 0 () (8i : 1 � � � 2 �
(#AC)i + (#AF )i + (#AFa )i = n)):

Such a relation is represented by Rwxdi or Rwydi . �
It should be noted that in the Impure R, the

cardinality of R is greater than or equal to Cn�#AFa
k

and the values of constrained attributes in Cn�#AFa �1
k�1

tuples are equal.

Example 4

The relation R3 shown in Figure 5 is an example of
Rwydp too. �

SINGLE AND MULTIPLE R
A R can be Single or Multiple. In the following, we
give the formal de�nitions of these kinds of R. But
�rst, we de�ne the concept of a Module Relation.

De�nition 13

Module Relation
A Module Relation is a set of tuples with a C (Strong
or Weak) and is denoted by M. The Strong M
is a M having a Cs and the Weak M is a M
having a Cw, which are denoted by Ms and Mw,
respectively.�

In general, a R can include one or more than one
M. In the rest of the paper, we use the module symbols
de�ned in Table 2.

De�nition 14

Single R
R is called Single if it contains just one M, i.e. m =
1 ^#r = #rM. Such a relation is represented by �.�

Table 2. Module Symbols

Symbol De�nition

m The number of M
ms The number of Ms

mw The number of Mw

rM The body of M
#rM The cardinality of M

De�nition 15

Multiple R
A R is called Multiple if it contains more than oneM,
i.e.:

m > 1 ^#r �Xm

j=1
(#rM)j :

We denote such a relation by (�)m, where m > 1. In
other words we have

Sm
j=1Mj � R since R can have

extra arbitrary tuples which are not necessarily under
the Cs.�

A (�)m with m = 1 is �, as de�ned in De�ni-
tion 14, and we have � = (�)1. The general form of
a (�)m with m = 2 and without extra tuples where,
in each module #AC = n � 1, is shown in Figure 6.
In other words, there are two Ms in this relation. It
is obvious that the order of tuples is not signi�cant.
Figure 7 shows the same relation as Figure 6 with some
extra tuples.

OTHER KINDS OF R
To �nd other kinds of R, we combine the main
categories of R, namely Strong and Weak and Single
and Multiple together.

Kinds of Single R
In the case of single relations (�), we can have:

� Strong (�s), in which there is only one Strong C (i.e.
ms = 1 ^mw = 0);

� Weak (�w), in which we can have Weak Cs, has two
subcategories, namely Unary (i.e. ms = 0^mw = 1)
and Doubly (i.e. 8i : 1 � � � 2 � (#AC)i < n � 1 ^
(#AF )i > 1), as follows:

Figure 6. General form of Multiple R((�)2)(#r = 2 � n).
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Figure 7. General form of Multiple R with extra tuples
((�)2)(#r = 2 � n+ x).

? Unary (�wu ), in which there is only one Weak C;
? Doubly (�wd ), in which there are two Weak Cs.

This kind of R can be:
* Symmetric (�wxd ), which means the #ACs of
Cs are equal;

* Asymmetric (�wyd ), when the #ACs of Cs are
not equal.

These two later kinds can be both:
* Pure (�wxdp or �wydp ), in which no extra attribute

is available;
* Impure (�wxdi or �wydi ), in which at least one

extra attribute can be found.

We will discuss the quantitative properties of the
various kinds of Single R in the next section.

The general form of a �s is shown in Figure 8,
where ai1 and ai2 are two distinct values of the
attribute Ai from domain Di. The constrained and
free attributes of each tuple are shown in Figure 8.

Kinds of Multiple R
In the case of Multiple relations ((�)m) we can have:

� Strong ((�s)m) in which all module relations are
Strong. We gave the general form of a Multiple R
with two Ms in Figure 6;

� Weak ((�w)m) in which at least one of the module
relations is Weak. This subcategory of Multiple
relations can be:
? Unary ((�wu )m) in which all module relations are

unary Weak;
? Doubly ((�wd )m) in which all module relations are

doubly Weak;
? Composite ((�wc )m) in which the module relations

can have di�erent types, namely Strong or Weak.
The Unary or Doubly Weak subcategories can be
categorized in two di�erent subcategories as follows:
? Homogeneous ((�wuh)m or (�wdh)m) in which all

module relations have the same properties;
? Heterogeneous ((�wut)m or (�wdt)m) when module

relations can have di�erent properties.
The Homogeneous Doubly Weak subcategory can
be:
? Symmetric ((�wxdh )m) in which all module rela-

tions are Symmetric;
? Asymmetric ((�wydh )m) in which all module rela-

tions are Asymmetric with the same properties.
and each one of them can be:
? Pure ((�wxdhp)m or (�wydhp)

m);
? Impure ((�wxdhi)m or (�wydhi)

m).
Notice that all Heterogeneous Doubly Weak rela-
tions are, by de�nition, Asymmetric ((�wydt )m) and
they can be categorized as:

Figure 8. General form of Single and Strong R(�s) (#r = n, #AC = n� 1, #AF = 1).
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? Pure ((�wydtp)
m);

? Impure ((�wydti)
m).

We will give the quantitative properties of various kinds
of Multiple R in the next section.

PROPERTIES OF R
We distinguish two classes of properties for Combi-
nationally Constrained Relations, namely quantitative
and qualitative properties. We discuss the �rst class of
these properties in this paper. Some of the quantitative
properties are as follows:

� c: the number of combinational constraints;

� m: the number of Module relations;

� #r: the number of tuples in the body of a relation;

� #rM: the number of tuples in the body of a Module
relation;

� ms: the number of Strong Module relations;

� mw: the number of Weak Module relations;

� #AC : the number of constrained attributes;

� #AF : the number of free attributes;

� #AFa : the number of \absolutely free attributes".

There are some other quantitative properties such as
the number of candidate keys and the cardinality of
relation, which are not discussed here, since they are
related to some qualitative properties including the
candidate keys, the level of normality and decom-
posability of the relations. In the Appendices, we
specify properties of various kinds ofR using predicates
based on the above mentioned quantitative properties,
formally. These properties are the conjunction of the
following properties for each kind appropriately:

� Strong: n � 3^ (c = 1 () #AC = n�1^#AF =
1);

� Single: m = 1 ^#r = #rM;

� Single Strong: ms = 1 ^mw = 0;

� Single Weak: ms = 0 ^mw = 1;

� Single Unary: c = 1 () 9t1; t2 : rjt1 6= t2 �
[[AF ]]t1 6= [[AF ]]t2 ;

� Weak Unary: n � 4 ^ 2 � #AC < n � 1 ^ 1 <
#AF � n� 2;

� Weak Doubly: 8i : 1 � � � 2 � (#AC)i < n � 1 ^
(#AF )i > 1;

� Single Doubly: c = 2 () 9r1 : Prj#r1 =
Cn�1

#AF�1 � 8t1; t2 : r1jt1 6= t2 � [[AF ]]t1 = [[AF ]]t2 ;

� Weak N -ary: 8i : 1 � � � c�(#AC)i < n�1^(#AF )i >
1;

� Single N -ary: c > 2;

� Single Pure: n � 4 ^ (#AFn = 0 () (8i : 1 � � � 2 �
(#AC)i + (#AF )i = n));

� Single Impure: n � 5 ^ (#AFn > 0 () (8i :
1 � � � 2 � (#AC)i + (#AF )i + (#AFa )i = n));

� Single Symmetric: (#AC)1 = (#AC)2 ^ 8t : r �
[(AC)1]t \ [(AC)2]t = ;;

� Single Asymmetric: (#AC)1 6= (#AC)2 ^ 8t : r �
[(AC)1]t \ [(AC)2]t = ;;

� Multiple: m > 1 ^#r �Pm
j=1(#rM)j ;

� Multiple Strong: n � 3 ^ms > 1 ^mw = 0 ^ 8j :
1 � � �m � (c)j = 1 ^ (#AC)j = n� 1 ^ (#AF )j = 1;

� Multiple Weak: n � 4 ^ ms � 0 ^ mw � 1 ^
(9j : 1 � � �m � (#AC)j < n � 1 ^ (#AF )j > 1) ^Sm
j=1(rM)j � r;

� Multiple Unary: 8j : 1 � � �m � ((c)j = 1 ()
9t1; t2 : rjt1 6= t2 � [[(AF )j ]]t1 6= [[(AF )j ]]t2) ^
(#AFa )j = 0;

� Multiple Homogeneous Unary: 9c1; f1 : 1 � � � njc1 +
f1 = n � 8j : 1 � � �m � (#AC)j = c1 ^ (#AF )j = f1;

� Multiple Heterogeneous Unary: 9c1; f1 : 1 � � �njc1 +
f1 = n � 8j : 1 � � �m � (#AC)j = c1 ^ (#AF )j = f1;

� Multiple Doubly: 8j : 1 � � �m � (c)j = 2 () 9r1 :
P(rM)j j#r1 = Cn�1

(#AF )j�1 � 8t1; t2 : r1jt1 6= t2 �
[[(AF )j ]]t1 = [[(AF )j ]]t2 ;

� Multiple Homogeneous Doubly: 9c1; f1; c2; f2 :
1 � � �njc1 + f1 = n ^ c2 + f2 = n � 8j : 1 � � �m �
(#AC)j1 = c1 ^ (#AF )j1 = f1 ^ (#AC)j2 = c2 ^
(#AF )j2 = f2;

� Multiple Heterogeneous Doubly: :9c1; f1; c2; f2 :
1 � � �njc1 + f1 = n ^ c2 + f2 = n � 8j : 1 � � �m �
(#AC)j1 = c1 ^ (#AF )j1 = f1 ^ (#AC)j2 = c2 ^
(#AF )j2 = f2;

� Multiple Symmetric: 8j : 1 � � �m � (#AC)j1 =
(#AC)j2^(#AF )j1 = (#AF )j2^8t : (rM)j�[(AC)j1]t\
[(AC)j2]t = ;;

� Multiple Asymmetric: 9j : 1 � � �m � (#AC)j1 6=
(#AC)j2 ^ 8t : (rM)j � [(AC)j1]t \ [(AC)j2]t = ;;

� Multiple Pure: #AFa = 0 () 8j : 1 � � �m; i :
1 � � � 2 � (#AC)ji + (#AF )ji = n;

� Multiple Impure: n � 5 ^ (#AFa > 0 () 9a :
1 � � �n�(#AFa = a^8j : 1 � � �m; i : 1 � � � 2�(#AC)ji +
(#AC)ji + a = n));

� Multiple Composite: (9j : 1 � � �m � (c)j = 1) ^ (9j :
1 � � �m � (c)j = 2).



Combinationally Constrained Relations 43

CASE STUDY

Here, we continue the university example given earlier.
We can add another attribute, namely DY : day of the
week to PCDA and form new relationship PCDB .

PCDB(P#; C#; D#; Y T; S#; DY ):

The semantic of the relation PCDB is: Professor p
teaches section s of course c in department d in year-
term yt on day dy of the week. And �nally, the
attribute R#: The room number is added to the above
relationship.

PCDC(P#; C#; D#; Y T; S#; DY;R#):

The semantic of the relation PCDC is: Professor p
teaches section s of course c in department d in year-
term yt on day dy of the week in room r.

As stated before, the number of attributes in the
keys of PCDA, PCDB and PCDC depends on the
number of Cs, the Constraint Degrees of Cs and the
tuples in the bodies of each relation.

In the following, we will show that the di�erent
bodies of these relations satisfy the constraints of the
Combinationally Constraint Relation.

Figure 1 shows a sample body for PCDA, which
is a Single and Strong R(�s) with the degree of �ve
(i.e. n = 5). It is single, since it contains only one
M (i.e. m = 1). It is strong, since it has just one C
(i.e. c = 1) and its constraint degree is equal to 4 (i.e.
#AC = 4 and #AF = 1).

A sample body for PCDA, which is a Multiple
and Strong R((�s)2), is shown in Figure 9. It is
Multiple, since it contains two Ms (i.e. m = 2).
It is strong, since it has just one C in all module
relations (i.e. (c)1 = 1 ^ (c)2 = 1) and the constraint
degrees of all module relations are equal to 4 (i.e.

Figure 9. (�s)2-Multiple Strong R.

(#AC)1 = (#AC)2 = 4, and (#AF )1 = (#AF )2 = 1).
The �rst module is exactly the same as the module
given in Figure 1. The second module contains exactly
the same constraint as the �rst module. However, the
values of attributes in the second module are di�erent
from those of the �rst module.

In Figure 10, a sample body for PCDA, which is
a Single Unary Weak R(�wu ), is given. It is single, since
it contains only one M (i.e. m = 1). It is unary, since
it has just one C in the module relation (i.e. c = 1) and
the constraint degree of the module relation is equal
to 3 (i.e. #AC = 3, and #AF = 2). It can be seen
that the values of each constrained attribute in six (C4

2 )
tuples are equal.

A Multiple Homogeneous Unary Weak R((�wuh)2)
is given in Figure 11. It is Multiple since it contains
two Ms (i.e. m = 2). It is unary, since it has just
one C in all module relations (i.e. (c)1 = 1 ^ (c)2 = 1)
and the constraint degrees of all module relations are
equal to 3 (i.e. (#AC)1 = (#AC)2 = 3, and (#AF )1 =
(#AF )2 = 2), so the relation is homogeneous. We
repeat the body of relations in Figure 10 as the �rst
module and the second module has the same constraint
as that of the �rst module.

Figure 12 shows a sample body for PCDA, which
is a Multiple Heterogeneous Unary Weak R((�wuh)2). It
is Multiple, since it contains twoMs (i.e. m = 2). It is
unary, since it has just one C in all module relations (i.e.
(c)1 = 1 ^ (c)2 = 1), but the constraint degree of the
�rst module relation is equal to 3 (i.e. (#AC)1 = 3,
and (#AF )1 = 2), and the constraint degree of the
second module relation is equal to 2 (i.e. (#AC)2 = 2,
and (#AF )2 = 3), so the relation is heterogeneous.
The �rst module is again the same as the body of
relation given in Figure 10. In the second module, the
properties of the constraint are changed and as can be
seen, the values of constrained attributes in four (C4

1 )
tuples are equal.

Figure 10. �wu -Single Unary Weak R.
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Figure 11. (�wuh)2-Multiple Homogeneous Unary Weak
R.

A Single Pure Asymmetric Doubly Weak R(�wydp )
is shown in Figure 13. It is single, since it contains
only one M (i.e. m = 1). It is doubly, since it has
two Cs in the module relation (i.e. c = 2), but, the
constraint degrees of (C)1 and (C)2 are not equal (i.e.
(#AC)1 = 3, (#AF )1 = 2, (#AC)2 = 2 and (#AF )2 =
3), so it is Asymmetric. It is Pure, since there are no
extra attributes in the relation. Because of the �rst
constraint, (C)1, the values of the constraint attributes
in six (C4

2 ) tuples are equal and because of (C)2, the
values of constraint attributes in four (C4

1 ) tuples are
equal.

To show the impurity property of relations, we use
the relation PCDB . Figure 14 shows a sample body for
PCDB , which contains a Single Impure Asymmetric
Doubly Weak R(�wydi ) with the degree of six (i.e. n =
6). It is exactly the same as the relation given in
Figure 13, except that it has an extra attribute, namely
DY . The values given for this attribute do not satisfy
any kind of combinational constraint, so the relation is
an Impure relation.

A Single Pure Symmetric Doubly Weak R(�wxdp )
is given in Figure 15. It is single, since it contains only
one M (i.e. m = 1). It is doubly, since it has two Cs
in the module relation (i.e. c = 2) and the constraint
degrees of both Cs are equal to 3 (i.e. (#AC)1 = 3,
(#AF )1 = 3, (#AC)2 = 3, and (#AF )2 = 3), so it is

Figure 12. (�wut)2-Multiple Heterogeneous Unary Weak
R.

Figure 13. �wydp -Single Pure Asymmetric Doubly Weak
R.

Symmetric. It is Pure, since there is no extra attribute
in the relation. It can be seen that because of (C)1 and
(C2), the values of constraint attributes in two distinct
sets of tuples with the cardinality of 10 (C5

2 ) are equal.
Again, we use the relation PCDA (Figure 16)

to show a Multiple Pure Asymmetric Homogeneous
Doubly Weak R ((�wydhp)

2). It is Multiple, since it
contains twoMs (i.e. m = 2). It is doubly, since it has
two Cs in all module relations (i.e. (c)1 = 2^ (c)2 = 2).
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Figure 14. �wydi -Single Impure Asymmetric Doubly Weak
R.

Figure 15. �wxdp -Single Pure Symmetric Doubly Weak R.

The constraint degrees of (C)1
1 and (C)1

2 are not qual
(i.e. (#AC)1

1 = 3, (#AF )1
1 = 2, (#AC)1

2 = 2 and
(#AF )1

2 = 3). The constraint degrees of (C)2
1 and (C)2

2
are not qual either (i.e. (#AC)2

1 = 3, (#AF )2
1 = 2,

(#AC)2
2 = 2 and (#AF )2

2 = 3), so it is Asymmetric. It
is Pure, since there is no extra attributes in the relation.

Figure 17 shows a Multiple Impure Asymmetric
Homogeneous Doubly Weak R ((�wydhi)

2). It is exactly
the same as the relation given in Figure 16, except
that it has an extra attribute, namely DY , and it does

Figure 16. (�wydhp)
2-Multiple Pure Asymmetric

Homogeneous Doubly Weak R.

Figure 17. (�wydhi)
2-Multiple Impure Asymmetric

Homogeneous Doubly Weak R.
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not participate in any constraint, so it is an Impure
relation.

Figure 18 shows a sample body for PCDB which
is a Multiple Pure Asymmetric Heterogeneous Doubly
Weak R((�wydtp)

2). It is Multiple, since it contains two
Ms (i.e. m = 2). It is doubly, since it has two Cs in
all module relations (i.e. (c)1 = 2 ^ (c)2 = 2). The
constraint degrees of (C)1

1 and (C)1
2 are equal to 4 (i.e.

(#AC)1
1 = 4, (#AF )1

1 = 2, (#AC)1
2 = 4 and (#AF )1

2 =
2). But, the constraint degrees of (C)2

1 and (C)2
2 are not

equal (i.e. (#AC)2
1 = 4, (#AF )2

1 = 2, (#AC)2
2 = 5 and

(#AF )2
2 = 1)), so it is heterogeneous and Asymmetric.

Figure 18. (�wydtp)
2-Multiple Impure Asymmetric

Heterogeneous Doubly Weak R.

It is Pure since there are no extra attributes in the
relation.

We use the relation PCDC to show a Multi-
ple Impure Asymmetric Heterogeneous Doubly Weak
R((�wydti)

2). Figure 19 shows such a relation with the
degree of seven (i.e. n = 7). It is exactly the same as
the relation given in Figure 18, except that it has an
extra attribute, namely R#, so it is an Impure relation.

CONCLUSION AND FUTURE WORKS

In this paper, we introduced the concept of Com-
binationally Constrained Relations and distinguished
two basic types of combinational constraints, namely

Figure 19. (�wydti)
2-Multiple Impure Asymmetric

Heterogeneous Doubly Weak R.
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Weak and Strong. Then, we classi�ed the relations
having such a constraint. In general, we have found
16 types of Combinationally Constrained Relation and
investigated their quantitative properties.

In our future work, we will study the qualitative
properties of these relations and show that some of
these relations are in 5NF and even in 6NF, but they
contain lots of redundancies and some of them are in
4NF and can be decomposed into 5NF or 6NF relations.

We will research the following issues in our future
works:

� Discussing the qualitative properties of various types
of R including the normality form of the above
mentioned relations;

� Determining the decomposition algorithms for each
one of these relations when possible;

� De�ning the set of semantical dependencies among
module relations of Multiple R and determining
the e�ect of these dependencies on their qualitative
properties, especially the level of normality.

NOMENCLATURE

Basic

P power set
; empty set
[A]t attribute(s) A of tuple t
[[A]]t value of attribute(s) A in tuple t
n degree of relation

AC the set of \constrained attributes" of a
tuple

#AC constraint degree (the cardinality of
AC)

AF the set of free attributes of a tuple

#AF the cardinality of AF
AFa the set of absolutely free attributes

#AFa the cardinality of AFa
Constraint

C combinational constraint
Cs Strong C
Cw Weak C
Relation

R Combinationally Constrained Relation
r body of R
c the number of C in a r
#r cardinality of R (the number of tuples

in r)

Rs Strong R
Rw Weak R
Rwu Unary Weak R
Rwd Doubly Weak R
Rwxd Symmetric Doubly Weak R
Rwyd Asymmetric Doubly Weak R
Rwxdp Pure Symmetric Doubly Weak R
Rwydp Pure Asymmetric Doubly Weak R
Rwxdi Impure Symmetric Doubly Weak R
Rwydi Impure Asymmetric Doubly Weak R
Module Relation

M Module Relation
Ms Strong Module Relation
Mw Weak Module Relation
m the number of M
ms the number of Ms

mw the number of Mw

rM the body of M
#rM the cardinality of M
Single Combinationally Constrained Relation

� Single R
�s Strong �
�w Weak �
�wu Unary �w

�wd Doubly �w

�wxd Symmetric �wd
�wyd Asymmetric �wd
�wxdp Pure �wxd
�wydp Pure �wyd
�wxdi Impure �wxd
�wydi Impure �wyd

Multiple Combinationally Constrained Relation

(�)m Multiple R with m Module Relations
(�s)m Strong (�)m

(�w)m Weak (�)m

(�wu )m Unary (�w)m

(�wd )m Doubly (�w)m

(�wc )m Composite (�w)m

(�wuh)m Homogeneous (�wu )m

(�wdh)m Homogeneous (�wd )m

(�wut)
m Heterogeneous (�wu )m

(�wdt)
m Heterogeneous (�wd )m
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(�wxdh )m Symmetric (�wdh)m

(�wydh )m Asymmetric (�wdh)m

(�wxdhp)
m Pure (�wxdh )m

(�wydhp)
m Pure (�wydh )m

(�wxdhi)
m Impure (�wxdh )m

(�wydhi)
m Impure (�wydh )m

(�wydtp)
m Pure Asymmetric (�wdt)m

(�wydti)
m Impure Asymmetric (�wdt)m
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APPENDIX A

Properties of Di�erent Kinds of Single R
In the following, we give the speci�cations of various
kinds of Single R using the quantitative properties.

�s (Single Strong R):

m = 1 ^#r = #rM^
ms = 1 ^mw = 0 ^
n � 3 ^ (c = 1 () #AC = n� 1 ^#AF = 1).

�wu (Single Unary Weak R):

(m = 1 ^#r = #rM)^
(c=1()9t1; t2 : rjt1 6= t2 � [[AF ]]t1 6= [[AF ]]t2)^
ms = 0 ^mw = 1^
n � 4 ^ 2 � #AC < n� 1 ^ 1 < #AF � n� 2.

�wxdp (Single Pure Symmetric Doubly Weak R):
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((m = 1 ^#r = #rM)^
ms = 0 ^mw = 1^
(c=2 () 9r1 : Prj#r1 =Cn�1

#AF�1�
8t1; t2 : r1jt1 6= t2 � [[AF ]]t1 =[[AF ]]t2)^

(8i : 1 � � � 2 � (#AC)i < n� 1 ^ (#AF )i > 1))^
((#AC1 =(#AC)2 ^ 8t :r�

[(AC)1]t \ [(AC)2]t = ;)^
(n �4 ^ (#AFa =0 () (8i :1 � � � 2�

(#AC)i +(#AF )i = n))):

�wxdi (Single Impure Symmetric Doubly Weak R):

((m = 1 ^#r = #rM)^
ms = 0 ^mw = 1^
(c=2 () 9r1 :Prj#r1 =Cn�1

#AF�1�
8t1; t2 : r1jt1 6= t2 � [[AF ]]t1 = [[AF ]]t2)^

(8i :1 � � � 2�(#AC)i < n�1 ^ (#AF )i > 1))^
((#AC)1 =(#AC)2^8t : r�

[(AC)1]t \ [(AC)2]t = ;)^
(n �5^(#AFa >0 () (8i : 1 � � � 2�

(#Ac)i + (#AF )i + (#AFa )i = n))):

�wydp (Single Pure Asymmetric Doubly Weak R):

((m = 1 ^#r = #rM)^
ms = 0 ^mw = 1^
(c =2 () 9r1 : Prj#r1 = Cn�1

#AF�1�
8t1; t2 : r1jt1 6= t2 � [[AF ]]t1 = [[AF ]]t2)^

(8i : 1 � � � 2 � (#AC)i < n� 1 ^ (#AF )i > 1))^
((#AC)1 6= (#AC)2 ^ 8t : r�

[(AC)1]t \ [(AC)2]t = ;)^
(n �4 ^ (#AFa = 0 () (8i : 1 � � � 2�

(#AC)i + (#AF )i = n))):

�wydi (Single Impure Asymmetric Doubly Weak R):

((m = 1 ^#r = #rM)^
ms = 0 ^mw = 1^
(c =2 () 9r1 : Prj#r1 = Cn�1

#AF�1�
8t1; t2 : r1jt1 6= t2 � [[AF ]]t1 = [[AF ]]t2)^

(8i : 1 � � � 2 � (#AC)i < n� 1 ^ (#AF )i > 1))^
((#AC)1 6= (#AC)2 ^ 8t : r�

[(AC)1]t \ [(AC)2]t = ;)^
(n �5 ^ (#AFa > 0 () (8i : 1 � � � 2�

(#AC)i + (#AF )i + (#AFa )i = n))):

APPENDIX B

Properties of Di�erent Kinds of Multiple R
In the following, we give the speci�cations of various
kinds of Multiple R using predicates based on the
quantitative properties.

(�s)m (Multiple Strong R):

(m > 1 ^#r �
mX
j=1

(#rM)j)^

(n �3 ^ms > 1 ^mw = 0 ^ 8j : 1 � � �m �
(c)j = 1 ^ (#AC)j = n� 1 ^ (#AF )j = 1):

(�wuh)m (Multiple Homogeneous Unary Weak R):

(m > 1 ^#r �
mX
j=1

(#rM)j)^

(n �4 ^ms � 0 ^mw � 1 ^ (9j : 1 � � �m�
(#AC)j < n� 1 ^ (#AF )j

> 1) ^
m[
j=1

(rM)j � r)^

(8j : 1 � � �m � ((c)j = 1 () 9t1; t2 : rjt1 6= t2�
[[(AF )j ]]t1 6= [[(AF )j ]]t2) ^ (#AFa )j=0)^

(9c1;f1 : 1 � � �njc1 + f1 = n � 8j : 1 � � �m�
(#AC)j = c1 ^ (#AF )j = f1):
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(�wut)m (Multiple Heterogeneous Unary Weak R):

(m > 1 ^#r �
mX
j=1

(#rM)j)^

(n �4 ^ms � 0 ^mw � 1 ^ (9j : 1 � � �m�
(#AC)j < n� 1 ^ (#AF )j

> 1) ^
m[
j=1

(rM)j � r)^

(8j : 1 � � �m � ((c)j=1 () 9t1; t2 : rjt1 6= t2�
[[(AF )j ]]t1 6= [[(AF )j ]]t2) ^ (#AFn )j = 0)^

(:9c1; f1 : 1 � � �njc1 + f1 = n � 8j : 1 � � �m�
(#AC)j = c1 ^ (#AF )j = f1):

(�wxdhp)m (Multiple Pure Symmetric Homogeneous
Doubly Weak R):

(m > 1 ^#r �
mX
j=1

(#rM)j)^

(n �4 ^ms � 0 ^mw � 1 ^ (9j : 1 � � �m�
(#AC)j < n� 1 ^ (#AF )j

> 1) ^
m[
j=1

(rM)j � r)^

(8j : 1 � � �m � (c)j = 2 () 9r1 : P(rM)j j
#r1 = Cn�1

(#AF )j�1 � 8t1; t2 : r1jt1 6= t2�
[[(AF )j ]]t1 = [[(AF )j ]]t2)^

(9c1;f1; c2; f2 : 1 � � �njc1 + f1 = n ^ c2 + f2 = n�
8j : 1 � � �m � (#AC)j1 = c1 ^ (#AF )j1

= f1 ^ (#AC)j2 = c2 ^ (#AF )j2 = f2)^
(8j : 1 � � �m � (#AC)j1 = (#AC)j2^

(#AF )j1 = (#AF )j2 ^ 8t : (rM)j�
[(AC)j1]t \ [(AC)j2]t = ;)^

(#AFa = 0 () 8j : 1 � � �m; i : 1 � � � 2 �
(#AC)ji + (#AF )ji = n):

(�wxdhi)m (Multiple Impure Symmetric Homogeneous
Doubly Weak R):

(m > 1 ^#r �
mX
j=1

(#rM)j)^

(n �4 ^ms � 0 ^mw�1 ^ (9j : 1 � � �m�
(#AC)j < n� 1 ^ (#AF )j

> 1) ^
m[
j=1

(rM)j � r)^

(8j :1 � � �m � (c)j=2 () 9r1 :P(rM)j j
#r1 = Cn�1

(#AF )j�1 � 8t1; t2 : r1jt1 6= t2�
[[(AF )j ]]t1 = [[(AF )j ]]t2)^

(9c1;f1; c2; f2 : 1 � � �njc1 + f1 = n ^ c2 + f2 = n�
8j : 1 � � �m � (#AC)j1 = c1 ^ (#AF )j1

= f1 ^ (#AC)j2 = c2 ^ (#AF )j2 = f2)^

(8j : 1 � � �m � (#AC)j1 = (#AC)j2^
(#AF )j1 = (#AF )j2 ^ 8t : (rM)j�
[(AC)j1]t \ [(AC)j2]t = ;)^

(n �5 ^ (#AFa > 0 () 9a : 1 � � �n�
(#AFa = a ^ 8j : 1 � � �m; i : 1 � � � 2�
(#AC)ji + (#AC)ji + a = n))):

(�wydhp)
m (Multiple Pure Asymmetric Homogeneous

Doubly Weak R):

(m > 1 ^#r �
mX
j=1

(#rM)j)^

(8j : 1 � � �m � (c)j = 2 () 9r1 : P(rM)j j
#r1 = Cn�1

(#AF )j�1�
8t1; t2 : r1jt1 6= t2�
[[(AF )j ]]t1 = [[(AF )j ]]t2)^
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(9c1;f1; c2; f2 : 1 � � �njc1 + f1 = n ^ c2 + f2 = n�
8j : 1 � � �m � (#AC)j1 = c1 ^ (#AF )j1

= f1 ^ (#AC)j2 = c2 ^ (#AF )j2 = f2)^
(9j : 1 � � �m � (#AC)j1 6= (#AC)j2 ^ 8t : (rM)j�

[(AC)j1]t \ [(AC)j2]t = ;)^
(#AFn = 0 () 8j : 1 � � �m; i : 1 � � � 2�

(#AC)ji + (#AF )ji = n)

(�wydhi)
m (Multiple Impure Asymmetric Homogeneous

Doubly Weak R):

(m > 1 ^#r �
mX
j=1

(#rM)j^

(n �4 ^ms � 0 ^mw � 1 ^ (9j : 1 � � �m�

(#AC)j < n� 1 ^ (#AF )j > 1) ^
m[
j=1

(rM)j � r)^
(8j : 1 � � �m � (c)j = 2 () 9r1 : P(rM)j j

#r1 = Cn�1
(#AF )j�1 � 8t1; t2 : r1jt1 6= t2�

[[(AF )j ]]t1 = [[(AF )j ]]t2)^
(9c1;f1; c2; f2 : 1 � � �njc1 + f1 = n ^ c2 + f2 = n�

8j : 1 � � �m � (#AC)j1 = c1^
(#AF )j1 = f1 ^ (#AC)j2 = c2 ^ (#AF )j2

= f2)^
(9j : 1 � � �m � (#AC)j1 6= (#AC)j2 ^ 8t : (rM)j�

[(AC)j1]t \ [(AC)j2]t = ;)^
(n �5 ^ (#AFn > 0 () 9a : 1 � � �n�

(#AFa = a ^ 8j : 1 � � �m; i : 1 � � � 2�
(#AC)ji + (#AC)ji + a = n))):

(�wydtp)
m (Multiple Pure Asymmetric Heterogeneous

Doubly Weak R):

(m > 1 ^#r �
mX
j=1

(#rM)j)^

(n �4 ^ms � 0 ^mw � 1 ^ (9j : 1 � � �m�
(#AC)j < n� 1 ^ (#AF )j

> 1) ^
m[
j=1

(rM)j � r)^

(8j : 1 � � �m � (c)j = 2 () 9r1 : P(rM)j j
#r1 = Cn�1

(#AF )j�1 � 8t1; t2 : r1jt1 6= t2�
[[(AF )j ]]t1 = [[(AF )j ]]t2)^

(:9c1;f1; c2; f2 : 1 � � �njc1 + f1 = n ^ c2 + f2 = n�
8j : 1 � � �m � (#AC)j1 = c1 ^ (#AF )j1

= f1 ^ (#AC)j2 = c2 ^ (#AF )j2 = f2)^
(9j : 1 � � �m � (#AC)j1 6= (#AC)j2 ^ 8t : (rM)j�

[(AC)j1]t \ [(AC)j2]t = ;)^
(#AFa = 0 () 8j : 1 � � �m; i : 1 � � � 2�

(#AC)ji + (#AF )ji = n):

(�wydti)
m (Multiple Impure Asymmetric Heterogeneous

Doubly Weak R):

(m > 1 ^#r �
mX
j=1

(#rM)j)^

(n �4 ^ms � 0 ^mw � 1 ^ (9j : 1 � � �m�
(#AC)j < n� 1 ^ (#AF )j

> 1) ^
m[
j=1

(rM)j � r)^

(8j : 1 � � �m � (c)j = 2 () 9r1 : P(rM)j j
#r1 = Cn�1

(#AF )j�1 � 8t1; t2 : r1jt1 6= t2�
[[(AF )j ]]t1 = [[(AF )j ]]t2)^

(:9c1;f1; c2; f2 : 1 � � �njc1 + f1 = n ^ c2 + f2 = n�
8j : 1 � � �m � (#AC)j1
= c1 ^ (#AF )j1 = f1 ^ (#AC)j2
= c2 ^ (#AF )j2 = f2)^
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(9j : 1 � � �m � (#AC)j1 6= (#AC)j2 ^ 8t : (rM)j�
[(AC)j1]t \ [(AC)j2]t = ;)^

(n �5 ^ (#AFa > 0 () 9a : 1 � � �n�
(#AFa = a ^ 8j : 1 � � �m; i : 1 � � � 2�
(#AC)ji + (#AC)ji + a = n))):

(�wc )m (Multiple Composite Weak R):

(m > 1 ^#r �
mX
j=1

(#rM)j)^

((9j : 1 � � �m � (c)j = 1) ^ (9j : 1 � � �m�
(c)j = 2)):


