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A Numerical Study of Flow and Heat Transfer
Between Two Concentric Rotating Spheres
with Time-Dependent Angular Velocities

A. Jabbari Moghadam1 and A. Baradaran Rahimi1;�

Abstract. The transient motion and heat transfer of a viscous incompressible 
uid contained between
two concentric spheres, maintained at di�erent temperatures and rotating about a common axis with
di�erent angular velocities, is considered numerically, when the angular velocities are arbitrary functions
of time. The resulting 
ow pattern, temperature distribution and heat transfer characteristics are presented
for the various cases, including exponential and sinusoidal angular velocities. An interesting e�ect, of
long delays in the heat transfer of a large portion of the 
uid in the annulus, is observed, because of the
angular velocities of the corresponding spheres.
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INTRODUCTION

The transient motion of an incompressible viscous 
uid
and its heat transfer in rotating spherical annuli is con-
sidered numerically, when the spheres are concentric
and their angular velocities about a common axis of
rotation are arbitrarily-prescribed functions of time.
Such motions may be described in terms of a pair
of coupled non-linear partial di�erential equations in
three independent variables. It should be noted that
the energy equation is linear when the velocity �eld is
known.

Available theoretical works concerning such prob-
lems are primarily of a boundary-layer or singular-
perturbation character considered by Howarth [1],
Proudman [2], Lord & Bowden [3], Fox [4],
Greenspan [5], Carrier [6] and Stewartson [7]. The
�rst numerical study of a time-dependent viscous 
ow
between two rotating spheres was presented by Pear-
son [8] in which the cases of one (or both) spheres is
given an impulsive change in angular velocity, starting
from a state of either rest or uniform rotation. Munson
and Joseph [9] have considered the case of the steady
motion of a viscous 
uid between concentric rotating
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spheres, using perturbation techniques for small val-
ues of Reynolds number and a Legendre polynomial
expansion for larger values of Reynolds number. Ther-
mal convection in rotating spherical annuli has been
considered by Douglass, Munson and Shaughnessy [10]
in which the steady forced convection of a viscous

uid contained between two concentric spheres that
are maintained at di�erent temperatures and rotate
about a common axis with di�erent angular velocities
is studied. Approximate solutions to the governing
equations are obtained in terms of a regular pertur-
bation solution valid for small Reynolds number and
a modi�ed Galerkin solution for moderate Reynolds
numbers. Viscous dissipation is neglected in their
study and all 
uid properties are assumed constant.
A study of viscous 
ow in oscillatory spherical an-
nuli has been done by Munson and Douglass [11] in
which a perturbation solution, valid for slow oscillation
rates, is presented and compared with experimental
results. Another interesting work is the study of the
axially symmetric motion of an incompressible viscous

uid between two concentric rotating spheres done by
Gagliardi et al. [12]. This work involves the study
of the steady state and transient motion of a system
consisting of an incompressible Newtonian 
uid in an
annulus between two concentric, rotating rigid spheres.
The primary purpose of their research is to study the
use of an approximate analytical method for analyzing
the transient motion of the 
uid in the annulus and
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spheres which are started suddenly due to the action
of prescribed torques. Their work is similar to the
study by Jen-Kang Yang et al. [13] and the �nite
element study by Ni and Nigro [14]. The problems
include the case where one or both spheres rotate
with prescribed constant angular velocities and the
case in which one sphere rotates due to the action of
an applied constant or impulsive torque. Also, Bar-
Yoseph et al. [15] consider the problem of the mixed-
convection of rotating 
uids in spherical annuli in which
they focus on the formation of various secondary 
ow
patterns in the meridional plane using the Galerkin
�nite element method. The thermal e�ects on an
axisymmetric vortex breakdown in a spherical gap have
also been considered by Arkadyev et al. [16] in which
the in
uence of a temperature �eld on the vortex break-
down phenomenon is examined using a �nite element
formulation. The physical system considered is the
spherical annulus between two concentric spheres with
radii ratio 1:2, which is �lled with a Boussinesq 
uid;
the outer sphere being stationary and hot while the
inner sphere rotates and is at a lower temperature. The
other work to mention is the study of an axisymmetric
vortex breakdown for a generalized Newtonian 
uid
contained between rotating spheres by Bar-Yoseph and
Kryzhanovski [17], with the purpose of providing a
more complete understanding of the secondary 
ow
structure of dilute suspensions in rotating systems.
The physical system considered is the spherical annulus
between two concentric spheres; radii 1:2, which is �lled
with a Boussinesq generalized Newtonian 
uid and the
walls of the spherical annulus being held at uniform but
di�erent temperatures. A weak penalty �nite element
formulation is also used in this problem. Besides,
there are many studies considering natural convection.
These include: Laminar natural convection about an
isothermally heated sphere at small Grashof numbers
by Fendell [18]; natural convection between two con-
centric spheres-transition towards a multicellular 
ow
by Caltagirone et al. [19]; natural convection between
concentric spheres at low Rayleigh numbers by Mack et
al. [20]; natural convection between concentric spheres
by Garg [21]; transient natural convection heat transfer
between concentric spheres by Chu et al. [22]; transient
natural convection heat transfer between concentric
and vertically eccentric spheres by Chiu et al. [23]; and
transient natural convection heat transfer of 
uids with
variable viscosity between concentric and vertically
eccentric spheres by Wu et al. [24].

The study of the transient motion and heat
transfer of an incompressible viscous 
uid �lling the
annuli of two concentric spheres rotating with any
prescribed function of time angular velocity has not
been considered in the literature. In the present
study, a numerical solution of unsteady momentum and
energy equations is presented for viscous 
ow between

two concentric rotating spheres maintained at di�erent
temperatures, which are rotating with time-dependent
angular velocities. The results for some example
functions including exponential and sinusoidal angular
velocities are presented when the outer sphere initially
starts rotating with a constant angular velocity and
the inner sphere starts rotating with a prescribed time-
dependent function. Similar physical and geometrical
con�gurations are used in engineering systems and
in designs like centrifuges and 
uid gyroscopes, and
also are important in geophysics and nuclear reactor
designs, thermal energy storage cells and solar energy
collectors. Other applications of the con�guration used
in this problem are in meteorological instrumentations
where such apparatus and equipment are used to obtain
quantitative information about the weather. An accu-
rate prediction of steady state heat transfer rates and
temperature distribution is required in these engineer-
ing design problems. For some engineering applications
such as gyroscopes, the prediction of the transient
temperature distribution and heat transfer rate from
initial state to steady state is very important [8-11].
Sinusoidal rotation of the spherical containers are seen
in all the mixers used in di�erent types of industry
and their stopping and starting movements are usually
accomplished in an exponential manner.

PROBLEM FORMULATION

The geometry of the spherical annulus considered is
indicated in Figure 1. A Newtonian, viscous, incom-
pressible 
uid �lls the gap between the inner and outer
spheres, which are of radii Ri and R0, with constant
surface temperatures, Ti and T0, rotating about a
common axis with angular velocities, 
i and 
0, re-
spectively. The components of the velocity in directions

Figure 1. Spherical annulus.
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r, � and � are vr, v� and v�, respectively. These
velocity components for incompressible 
ow and in a
meridian plane satisfy the continuity equation, being
related to stream function  and angular momentum
function, 
, in the following manner:

vr =
 �

r2 sin �
; v� =

� r
r sin �

; v� =



r sin �
: (1)

Since the 
ow is assumed to be independent of the lon-
gitude, �, the non-dimensional Navier-Stokes equations
and energy equation can be written in terms of the
stream function and the angular velocity function as
follows:
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in which the non-dimensional Reynolds number (Re),
Prandtl number (Pr), Peclet number (Pe) and Eckert
number (Ek) are de�ned as:

Re =
!0r2

0
�

; Pr = �=�; Pe = Re:Pr=
!0r2

0
�

;

Ek =
�!0

cP (T0 � Ti) : (5)

The following non-dimensional parameters have been
used in the above equations, and then the asterisks

have been omitted:
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in which r0 and !0 are reference values. The
non-dimensional boundary and initial conditions for
the above governing equations are:
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These governing equations, along with the related
boundary and initial conditions, are solved numerically
in the next section.

COMPUTATIONAL PROCEDURE

The two equations governing the 
uid motion show
that each is describing the behavior of one of the
dependent variables, 
 and  . On the other hand,
these two equations are coupled only through nonlinear
terms. To solve the problem numerically, the momen-
tum equations were discretized by the �nite-di�erence
method using implicit-explicit schemes, which is a
stabilizing technique. The number of iterations for the
case of Re = 1000, for example, and a time-step of
0.01, are about 23000, which on a Pentium 4 computer
takes around 48 hours to solve momentum and energy
equations. Because of the known velocity �eld from
momentum equations, the energy equation is linear
and is solved here without neglecting any terms. In
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each time step (n + 1), the value of the dependent
variables are estimated from their values at previous
time steps (n), (n � 1) and (n � 2) and, after using
them in di�erence equations and repeating this, until
the desired convergence is obtained. This will lead to
the corrected values at this time step. This procedure
is applied for the next time step.

The 
ow �eld considered is covered with a regular
mesh (see Figure 2). To solve the system of linear dif-
ference equations, a tri-diagonal method is used in both
directions, r and � [25]. The direct substitution of pre-
vious values of dependent variables by new calculated
values can provoke instability in numerical calculations
in general. To overcome this problem, a weighting
procedure is used in which the optimum weighting
factor depends on the Reynolds number of the 
ow.
The bigger the Reynolds number, the smaller the value
of each quantity that is added to its previous value at
each iteration (bigger weighting factor). Convergence
is assumed when the ratio of every one of the quantities
for the last two approximations di�ered from unity by
less than 10�5 at all values of independent variable.
A mesh independence study has been demonstrated in
Figures 3 and 4. In this mesh-study, the conditions of

ow and heat transfer �elds are: Re = 10, Pr = 10,
Ek = 0 and 
io = 0. As can be seen, the di�erence
between the contours of the  function for the coarse
grid (case (a) with mesh size 25 � 12) and the �ne grid
(case (b) with mesh size 40 � 20) is almost large (about
12%), but the di�erence between case (c) (with grid size
45 � 25) and case (d) (with grid size 50 � 25) is really
negligible (less than 0.03%). Hence, the numerical
solution is mesh-independent for cases (c) or (d) and
even (b). For the results presented in our solution,
a 50 � 25 mesh grid has been selected, although a
40 � 20 mesh would have been �ne. The mesh sizes
mentioned above are in � � r directions. The contours
of temperature have also been drawn for mesh sizes
from case (a), 25 � 12, to case (d), 50 � 25, in Figure 4.
Here, no signi�cant di�erences between these cases can

Figure 2. Mesh size.

be seen and that is because the energy equation is linear
and its solution has much fewer complexities compared
with the momentum equation.

The �nal results obtained in each case are exactly
the results of the work of Pearson [8] and Munson
and Joseph [9] for the Navier-Stokes equations and
energy equation. To verify the validity of the numerical
procedure used in this work, the numerical results of
research studies such as [8-10] (see Figure 3), have
been reproduced with the same 
ow parameters. These
results, which are very close to our results obtained in
these references, are shown in Figure 5.

In our study, these results have been obtained
with a lot fewer computational complexities since they
have been reached by solving an ordinary di�erential
system of equations.

In this work, the sphere angular velocity has been
considered as a function of time and in order to apply
this time-function to the program, at the beginning of
each time step the average of that time step has been
calculated and used for the sphere angular velocity
function. Therefore, for each considered time step, the
sphere velocity is de�ned and assumed continuous at
each cross section.

PRESENTATION OF RESULTS

If the bounding spherical surfaces were stationary,
there would be no 
uid motion and the temperature
distribution would simply be due to conduction. Any
rotation of the bounding spheres sets up a primary

ow (!) around the axis of rotation. This relative
motion induces an unbalanced centrifugal force �eld,
which drives the secondary 
ows ( ) in the meridian
plane. Thus, if the bounding spheres are of unequal
temperature, this secondary 
ow produces forced con-
vection within the annulus, resulting in a temperature
distribution which is di�erent from the pure conduction
distribution. The relative magnitudes of the secondary

ow and forced convection e�ects depend upon the
parameters involved, including those concerning the
geometry of the 
ow and those concerning the dy-
namics of the 
ow such as 
io = 
i=
0, Rio =
Ri=R0, Prandtl number and Reynolds number. These
secondary 
ows known as vortex have a clockwise
or counterclockwise motion, depending on whether
the outer sphere or the inner sphere is dominant, as
far as the secondary 
ow is concerned. To have a
better understanding of the e�ect of secondary 
ows on
temperature distribution, the contours of (T � Tc) are
also presented in this study, which show the di�erence
between actual temperature and a pure conduction
case. Here, Tc depends only on r. The cases considered
here include time-dependent angular velocities, which
are exponential and sinusoidal. The results for velocity
and temperature �elds are presented for cases when
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Figure 3. Contours of stream function for various mesh-size grid.

Figure 4. Contours of temperature for various mesh-size grid.
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Figure 5. Velocity (or stream function) and temperature distribution for Re = 50, Pr = 10, Ek = 0 and 
io = �3 at
t = 55:01.

the outer sphere is rotating with a constant angular
velocity and the inner sphere starts rotating with the
prescribed function of time angular velocities. These
presentations are only at some selected time values.

The velocity �elds for the particular case of an
inner sphere angular velocity 
io = � exp(1 � �)
and an outer sphere rotating with constant angular
velocity are presented in Figures 6 and 7 for Reynolds
number Re = 1000 and at selected time values. At the
beginning, when the vortices ( contours) are formed,
it is observed that the annulus space is under the e�ect
of both spheres that are dominating the 
ow �eld.
A clockwise vortex close to the outer sphere and a
counterclockwise vortex close to the inner sphere is
formed (Figures 6a and 6b). As the inner angular
velocity decreases with time, its e�ect on the secondary

ow diminishes. During this time, the clockwise vortex
grows considerably and after some time there is only
one big counterclockwise vortex, which indicates that
the outer sphere is dominating the 
ow. As seen in
Figures 6c and 6d, the 
ow pattern tends towards a
situation where the inner sphere is stationary, as one
expects. Contours of ! for di�erent time values are
shown in Figure 7. Since the Reynolds number is
large, these contours get closer to the inner sphere
at the equator. In fact, for large Reynolds numbers

(approximately larger than Re = 300), this secondary

ow causes a considerable change in peripheral velocity
(primary 
ow velocity pro�le). In general, the 
uid
particles in the vicinity of the equator move towards
the inner sphere and return back towards the axis
of rotation. As a result, a secondary distribution
of peripheral velocity forms which a�ects the 
ow in
the meridian plane again. As time advances, and if
the Reynolds number is large, in the corner region
between the outer sphere and equator line, the angular
velocity contours move inwards and those contours in
the vicinity of the axis of rotation move outwards. This
e�ect can be described by considering the distribution
of angular momentum. The rotation of the outer sphere
provides a certain amount of angular momentum for
the system that by the 
ow in the meridian plane and
also Coriolis forces and nonlinear advection is redis-
tributed. The fact that the total angular momentum
of the azimuthal 
ow must be conserved by upward
and downward moving 
uid shows that the rotation of
the upward moving elements of the 
uid (near pole)
slows down and the rotation of the downward moving
elements of the 
uid (near equator) speeds up.

The contours of T and (T � Tc) for the inner
angular velocity of 
io = � exp(1 � �), Re = 1000,
Pr = 10, and Ek = 0 are shown in Figures 8 and 9. At



Flow and Heat Transfer Between Spheres 203

Figure 6. Contours of  for Re = 1000 and 
io = � exp(1� t).

Figure 7. Contours of ! for Re = 1000 and 
io = � exp(1� t).
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Figure 8. Contours of T for Re = 1000, Pr = 10, Ek = 0 and 
io = � exp(1� t).

Figure 9. Contours of (T � Tc) for Re = 1000, Pr = 10, Ek = 0 and 
io = � exp(1� t).
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Figure 10. Contours of T for Re = 1000, Pr = 1, Ek = 0 and 
io = � exp(1� t).

the outset, when both spheres dominate the 
ow, the
di�usion of heat from the outer sphere into the �eld
takes place approximately in a steady manner, but as
the rotation e�ect of the inner sphere becomes weak,
the temperature �eld grows considerably from the
vicinity of the equator and a�ects the whole �eld. As
far as (T�Tc) contours, it is seen that at the beginning
when the 
ow is forming, the di�erence between the
actual temperature and the pure conduction temper-
ature can be seen only in the region near the outer
sphere, but as time passes, this di�erence becomes
larger because of convection. It is obvious that this
di�erence demonstrates itself in the form of positive
and negative numbers. The contours near the pole are
negative and those near the equator are positive. This
is because the clockwise 
ow, which is formed by the
rotation of the outer sphere, would transfer the heat
of this sphere into the �eld and towards the equator
and the inner sphere. On the contrary, as it moves
along the inner sphere and rotation axis, it transfers
the inner sphere coldness towards the outer sphere and
the pole. As a result, in the vicinity of the pole, there
are temperatures which are lower than pure conduction
cases and in the vicinity of the equator there are
temperatures which are higher than pure conduction
cases. As evidenced in Figure 8, it is interesting to
note that the angular velocities of spheres can cause

long delays in the heat transfer of the 
uid in large
areas of the annulus around the poles.

Figures 10 and 11 present the T and (T � Tc)
contours for the same conditions as in Figures 8 and
9, except for Pr = 1. As seen in this case, the heat
di�uses faster, because the heat di�usion mechanism
by conduction is stronger than the di�usion of heat
by convection, and also as the inner sphere rotates,
a counterclockwise vortex is formed which curbs the
heat convection and its transfer to the �eld. Therefore,
when the Prandtl number is lower, the temperature
�eld grows faster. This can be seen in Figure 11 where
the contours are steadier. The di�erence between
Figures 12 and 13, compared to Figures 10 and 11, is
in the Eckert number. The Eckert number is related to
viscous dissipation, which is the gradient of velocity
that shows its e�ect as a source of heat in energy
equations. This source, in fact, expresses the con-
version of kinetic energy to heat energy, which causes
the temperature of the 
ow �eld to rise. This e�ect
(gradients of velocity) is seen in Figure 12 in which
the temperature �eld has more expansion compared
to Figure 10. Considering Figures 12 and 13, this
di�erence is much clearer. These velocity gradients
are the reason for the di�erence between the actual
temperature and the case of pure conduction and can
be seen better at the vicinity of the inner sphere in
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Figure 11. Contours of (T � Tc) for Re = 1000, Pr = 1, Ek = 0 and 
io = � exp(1� t).

Figure 12. Contours of T for Re = 1000, Pr = 1, Ek = 0:001 and 
io = � exp(1� t).
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Figure 13. Contours of (T � Tc) for Re = 1000, Pr = 1, Ek = 0:001 and 
io = � exp(1� t).

Figures 12a and 12b, compared to Figures 10a and 10b.
Also, as expected, the temperatures are higher when
the dissipation terms are not omitted such as in [10].

Figures 14 to 17 have been drawn for inner
angular velocity, 
io = 2 sin (�2 �), for Re = 1000,
Pr = 10 and Ek = 0 and in two consecutive periods
(second and third) for the sine function. As known,
the sine function oscillates between -1 and 1. In these
�gures, the second and third periods after the sinu-
soidal movement have been considered. Inner sphere
angular velocity in Figures 14a to 14d is approximately

io = 0:0214, 1.998, -0.0214 and -1.998, respectively.
The time values selected in these �gures indicate the
point at which the inner sphere velocity has come
to an important change, showing that it has been
considered immediately after a change of acceleration.
For example, for the time value between case (a) and
just before case (b), the inner sphere acceleration is
positive and the time value at (b) is the starting point
of negative acceleration for this sphere. As seen in
Figure 15, the angular velocity of the 
uid elements
in the vicinity of the inner sphere is also dependent
on past accelerations. This is because the inner sphere
has a sinusoidal oscillation and, for example at � =
4:01, when the inner sphere velocity is 0.0214 (a small
positive value), it is seen that the 
uid elements in its

boundaries have a negative angular velocity, because in
the one quart of the previous period, the inner sphere
has a negative angular velocity. Therefore, as the outer
sphere, containing a constant velocity, has a continuous
and steady e�ect on the entire 
ow �eld, the inner
sphere having an oscillating velocity between -2 and 2
(periodic acceleration of positive and negative) induces
an unsteady and oscillatory type of e�ect on the layers
in the vicinity of the inner sphere.

T and (T � Tc) contours for the inner angular
velocity of 
io = 2 sin(�2 �) are depicted in Figures 16
and 17 for Re = 1000, Pr = 10, and Ek = 0. Similar
types of discussion, as in Figures 8 and 9, apply here
as well. Also, the delay in heat transfer of the 
uid in
large portions of the annulus can be seen in Figure 16h.

CONCLUSIONS

A numerical study of the 
ow and heat transfer of a
viscous incompressible 
uid within a rotating spherical
annulus has been investigated, when the spheres have
time-dependent prescribed values of angular velocities.
The characteristics of the 
ow and temperature �elds
are strongly dependent on the values of the various
dimensionless parameters considered. The character-
istics of angular velocity and temperature distribution
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Figure 14. Contours of  for Re = 1000 and 
io = 2 sin(�=2)t.

Figure 15. Contours of ! for Re = 1000 and 
io = 2 sin(�=2)t.
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Figure 16. Contours of T for Re = 1000, Pr = 10, Ek = 0 and 
io = 2 sin(�=2)t.

Figure 17. Contours of (T � Tc) for Re = 1000, Pr = 10, Ek = 0 and 
io = 2 sin(�=2)t.
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for small Reynolds numbers are similar, which is
expected, since, in this situation, there is a balance
between the convection and di�usion of momentum and
heat. At small Reynolds numbers, the secondary 
ow
or vortices, which cause forced convection are weak,
and hence the e�ect of convection and, therefore, the
intensity of their local heat transfer do not exhibit a
considerable di�erence from the pure conduction. But,
for large Reynolds numbers, some deviations are seen
in the angular velocity and temperature distributions,
which indicate the e�ect of secondary 
ow on the
primary 
ow. Since we have considered the case
with time-dependent angular velocities, the relative
velocities of the spheres are functions of time. Applying
these angular velocities, shear layers are formed in
the vicinity of the spheres, which get thicker because
of a viscous di�usion e�ect and, depending on 
ow
conditions, one or two circulations are formed in the
meridian plane. An interesting e�ect of long delays in
the heat transfer of a large portion of the 
uid in the
annulus is observed because of the angular velocities of
the corresponding spheres.

NOMENCLATURE

b = Ri=R0

c coe�cient
cP speci�c heat at constant pressure
d coe�cient
e coe�cient
Ek Eckert number
f coe�cient
F (�) function
G(�) function
H(�) function
Pe Peclet number
Pr Prandtl number
r; �; � spherical coordinates
r0 reference value
Re Reynolds number
Ri inner sphere radii
R0 outer sphere radii
T temperature
Ti inner sphere temperature
T0 outer sphere temperature
vr; v�; v� velocity components

Greeks

� thermal di�usivity

 function
� non-dimensional time

� function
� similarity parameter
� kinematic viscosity
 stream function
! angular velocity
!0 reference value

 angular momentum function

i inner sphere angular velocity

0 outer sphere angular velocity

i0 = 
i=
0
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