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Replacement-Repair Policy Based on
a Simulation Model for Multi-State

Deteriorating Products Under Warranty

A. Eshraghnia Jahromi1;� and H. Vahdani1

Abstract. In this paper, a replacement-repair model is developed to study a warranty servicing policy
for a class of multi-state deteriorating and repairable products, based on a computer simulation analysis.
In each working state there is a determined probability for transition to each of the subsequent states, given
that it has made a transition out of that state. There are two parameters that determine the manufacturer's
decision to repair or replace a failed item, assuming that the buyer's claim is valid; the deterioration degree
of the item and the length of the residual warranty period. Beside these two parameters, other inputs to
the model are: the number of working and failure states, the di�erent rates of transition from each
working state, given that the life distribution is exponential, the length of the entire warranty period, the
probabilities of expected costs, generated by a mathematical approach, for a few special situations including
transition between states and the cost of repair and replacement in each failure state. The output of the
model is the mean and standard deviation of the total simulated costs generated for a given set of inputs,
such that the best values of the two mentioned parameters can be obtained, based on the statistical test.
The model is validated by comparing its output with the optimal expected costs generated by a few special
situations where this comparison is possible.
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INTRODUCTION

Due to some features of a modern manufacturing
environment, such as rapidly changing technologies,
global markets, �erce competition and new patterns of
consumption, it is necessary to pay special attention to
strong tools regarding customer satisfaction. When a
customer decides to purchase a product, in addition to
some factors such as product price, perceived product
quality and reliability and any �nancing o�ered by
the manufacturer, which, in many instances, may be
identical for more than two brands, there are other
factors that play a signi�cant role in attracting more
customers. Among these, the most important are post-
sale services, especially the warranty, which is known
to the buyer at the time of purchase as an important
factor in product selection. This attention is more
evident in the case of new products. Often, customers
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are uncertain about new product performance. Here,
warranties play an important role in providing product
assurance to customers, and di�erent types of warranty
are o�ered, depending on the product and the buyer.

When a supplier warrants a product, he assumes
an obligation to the customer and a contract is realized
between them. This obligation generates costs to
the supplier associated with any product failure, since
warranty terms generally require that such items be
repaired, replaced or that a cash rebate be given within
a predetermined warranty period. The supplier must
take these costs into account in pricing the product.
There have been numerous attempts to model warranty
costs. Summaries of many of these results are given by
Hill [1], Hill and Blischke [2] and Blischke [3].

One of the most commonly used warranty policies
is the Free Replacement Warranty (FRW). Under
FRW, the manufacturer agrees to repair or provide
replacements for failed items, free of charge, up to time
T , from the time of initial purchase, where T is called
the warranty period. There are other types of warranty
policy, such as pro-rata and combined warranties, that
are referred to in the literature for di�erent products,
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but which are not taken into consideration in this
paper.

With a given warranty policy, the manufacturer
usually has the option of replacing a failed item with a
new one or simply repairing it. Various research results
have been reported on how a manufacturer should ser-
vice a given warranty, utilizing repair or replacement,
in order to minimize the total expected cost to the
manufacturer during the warranty period. Nguyen
and Murthy [4] present models for the evaluation of
expected warranty costs and the variance of these costs,
considering factors such as; general product lifetime
distribution and time dependent repair cost, good-as-
new repair or replacement, minimal repair, a mixture of
replacement and minimal repair, and imperfect repair.
For the FRW with a �xed warranty period, T , Nguyen
and Murthy [5] studied a warranty servicing policy to
minimize the expected warranty servicing costs. When
an item fails and is returned to the manufacturer, the
decisions that the manufacturer has to make are:

1. Whether to replace a failed item with a new one
or with a repaired item from the stock of repaired
items;

2. Whether to repair the failed item received or to
discard it;

3. Which type of repair should be carried out.

They propose an optimal servicing strategy for such
a warranty policy. Nguyen and Murthy [6] examined
the combined FRW with �xed and renewed periods of
T and W , respectively. When an item fails within
the �xed warranty period, T , for the �rst time, af-
ter performing the optimal amendatory action, it is
returned to the customer with a renewed period of
warranty (W ). They propose an optimal servicing
strategy for the warranty policy. Bohoris and Yun [7]
provide equations for calculation of the expected value
and variance of the manufacturer's total warranty costs
under the combined warranty policy, minimal repair,
and Weibull lifetime distributions. Chun and Tang [8]
determine the warranty price for the FRW policy
assuming a constant failure rate and a constant repair
cost throughout the warranty period, and manufac-
turer and customer risk aversion behavior for future
repair costs. Murthy et al. [9] propose a warranty
policy which incorporates an incentive feature to reduce
customer dissatisfaction of defective products. It
involves the manufacturer o�ering compensation, for
consumers who experience early product failure, as part
of the warranty policy. They study the optimal design
of such a policy, considering product quality variations,
the warranty policy and the servicing strategy of the
manufacturer.

All research results on warranty servicing strate-
gies reviewed above, assume that an item under war-

ranty may experience only two possible states: working
or failure. They do not address the deterioration of
the item through time. The change in state of the
item under warranty, with the di�erent approaches
used here, is modeled by Nguyen and Murthy [4] using
imperfect repair and by Nguyen and Murthy [6] using
replacement by another repaired item. In these cases,
the repaired or replaced items may be considered as
being in a di�erent state, because they have a failure
rate function di�erent from that of just before the
failure. The idea of this problem, perhaps, returns to
Derman et al. [10] who studied the optimal replacement
problem of a component where there are n types of
replacements available, di�ering only in price and the
failure rates of exponential life distributions. Assaf
and Levikson [11] and Assaf [12] extend this model to
arbitrary and phase-type life distributions. However,
they do not model multi-state equipment or items that
deteriorate continuously due to usage or age. These
models do not consider the natural deterioration of the
component and are not suitable for consumer product
warranties where, normally, the customer's item is
either replaced with a new one or minimally repaired.
The customer may dislike having his or her failed item
replaced with another used one.

As a more recent contribution, Zuo et al. [13]
developed a model for a class of multi-state deteri-
orating products, wherein each item may gradually
deteriorate along a predetermined number of working
states. The problem facing the manufacturer is to
choose an appropriate action (repair or replace) for
each failure state during the warranty period that
minimizes the total expected servicing cost during the
warranty.

In this paper, a warranty servicing model for
a special class of multi-state deteriorating products
is developed. There are N di�erent working states,
each of which may be experienced by an item during
the warranty period. It may fail during each of
these states, so there are N possible failure states.
The transition between working states has a special
rule and the possibility of transitions between non-
successive working states, due to some unpredictable
events that may take place upon utilization of the item,
has been assumed. When an item fails during the
warranty period, there are two variables that specify
the manufacturer's decision on whether to repair it
using minimal repair or to replace it with a new one
free of charge to the customer. Those parameters are
the degree of deterioration of the failed item and the
residual warranty period (from the time of failure to
expiration of the warranty). The objective function is
minimization of the total expected cost expended by
the manufacturer during the warranty period.

The remainder of this paper is organized as
follows. First, descriptions and assumptions of the
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proposed model are given. Then, a detailed description
of the simulation model, along with a mathematical
derivation of the warranty servicing cost, is presented.
Following that, there is a discussion of a small sampling
study performed for model validation. This is accom-
plished by comparison of the simulation results with
some validated results for a few special cases that have
been presented in the literature.

DESCRIPTION OF MODEL

There are two types of variable that can be used to
model the deterioration of an item with time; contin-
uous or discrete. Although models of deterioration,
based on the discrete approach, are an approximation
for the real world, where the deterioration is continu-
ous, they have the advantage of being simpler than the
models based on a continuous approach and are also
easier to analyze.

The discrete approach, involving N discrete work-
ing states numbered from 1 through N , is as follows.
Working state 1 corresponds to a new item and the
degree of deterioration increases with the working
state so that working state j corresponds to greater
deterioration than working state i if j > i. Once
the item enters working state j, it can either fail or
move to any of the subsequent states. If it enters a
failed state, then it can be made operational, either
through minimal repair or by replacement. In the
former case, it is restored back to working state j and,
in the latter case, it is brought back to working state 1.
In working state N , when a failure occurs, the item is
made operational by replacement, so that the working
state becomes 1 after replacement.

The changes in the states are modeled as follows.
Once the item enters working state j, it stays in that
state for a random length of time, which is given by
an exponential distribution with transition parameter
�j. This implies that the mean time to transition is
1=�j. The parameter, �j, in conformity with the real
world, increases as j increases from 1 to N . It means
that the expected number of transitions increases as
the item proceeds to the latest states. The probability
that it moves to working state k(k > j) is Pjk and the
probability that it fails (and moves to failed state j) is

given by

 
1� NP

k=j+1
pjk

!
.

One of the great advantages of such a model is its
exibility, which enables one to cover di�erent models
presented in the literature, due to di�erent methods for
parameter settings. For example, if one sets Pjk = 0
for all k > (j + 1), then, the model presented by Zuo
et al. [13] is attained and the authors simulation model
can be easily veri�ed, which keeps its generality.

The item is sold with a FRW policy with warranty

period T . This requires the manufacturer to either
repair or provide replacements for failed items, free
of charge, up to time T , from the time of the initial
purchase. The warranty expires at time T after
purchase. It is assumed that the item is repairable and
that the manufacturer has the option of either repairing
a failed item or replacing it with a new one when it
is returned under warranty and the buyer's claim is
valid. The repair or replacement time is assumed to be
relatively short compared with the mean time between
failures and, hence, can be treated as negligible. The
optimal choice, based on minimizing the expected cost
of warranty service, has the following general form:

The failed item in failure state j is 1 � j �
N . Whereas the residual warranty time up to the
expiration of the warranty period is t, 0 � t � T is
replaced with a new one, if, and only if, k � j � N
and t � �, otherwise, it is minimally repaired, where
2 � k � N and 0 < � � T ;

k and � are the decision variables in this optimiza-
tion problem and the policy is characterized by these
two parameters. The manufacturer has to select the
parameters, k and �, to minimize the expected cost of
servicing the warranty. Under this policy, most items
which failed during the warranty period (assuming
higher costs for replacement in comparison with repair
costs) would normally be minimally repaired. However,
if an item fails early in the warranty period and if, for
some reason, the degree of deterioration is large, then,
it is more economical to replace it with a new one. As
a result, the policy e�ectively avoids (a) unnecessary
replacements when the failed item has only experienced
minor deterioration and (b) excessive repairs when the
failed item has already experienced heavy deterioration
and the remaining warranty service time is still long.

Let C(�; k;T ) denote the expected warranty ser-
vicing cost per item to the manufacturer under this
warranty servicing policy. Then, the problem is to
determine which optimal k and � values yield the
minimum value for C(�; k;T ). Initially, the notation
used in this paper is introduced. Second, an expression
is derived for C(�; k;T ) and, then, in the next section,
the simulation framework used for �nding the best
values of the decision variables is explained. For more
convenience, the following notation, presented by Zuo
et al. [13] is used:

N number of working states,
T length of original warranty period,
K decision variable (2 � k � N),
� decision variable (0 < � � T ),
C(i)
m cost of minimal repair, given that the item

is failed in state i(i = 1; 2; � � � ; N),
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C(i)
r cost of replacing the failed item,

given that it failed in state
i(i = 1; 2; � � � ; N),

�i rate of transition from working state
i(i = 1; 2; � � � ; N),

Pij probability of the item entering
working state j, given that it has
made a transition out of working
state i(i = 1; 2; � � � ; N � 1), 

1� NP
k=i+1

Pik

!
probability of the item entering

failure state i, given that it has
made a transition out of working
state i (i = 1; 2; � � � ; N � 1),

L length of con�dence interval,
A level of signi�cance,
S standard deviation of sample,
NOR number of replications.

For more clari�cation, Figure 1 shows all the possible
states of the item and the possible transitions among
the states, where circles and squares denote working
states and failure states, respectively.

In addition, the following assumptions are made:

(a) After any failure, the manufacturer faces the cus-
tomer claim and all failures during the warranty
period are valid.

(b) The time taken for repair or replacement, in
comparison with the mean time between failures,
is treated as negligible.

Furthermore, it is assumed that, as the
item passes to the latest working state, due to
usage, where the degree of deterioration gradually

increases, the corresponding rate of transition to
the failure state increases too. In other words, it
is more likely to make the transition to a failure
state instead of a transition to another working
state. Assumption (c) shows this condition math-
ematically:

(c) �1

 
1� NP

j=2
P1j

!
< �2

 
1� NP

j=3
P2j

!
< � � �

< �N (j = 1; 2; � � � ; N � 2).

Due to the di�erent patterns of usage of
identical items, di�erent patterns of deterioration
may take place. As a special pattern, it is assumed
that the mean rate of transition between working
states decreases, as the distance between states
increases and transition between more adjacent
states is more likely. In this manner, not only
is it possible to consider the possibility of transi-
tion between non-successive states, but it is also
possible to contemplate real world conditions in
this model. It is important to mention that the
chances of an item transiting from state 1 to N are
very low. Assumption (d) implies this situation
mathematically.

(d) �jPj(j+1) > �jPj(j+2) > � � � > �jPjN ;

(j = 1; 2; � � � ; N � 2):

Furthermore, it is assumed, as the deteriora-
tion degree increases, that the needed amendatory
cost will increase. Items that have passed through

Figure 1. State transition diagram of a warranted item.
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too many states become more costly to repair or
replace. Also, in case of replacement, this change
may have a non-decreasing trend, because many
deteriorated items that need to be replaced can
no longer be used. The mathematical expressions
of these assumptions are presented in (e) and (f)
as follows:

(e) C(1)
m < C(2)

m < � � � < C(N�1)
m < C(N)

m :

(f) C(1)
r � C(2)

r � � � � � C(N�1)
r � C(N)

r :

WARRANTY COST AND SIMULATION
MODEL

For special case N = 2, i.e., the item has only two
possible working states and two possible failure states,
the model changes to the model presented by Zuo et
al. [13] and the optimal policy can easily be obtained
mathematically, as presented in their paper. So, in
this case, �nding the deterministic solution is possible
and simulation is not required to �nd an approximate
solution. However, the simulation solution can be
compared with the optimal one as a tool for validation
of the simulation model. Therefore, it is assumed that
the number of working states is at least 3 and, so the
number of failure states.

The general case with N > 2 is now considered.
Let Xi and Ii represent the time to the �rst failure and
the corresponding failure state, respectively, under the
assumption that the item is in working state i (i =
1; 2; � � � ; N) at time t = 0 (general case). Clearly, Xi
and Ii are two dependent random variables, where Xi 2
(0;1) and Ii = i; i + 1; � � � ; N: In order to derive an
expression of warranty servicing cost, one should �nd
the joint probability distribution of these two random
variables in a way similar to the method proposed by
Zuo et al. [13].

The cumulative and density probability distribu-
tion function of the time to the �rst failure is de�ned
as follows:

Fij(x) = PrfXi�x and Ii = jg;
j = i; i+ 1; : : : ; N;

1 � i � N; (1)

fij(x) =
dFij(x)
dx

; 1 � i � j � N: (2)

The deterioration process of the item, given that all
the time distributions of staying at each working state
are exponential, can be regarded as a continuous-time
Markov process with 2N possible states (see Figure 1).
In order to derive the joint probability distribution of

X and I, one treats the N possible failure states of the
item as the N absorbing states of this Markov process.
The �rst failure time of the item is the time at which
the process enters an absorbing state. De�ne:

Pi(t)=Pr fThe item is in working state i at time tg;
i = 1; 2; : : : ; N;

Qi(t) = Pr fThe item is in failure state i at time tg;
i = 1; 2; : : : ; N:

It is evident that, by this de�nition, one has:

Fij(t) = Pr fThe failure time of the item is less

than or equal to t and its failure state

is j at time tg = Qj(t);

j = i; i+ 1; i+ 2; : : : ; N: (3)

One now just needs to �nd the values of Qj(t) for
any j, which is not a di�cult process. By writing out
the Kolmogorov equations for this Markov process, one
should be able to �nd the Qj(t). One has:

d
dt

0BBB@
P1(t)
P2(t)

...
PN (t)

1CCCA =

0BBBB@
��1 0 0 0 � � � 0 0
P12�1 ��2 0 0 � � � 0 0
: : � � � : :
: : � � � : :

P1N�1 P2N�2 � � � PN�1;N�N�1 ��N

1CCCCA
0BBB@
P1(t)
P2(t)

...
PN (t)

1CCCA ; (4)

dQi(t)
dt

= �i

0@1�
NX

j=i+1

Pij

1APi(t);

i = 1; 2; � � � ; N � 1; (5)

dQN (t)
dt

= �NPN (t): (6)

In order to reach the mentioned assumptions for the
initial situations of the sold item, the initial conditions
of these di�erential equations are adjusted as:
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Pk(0) = 1; Pi(0) = 0;

for i = 1; � � � ; k � 1; k + 1; � � � ; N;
Qi(0) = 0; for i = 1; 2; � � � ; N:

Then, the Qi(t), obtained by solving Equations 4 to
6, should equal Fkj for all k � j � N . In other
words, solving Equations 4 to 6 with these initial
conditions, which is compatible with the authors as-
sumptions, leads one to obtaining the joint probability
distribution, fkj(t), for all 1 � k � j � N . Now,
one is able to �nd the expected warranty servicing cost
formulation.

Let Ai(t) represent the expected cost to the man-
ufacturer during the remaining warranty period, given
that the item is in working state i (i = 1; 2; � � � ; N)
and the length of the remaining warranty period is
t (0 < t � T ). Then, the expected total warranty
servicing cost per item to the manufacturer is given by
A1(T ).

In the following, the integral equations for Ai(t)
are written. Two di�erent cases need to be considered.

Case 1: t < �

Taking note that the item has an exponential sojourn
time in each working state and that its repair and
replacement times are negligible, one has:

Ai(t) =
NX
j=i

iZ
0

h
C(j)
m +Aj(x)

i
fij(t� x)dx;

i = 1; 2; � � � ; N: (7)

Case 2: t � �

Ai(t) =8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

!i(t) +
kP
j=i

tR
�

h
C(j)
m +Aj(x)

i
fij(t� x)dx

+
NP

j=k+1

tR
�

h
C(j)
r +A1(x)

i
fij(t� x)dx

for i = 1; 2; � � � ; k

!i(t) +
NP
j=i

tR
�

h
C(j)
r +A1(x)

i
fij(t� x)dx

for i = k + 1; � � � ; N

(8)

where:

!i(t) =
NX
j=i

�Z
0

h
C(i)
m +Aj(x)

i
fij(t� x)dx;

� � t � T; i = 1; 2; � � � ; N: (9)

It is very di�cult to obtain closed form solutions of
Equations 8 and 9. However, they can be easily
evaluated by simulation. The goal is to calculate the
warranty servicing cost, A1(T ). A simpli�ed owchart
of the simulation model developed in this study is given
in Figure 2. This chart shows the basic dynamics of the
modeled replacement-repair process.

Referring to Figure 2, the warranty process begins
when the item is placed in service. The next event in
the process occurs when the �rst failure is perceived.
According to prede�ned conditions, related events
occur. Then, the warranty process starts over with
modi�ed parameters until one of the paths leads to the
event \process ends".

In order to produce an estimated cost for the
warranty of particular speci�cations, the simulation
model must have, as input, the characteristics of
the item's life distribution in each working state and
the speci�cations of the warranty provisions. The
necessary inputs for a simulation run are:

1. The parameters of life distribution in each working
state, �i;

2. The length of the warranty period, T ;

Figure 2. Flow chart of the warranty process.
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3. The number of working and failure states, N ;
4. The probabilities of transition between states, Pij ;
5. The cost of repair and replacement in each failure

state, C(i)
m and C(i)

r ;
6. The policy speci�cation parameters, � and K.

The simulation program was executed with VI-
SUAL SLAM (Awesim 3.0) software. A listing of
the V.S. source of the modeling statement is available
from the authors upon request. The key to successful
implementation of any Mont Carlo simulation model is
the random number generation of di�erent probability
distributions. The V.S. software made this very easy
by preparing the prede�ned and available tools for
generating random numbers of di�erent probability
distributions.

In order to �nd the appropriate value of the
needed number of replications, it is necessary to de-
termine the level of signi�cance and the length of the
con�dence interval around the population mean. This
length is equivalent to the accepted deviation from
the population mean. With respect to the central
limit theorem, the sample mean follows a normal
distribution for a large number of replications. So, the
length of two-sided con�dence interval (L) to estimate
the population mean, can be shown as:

L = 2� za=2 � S=pNOR: (10)

In Equation 10, za=2 indicates the percentile of a stan-
dard normal distribution at (1-a) level of signi�cance,
and S stands for the standard deviation of the sample.
When, for an examined simulation practice with a
known number of replications, the calculated value of
L becomes less than the prede�ned accepted range of
deviation from the population mean (or equally its es-
timation), then, the appropriate number of replications
has been speci�ed. It is necessary to point out that one
needs to �nd the minimum value of NOR that satis�es
the mentioned condition, considering the time required
for completing the simulation.

NUMERICAL EXAMPLE

The simulation method described in the previous sub-
section was run to calculate the warranty servicing cost
for the following numerical example, with the inputs,
as follows:

N = 4; T = 3 years; �1 = 0:5=year;
�2 = 2=year; �3 = 3=year; �4 = 3:5=year;
P12 = 0:6; P13 = 0:2; P14 = 0:1;
P23 = 0:5; P24 = 0:1; P34 = 0:6;
C(1)
r = $40; C(2)

r = $50; C(3)
r = $300;

C(4)
r = $400; C(1)

m = $300; C(2)
m = $500;

C(3)
m = $600; C(4)

m = $800:

It is necessary to mention that it is assumed that,
at most, 5% deviation from the estimated population
mean will be accepted and that the level of signi�cance
is 95%. Numerical results in this example show that,
with nearly 5,000 replications, the mentioned condition
will be satis�ed. These results are presented in Table 1
and the e�ect of di�erent values of k and � on the mean
warranty cost is shown in Figure 3.

If the mean warranty cost has to be the only
criterion for selecting the optimal value of the decision
variables, then K = 3 and � = 0:4 are the optimal
values that have minimum warranty costs. As can
be seen, for these parameters, the total expected and
standard deviations of warranty servicing costs are
$484.58 and $12.34, respectively. In other words, to
minimize the expected warranty servicing cost when
the warranty period is 3 years, the manufacturer should
minimally repair all failures, except when the item is in
failure state 3 or 4 and the remaining warranty period
is longer than 0.4 years.

For better understanding, Figure 3 presents a
graphical comparison between di�erent values of war-
ranty costs, according to di�erent values of variables K
and �.

Small di�erences between the optimal expected
warranty cost and its adjacent values, encouraged the
performance of a statistical test, in order to clarify
whether or not there is any other parameter setting
with a smaller mean warranty cost. It is required to
test the null hypothesis, H0 : �� � � versus H1 :
�� > �, where �� and � are the population mean of
the warranty cost for an optimal parameter setting and
other parameters to be tested, respectively.

For this purpose, it is necessary to de�ne a
new level of signi�cance and an appropriate statistic.
According to the nature of the performed simulation
and the lack of any rational reason for the variance
equality of the sample mean for di�erent parameters,
it seems that the most appropriate statistic for testing

Figure 3. Mean warranty servicing cost as a function of
K and �.
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Table 1. Numerical results of simulation model including mean warranty cost and mean standard deviation (S.D.).

K

4 3 2 1

Mean
S.D.

Mean
Warranty

Cost

Mean
S.D.

Mean
Warranty

Cost

Mean
S.D.

Mean
Warranty

Cost

Mean
S.D.

Mean
Warranty

Cost
�

14.06 573.65 12.49 508.09 13.37 567.66 12.72 598.27 0

13.97 567.73 11.96 497.29 13.13 554.77 12.63 585.96 0.1

14.01 562.89 11.81 494.23 13.17 546.94 12.89 571.18 0.2

14.01 563.59 12.02 494.39 13.17 539.53 12.90 566.34 0.3

14.27 562.41 12.34 484.58* 13.38 532.77 12.86 565.34 0.4

14.60 563.97 12.08 495.31 13.30 532.52 12.96 559.52 0.5

14.87 574.64 12.37 497.87 13.81 537.50 13.20 558.42 0.6

15.24 587.22 12.83 510.15 13.28 542.51 13.27 563.54 0.7

15.88 607.53 13.47 525.79 13.66 551.02 13.82 563.94 0.8

16.81 618.79 14.06 538.13 14.13 558.99 14.35 577.31 0.9

17.55 646.33 15.09 561.52 14.81 567.72 14.95 588.75 1

18.65 665.48 15.78 581.48 15.74 591.85 16.08 606.51 1.2

19.29 692.52 16.80 611.68 16.97 609.59 16.85 628.71 1.3

22.71 716.84 18.34 642.72 18.09 627.94 18.20 648.33 1.4

21.37 748.73 19.31 665.61 19.50 650.48 18.97 671.52 1.5

22.05 781.40 21.14 696.80 20.50 682.53 19.71 700.37 1.6

22.97 814.68 22.08 732.57 21.43 711.61 21.21 723.54 1.7

23.32 843.67 23.50 756.32 23.06 743.79 21.85 764.75 1.8

24.23 885.05 24.17 811.33 24.02 775.92 22.92 789.38 1.9

25.72 912.32 25.10 842.38 25.17 814.33 24.86 824.09 2

26.72 938.58 26.38 881.96 26.40 851.32 25.66 861.84 2.1

27.72 964.47 27.62 922.33 27.70 891.79 26.87 904.06 2.2

29.18 997.38 28.11 952.02 28.82 931.21 28.20 929.04 2.3

30.45 1032.03 28.90 986.25 29.12 967.79 28.77 964.02 2.4

31.32 1045.59 30.06 1022.56 29.91 1001.04 29.92 1001.27 2.5

31.67 1077.49 30.50 1049.92 30.58 1030.88 31.01 1027.54 2.6

32.11 1090.76 31.46 1066.51 31.22 1061.23 32.25 1055.66 2.7

32.70 1100.60 31.85 1090.08 32.43 1090.40 33.24 1095.19 2.8

32.95 1120.21 32.76 1116.33 32.77 1110.19 33.73 1116.94 2.9

33.12 1121.43 33.00 1116.39 33.13 1113.90 34.12 1120.63 3

the mentioned hypothesis is as follows:

t =
�X � �Yq

S2
x

NORX + S2
Y

NORY

: (11)

In Equation 11, �X and �Y indicate the sample means
concerning the optimal and compared parameter set-
tings. It is known that, for a large number of observa-
tions, the asymptotic distribution of this statistic fol-
lows a standard normal distribution. If the computed

statistic, based on the numerical results, is smaller
than, or equal to, za (the percentile of a standard
normal distribution at (1-a) level of signi�cance), then,
the null hypothesis will not be rejected and current
parameters remain optimal. Otherwise, there is not
enough evidence to select the current solution as the
best possible one.

Among the presented results in Table 1, Equa-
tion 11 was computed for comparing two sets of samples
at a 95% level of signi�cance, using MINITAB software;
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the �rst with � = 0:4 and k = 3 (current optimal
solution) and the second with � = 0:3 and k = 3
(the nearest adjacent). The following software output
proved the authors claim, regarding the optimality of
� = 0:4 and k = 3, in comparison with � = 0:3 and
k = 3:

Test of �� � � VS �� > �
Variable N Mean SE Mean
� = 0:4, k = 3 5000 484.58 12.34
� = 0:3, k = 3 5000 494.39 12.02

Variable T P -Value
� = 0:3, k = 3 0.56 0.2877

Similar comparisons were performed for other
comparable alternatives and the same results were
gained. So, the mentioned total expected warranty
cost, that is $484.58, will remain optimal.

As stated previously, by implementing some
changes in the model, one can reach some useful results
and this model may be transformed to some similar
models presented in the literature. So, the model
veri�cation seems very easy. For this, another example
was chosen that is, to some extent, similar to a previous
example presented by Zuo et al. [13]. They used a
numerical approach to �nd the optimal policy for the
warranty model. The inputs are as follows:

N = 4; T = 3 years; �1 = 0:5=year;
�2 = 2=year; �3 = 3=year; �4 = 3:5=year;
P12 = 0:9; P13 = P14 = 0; P23 = 0:6;
P24 = 0; P34 = 0:6; C(1)

r = $40;
C(2)
r = $50; C(3)

r = $300; C(4)
r = $400;

C(1)
m = $300; C(2)

m = $500; C(3)
m = $600;

C(4)
m = $800:

After running the model in V.S., fortunately, the result
was completely similar to that presented in their paper.
Their optimal parameters were K = 3 and � = 0:5,
with a total warranty servicing cost of $408. So, to
minimize the expected warranty servicing cost when
the warranty period is 3 years, the manufacturer should
minimally repair all failures, except when the item is in
failure state 3 or 4 and the remaining warranty period is
longer than 0.5 years. Similarly, the numerical results
of this simulation, based on 5,000 replications, obtains
K = 3 and � = 0:5 with a nearly equal mean cost of
warranty and 7.68 for the standard deviation.

CONCLUSIONS

In this paper, a warranty servicing policy has been
developed for a product with N working states and
N failure states. The policy is characterized by two
parameters. For the special case where N = 2, the

optimal parameter values can be calculated analyti-
cally. When N > 2, a simulation procedure has been
proposed. The model can be used to minimize the
warranty servicing costs of multi-state deteriorating
products, using minimal repairs and replacements. The
model reported in this paper can be extended in several
ways. Some of the many issues that need further study
are listed below:

1. It has been assumed that the sojourn times are
exponential. One can relax this assumption and
treat the sojourn time to follow more general dis-
tributions, with parameters varying with respect to
the state. The power of V.S. software in generating
di�erent kinds of random number, makes it easy to
analyze very di�erent items, which have their own
special speci�cations.

2. The FRW policy is one of the many di�erent
warranty policies presented in the literature. One
can carry out similar analyses to obtain the optimal
repair-replacement strategies for other warranty
policies.

3. In the authors' model, the deterioration is charac-
terized discretely and gradually through N states.
A natural extension is to characterize the deterio-
ration as a continuous variable. This will imply an
in�nite state space.
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