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Graph Theoretical Topology Control in Structural
Optimization of Frames with Bracing Systems

A. Kaveh1;� and M. Shahrouzi2

Abstract. Many topological objectives and constraints can not easily be assessed by analytical
formulations. This paper introduces a number of graph theoretical operators, as suitable combinatorial
tools, for discrete topology assessment. Using such an approach, the load paths from their exertion points
to the support joints can be guided topologically during the optimization process. Eleven variants of the
proposed method are developed for the inclusion of various constraints and/or objectives. The presented
algorithms are then applied to the optimal bracing layout of multi-story frames under lateral loadings
for minimal weight or static compliance. Benchmark examples from literature are treated to validate the
e�ciency and to compare the capability of the proposed algorithms. The bracing patterns obtained from
optimization are graph theoretically categorized.
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INTRODUCTION

In order to complete the mathematical design model
of a structure under a speci�ed loading state and
boundary conditions, the following data packets are
required:

1. Structural topology: Connectivity relationship be-
tween structural components/members;

2. Structural geometry: The nodal coordinates;
3. Components' shape and sizing: Assignment of

structural sections to the members;
4. Material properties: Strength and sti�ness charac-

teristics of the utilized material.

The con�guration of a structure is de�ned by
its topology, determining the connectivity between
structural components. Therefore, it is the most
a�ecting part in the distribution of sti�ness/strength
and consequent response of the entire structure. The
other data, such as section shape and size or the
nodal coordinates, are con�ned to the pre-determined
topology as the most important part of the design. On
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the other hand, such topological information is of a
combinatorial nature. The matter is considered as an
important reason for the complexity of the structural
layout optimization for designers.

The optimal structural design of medium/high
rise buildings under seismic or wind loading usually
requires employing bracing diagonals in order to keep
the inter-story drift values within their desired per-
formance limits. As the topology of a non-braced
frame is �xed, the problem will be selection of the
best bracing layout in the frame plane among several
possible options [1].

Many attempts have already been reported for
the topology optimization of trusses [2-5] and the
sizing of skeletal frameworks [6-12]. However, for
the case of optimal bracing patterns in frames, a few
approaches are available [13-15]. Mijar et al. utilized
a Voigt-Reuss material mixing rule formulation with
a �xed volume fraction constraint [13], while Liang et
al. developed a performance-based optimization in an
unconstrained form [14,16]. The resulted conceptual
designs, as pattern guidelines for an optimal bracing
layout, require further interpretation to practical dis-
crete skeletal members and even distributed changes
in the original frame design [17]. Each continuum
method uses its own way to achieve its �nal conceptual
pattern, which is still an estimate of the discrete
optimal topology. However, for a practical design,
further considerations should also be considered, such
as the buckling-reduced strength of linear members
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and the desired contribution ratio of certain member
types in undergoing lateral loads. This emphasizes the
application of a discrete approach in order to achieve
the true/practical optimum.

Some topological requirements may not be explic-
itly formulated by analytical methods. In the case
of seismic/wind retro�t, the contribution of existing
frame members in the lateral load-resisting system is
desired to be minimized [15,18]. This highlights the
need to guide the lateral-load paths through bracing
members rather than beams and/or columns.

The present work incorporates the graph theory
as a powerful tool to handle topological transfor-
mations within a deterministic discrete optimization
procedure. Special graph theoretical de�nitions are
presented and adopted for an optimal bracing layout.
Some �nal smoothing modi�cations are then intro-
duced as a partial geometry modi�er. Examples of steel
multi-story frames are treated from the literature and
compared.

AN OVERVIEW OF GRAPH THEORY
DEFINITIONS AND OPERATORS

Many graph theoretical concepts applied to structural
mechanics can be found in the work of Kaveh [19,20].
Here, only the necessary terms for the present work are
introduced and employed in subsequent sections:

1. Graph S consists of a non-empty set N(S) of
elements called nodes and a set, M(S), of elements
called members, together with a relation of inci-
dence, which associates with each member a pair of
nodes called its ends.

2. Two ends of a member are called adjacent to one
other and incident to that member. Every two
members with a common end are incident members.
The degree of a node is the number of members
incident to that node.

3. Subgraph Si of graph S consists of a subset of
N(Si) � N(S) and a subset of M(Si) � M(S),
with the members having the same ends as in S.

4. Complete Graph Kn is a graph with n nodes, in
which each node is adjacent to all the other n � 1
nodes.

5. A sequence of alternately non-repeated nodes and
members of a graph is called a path. The number
of members of a path is de�ned as the distance
between its beginning and end nodes. The graph
theoretical length of a member is taken as unity.

6. A graph is called connected, if there is at least one
path between every two nodes of the graph.

7. Every maximally connected subgraph of a graph is
called its component. A connected graph has only
one component.

8. A \Cycle" is a path on which the two end nodes
coincide.

9. A \Tree" is a connected graph with no cycle. A tree
which contains all the nodes of the graph is called
a spanning tree.

10. Considering a speci�c node in a graph as the root
node, a \Shortest Route Tree (SRT)" is de�ned as
a spanning tree in such a parent graph, in which
the distance between every node and the root node
is minimal. For the formation of a SRT, the root
node is labeled the �rst contour; its adjacent nodes
form the second contour and the process is repeated
considering the unused adjacent nodes at each step.
This procedure is continued until all the nodes are
spanned and the SRT is constructed.

11. Multiple Shortest Route Tree (MSRT) is a SRT
grown from multiple root nodes.

12. Priority-grown Multiple Shortest Route Tree (PM-
SRT) is a subgraph, constructed using the following
algorithm:

Algorithm 1:

a. Assign the root nodes to the �rst contour and
initialize the SRT node vectors;

b. Increase the Contour Number (CN) by unity for
the new contour;

c. Enter nodes to the new contour as follows:
i. Select every node in the previous contour

and call it a current parent node.
ii. Look for any of its adjacent nodes.
iii. If it is not still labeled and its Priority

Number (PN) is greater than the PN of the
parent node, label the contour of this node
as the new CN. The stem node of this node
is the parent node and it is the bud node of
that parent.

iv. Repeat Steps i, ii, iii, until no new adjacent
node remains unchecked for labeling in this
contour.

d. Repeat Steps b and c, until there is no other
node unchecked for labeling Elements of the
vectors; ContourOfNode, StemOf and BudOf
should be initiated with a 0-value at the begin-
ning of Step a.

For the case in which the priority numbers are the
same for all the members, the recent algorithm
results in a MSRT and if the number of roots is
also one, it will represent a SRT.

13. `Graph Parts (GPs)" are the subsets of graph nodes
such that within each subset no node is allowed to
be incident to the others.
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14. \Adjacent parts" are every two parts of a graph,
which consists of at least one node incident to a
node in the other part.

15. \Multipartite graph" is a graph which consists of
at least two distinct parts.

16. \Frame (associate) graph" is a graph whose mem-
bers and nodes are in a one-to-one correspondence
with the members and the connections of a struc-
tural frame, respectively.

17. \Bracing (associate) graph" is a graph whose mem-
bers and nodes are in a one-to-one correspondence
to bracing members and their connections in the
structural frame.

18. \Contraction" is replacing a 3-node path with a
member connecting the two end nodes of that path.

A typical approach for representing a graph is to
denote any kth member by its end nodes (ni, nj) and
to list all the graph members in a sequence. As an
example, the graph of Figure 1a can be represented
as: S = [(n1; n2); (n1; n5); (n1; n5); (n2; n3); (n2; n4);
(n2; n6); (n2; n7); (n2; n8); (n3; n5); (n3; n7); (n3; n8);

(n4; n5); (n4; n7); (n5; n6); (n5; n7); (n5; n8); (n6; n7);
(n6; n8)].

The graph of Figure 1b represents a subgraph of
graph S as a path between the following set of nodes:
fn4; n5; n7; n3g.

The path graph itself is then denoted by: S1 =
[(n4; n5); (n5; n7); (n7; n3)]. Its contraction will result
in linking (n4; n3) as a single member (see Figure 1c).

The 2nd cycle graph in Figure 1d has a node
sequence of fn2; n7; n5; n6; n8; n3; n2g, in which the �rst
and the last node, n2, are identical.

Figure 1e shows a tree, which can be a subgraph
of S, as its nodes have the same relation of incidence:
S2 = [(n1; n2); (n1; n5); (n2; n3); (n2; n6); (n3; n8);
(n5; n8)].

Two components of graph S3 in Figure 1f, are
represented as S4 and S5, where S3 = [(n1; n5);
(n5; n8); (n2; n4); (n2; n6); (n3; n7); (n4; n7); (n6; n7);
(n7; n8)], and S4 = [(n1; n5); (n5; n8)] and S5 =
[(n2; n4); (n2; n6); (n3; n7); (n4; n7); (n6; n7); (n7; n8)].

A multipartite graph can be considered as the
following parts: fn1; n4g, fn2; n7; n5g and fn3; n8; n6g.
In which, the following SRT is grown from n4 as the

Figure 1. (a) A graph with 8 nodes and 18 members; (b) A path between n3 and n4; (c) The contracted form of the path;
(d) 2 nested cycle graphs; (e) A typical tree; (f) A multi-partite graph; (g) A SRT rooted from n4 depicted in bold lines;
(h) A MSRT grown from n1 and n4 shown in bold lines.
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root node in Figure 1g:

S6 = [(n4; n2); (n4; n7); (n2; n6); (n7; n3)]:

The node set in each contour of such a SRT is
determined as:

Contour number 1: fn4g;
Contour number 2: fn2; n7g;
Contour number 3: fn3; n6g.

As can be seen, this SRT has covered only one compo-
nent of S3, namely S5.

Figure 1h shows a multiple SRT as a subgraph of
S with 2 components; each component is rooted from a
distinct node. Thus, there is more than one root node
in this MSRT indicated as fn1; n4g, forming the 1st
contour of the MSRT. It should be noted that if graph
S is associated to a frame with the same topology,
the nodes in each identi�ed contour of such MSRT
correspond to the nodes at one distinct level of that
frame.

GENERATION OF THE PROPER
PROTOMORPH

In the topology optimization of skeletal structures, a
highly connected initial topology is �rst generated and
the optimal layout is searched via the iterative elimi-
nation of less desired members. When such an initial
layout is fully connected (similar to a complete graph),
it is called the ground structure. From a practical
point of view, the ground structure constructed on a
frame includes many undesired members, which may
arise in the �nal design. For example, extra generated
columns ended between joints of non-neighbor stories.
Besides, some diagonal members may interconnect the
columns at their mid-height, even if they are forbidden
by design codes [21]. A promising technique to prevent
such undesired members is to de�ne the search space
by a less connected pattern, called protomorph [22],
which does not include such undesired members.

Consider a two-bay and six-story building frame,
as shown in Figure 2, which has already been treated by
a number of investigators [13,14]. Suppose the problem
is to �nd the best bracing layout in such a frame,
whereas only concentric V-type bracings are acceptable
in the �nal design and no bracing member is allowed to
interconnect a column except at its end joints. For this
case, the proper protomorph can be constructed by:

1. Generating the desired number of auxiliary nodes
within the length of the beam; e.g. 2 nodes at 1/3
and 2/3 of the length in the example of Figure 2a.

2. Connecting every such node to the neighboring
main nodes, i.e. the beam-column joints on the
nearest columns and at the lower and higher stories
of that bay.

Figure 2. (a) A frame associate graph with 2 auxiliary
nodes in each beam; (b) A complete graph associated to
the ground structure for a X-braced frame; (c) A
protomorph associated to the frame of part (a) and one of
its possible super bracing layouts in bold lines; (d)
Another protomorph with the additional possibility of
every frame opening to be X-braced.

In order to allow the selection of traditional X-
bracings, the column ends should also be connected
by diagonals. In cases where X-braced spanning of
all the 6 stories is an acceptable design alternative,
the selected protomorph should include at least two
auxiliary intermediate nodes in every beam, as a graph
part in the corresponding bracing graph.

Detection of Irregular Topologies During
Generation of the Protomorph

In practical design, occasionally, some frame openings
forbid the running through of bracings, due to architec-
tural or performance considerations. If e�ect. In addi-
tion to this, the corresponding optimization algorithms
may not converge as tested and reported by Mijar et
al. [13]. One way to avoid this problem is to detect and
prevent the possibility of such topological irregularities
by their removal from the protomorph structure, using
the following graph theoretical subroutine:

Algorithm 2:

1. Generate all the members of the desired proto-
morph, except those diagonals such a case leads
to a disconnected bracing graph, it may cause a
soft-story falling in the forbidden/non-designable
openings;

2. Select the support nodes as the set of graph root
nodes;

3. Generate a MSRT on the bracing graph, starting
from these root nodes;

4. If any diagonal (bracing) member falls outside
of the generated MSRT, omit the corresponding
member from the protomorph.

Applying the latter algorithm is analogous to
omitting any component of the initial bracing graph,
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Figure 3. (a) The 3rd and 4th stories as non-designable domains for the bracing layout; (b) Corresponding bracing
associate graph and its 2 distinct components; (c) A modi�ed protomorph to avoid the soft story e�ect; (d) A modi�ed
protomorph extracted by removal of members in the upper components, which are incident to auxiliary beam nodes
adjacent to the non-designable domain.

except the one including support nodes (Figure 3c).
Another modi�cation (Figure 3d) limits the transmis-
sion of lateral forces to the upper bracing graph com-
ponent through columns of non-designable domains.

PROBLEM FORMULATION AND MAIN
OPTIMIZATION PROCEDURE

In the present work, the problem of frame bracing lay-
out optimization against static loading P is formulated
as:

Minimize Wb = � lTb Ab: (1)

Subject to:

C � Ca;
with the equality equilibrium constraint:

Ku = P;

where:

Ab =fA1; A2;5 � � �; Amg: Vector of member
cross-sectional areas for
bracings;

lb =fl1; l2; � � � ; lmg: Vector of member
lengths for bracings;

K=Kf +Kb(Ab): Sti�ness matrix of the
frame and bracing
system;

u: Nodal displacements
response;

�: Material density;
C= 1

2
P
j
Pjdj : Mean static compliance

along all stories at level
number j.

In addition to the main optimization mod-
ule, a linear elastic structural analysis routine with
pre/postprocessor and its required subroutines is
programmed to compute the nodal displacement
and beam/column/axial-member stress response under
equivalent static load cases. In the diaphragm model of

oors at a planar frame, the lateral degrees of freedom
in nodes at every story level are constrained to each
other, so that the corresponding displacement response
at the direction of lateral load Pj is calculated as dj (the
jth roof lateral displacement with respect to the base-
ment). When the constant vector of static lateral loads
is accepted for being applied as a common practice in
designs, due to code-based wind or equivalent seismic
loading, the constraint on d vector corresponds to a
constraint on mean compliance C. In other words, the
equilibrium constraint is implicitly satis�ed to compute
structural responses.

As mentioned before, deterministic methods of
optimization are usually based on the gradual elimi-
nation of less e�cient members from the initial ground
structure or protomorph. Therefore, an element re-
moval criteria measure, �e, should be �rst determined.
Liang et al. [14] used the element strain energy density,

e, for such a measure, based on the sensitivity analysis
of the static equilibrium constraint. In this paper,
the following Performance Index, PI, is also derived
as a modi�ed unconstrained objective function to be
maximized:

PI(i) =
C(0):W (0)

b

C(i):W (i)
b

; (2)

where W (i)
b denotes the weight of the bracing system

in iteration i, and C(i) indicates the corresponding
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resulted compliance. The PI(i) is then the ratio of the
performance measure in the ith iteration to the initial
protomorph conditions. The optimum is then found
by tracing the PI history. Such a method is called
Performance-Based Optimization (PBO) by Liang et
al. [14,16].

The same technique is employed in the present
work, with the additional advantage that, by using
this discrete approach, the reduction of strength in
linear members due to buckling e�ects can also be taken
into account, even via code-based relations. While the
sti�ness of a candidate member is not as small as in
the case of continuum approaches, the assumptions of
the sensitivity analysis may be weakened, making the
discrete extension as an approximate intuitive method.
In such cases, the PI trace curves are not expected to
be very smooth. However, the emphasis and interest of
this paper is on the e�ect of graph theoretical guidelines
in improving design.

In this work, the cross sections of bracing mem-
bers are taken to be pipe-shaped, so that by using
such a code-based threshold for the ratio of diameter
to thickness, design variables for each member can be
reduced and converted to the sectional area. In this
way, a uni�ed method for having compact sections
for stress response evaluations is obtained implicitly,
satisfying such a constraint. Using the S.I. units and
AISC-ASD-89 design code relations [23]:

h
t

=
2:36
�:Fy

; (3)

A =
�
4
:(h2 � (h� t)2); (4)

where h, t and A denote the pipe section height,
thickness and area and � is a safety factor, taken as
1 in this work.

In linear analyses, stress ratios can also be used
as �e, since the strain value of an axial member, in
this case, is linearly proportional to its stress and the
strain energy density is calculated by the product of
these two linear proportional values. Moreover, the PI
history is traced until there is no member to be checked
for elimination. The following algorithm performs as a
general optimization procedure in this work:

Algorithm 3:

1. Generate a proper protomorph as described in the
previous section;

2. Initiate the sectional area of bracing members and
set the iteration number; i = 0;

3. Analyze the structural model to �nd the resulted
strain energy density, 
e, and stress ratio, re, for
structural members and the overall performance
index for the current iteration step, i;

4. Increase the iteration number by one, i = i+ 1;

5. Determine the proper member removal measure, �e,
for each bracing member, based on the results of
the analysis and any additional desired topological
considerations;

6. Make a sorted list of the member numbers in
ascending order of their �e values;

7. Select the �rst member in the list as the current
candidate to be checked for elimination;

8. Check for the topological constraints after tempo-
rary removal of this candidate;

a. If all such constraints are satis�ed, i.e. the can-
didate member is not marked as Undeletable,
go to Step 9;

b. Otherwise:
i. Ignore the current candidate for elimina-

tion;
ii. If there is no candidate unchecked in the

list, go to Step 11;
iii. Select the next member in the sorted list as

the new candidate;
iv. Go to Step 8.

9. Eliminate the candidate member from the current
structural model;

10. If any bracing member is still remained, go to
Step 3;

11. Identify the local optima in the PI trace history
and its global maximum;

12. Announce the layout corresponding to the maximal
PI as the primary optimum of the problem.

The secondary optimum can also be considered among
the found local PI optima to be checked for any addi-
tional constraint or objectives which are not explicitly
included in the recent procedure, such as the sparsity
of frame openings from an architectural point of view.

GRAPH THEORY ASSISTANCE FOR
TOPOLOGY OPTIMIZATION

The topological considerations applied in Steps 5 and 8
of the main optimization algorithm are satis�ed by
graph theoretical operators as follows.

Nodal Ordering and Modifying the Member
Removal Criteria

In many cases, such as safe seismic design and funda-
mental eigenvalue maximization, the priority of sti�en-
ing is given to lower story levels of the structure, i.e.
the nearer members to the supports. This concept,
as a topological objective, can be incorporated into
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the optimization procedure using the following graph
ordering:

Algorithm 4:

1. Generate the protomorph structure and associate
with it the corresponding graph;

2. Determine the support nodes as MSRT roots;
3. Generate an MSRT from the selected roots and

order the nodes of the graph as they enter this
MSRT. These order numbers for each node will be
the graph theoretical distance between that node
and the support nodes;

4. Reverse this nodal ordering, such that the farthest
nodes from the roots be assigned the least order
number, i.e. zero;

5. Associate to any bracing member the sum of the
new nodal orders of its end nodes, i.e. the reversed
distance from supports;

6. Normalize the resulted member ordering numbers
so that their maximum becomes unity;

7. For each bracing member, e, use the normalized
ordering number, �e, to modify the computed
removal measure, �e, in Step 8 of Algorithm 3, as:
�e = �e � �e.

When any other root nodes are selected for
example in nodes of a speci�c story level, the same
algorithm can be used to topologically arrange the
sti�ening bracing distributions around those nodes.

Topological Control of the Lateral Load Path

The function of bracing axial members in a frame is
to act as a lateral load resisting system when the
original moment frame connections are not e�cient
for this purpose. Hence, in an optimal design, it is
desirable to minimize the contribution of beams or
columns in resisting lateral loads, thus maximizing the
contribution of bracing members instead. One way
to seek such a goal is to provide lateral load paths
from their exertion points to the supports, which is
possible only through bracing members. This topolog-
ical constraint can be satis�ed during the optimization
process by utilizing graph theoretical concepts through
the following algorithms.

Checking Connectivity of the Bracing Graph
In Step 8 of Algorithm 3, run the following steps of
Algorithm 5 to check the connectivity of any load path
through bracing members:

Algorithm 5:

1. Consider the bracing graph associated with the
selected layout;

2. Select the support locations as root nodes;
3. Run up to Step 3 of Algorithm 4 to determine the

nodal distances from roots in the protomorph graph
to be used as priority numbers for PMSRT in the
next step;

4. Grow a PMSRT in the current bracing graph. Due
to the priorities employed from the previous step, it
is then called an Upward Multiple Shortest Route
Tree, UMSRT;

5. If there is any bracing member in the current layout
not included in the generated PMSRT, mark the
candidate member as Undeletable;

6. Return to Algorithm 3.

Preserving the Lateral Load Path to at Least
one Support Node
For every lateral nodal load, follow these following
steps:

Algorithm 6:

1. Select the load exertion point as a SRT root node;
2. Run up to Step 4 of Algorithm 4 to determine

the reversed nodal distances from roots in the
protomorph graph to be used as priority numbers
for PMSRT in the next step;

3. Grow a PMSRT in the current bracing graph. Due
to the priorities employed in the previous step, it
is then called a Downward Shortest Route Tree
(DSRT);

4. If the DSRT hits a support node, back track the
path toward the root node using the generated
graph theoretical vectors; StemOf/BudOf;

5. Consider the path graph obtained as the lateral load
path to the support and mark the bracing elements
in this path as Undeletable;

6. Return to Algorithm 3.

After repeating the above algorithm for all lateral
loads, check if the candidate member in Step 8 of the
main optimization procedure is marked Undeletable.

Preserving the Path from the Supports to the
Lateral-Load Nodes
Run the following subroutine once, just after gener-
ation of the initial protomorph/ground structure in
Step 1 of the main optimization routine

Algorithm 7:

1. Consider the structural support locations as root
nodes;

2. Run up to Step 3 of Algorithm 4 to determine the
nodal distances from roots in the protomorph graph
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to be used as the priority numbers for PMSRT in
the next step;

3. Grow a PMSRT in the current bracing graph. Due
to the priorities employed from the previous step, it
is then called an Upward Multiple Shortest Route
Tree, (UMSRT);

4. Mark every nodal load exertion node as initially-
covered if it is covered by the PMSRT in Step 2.

Then, in Step 8 of the main optimization (Al-
gorithm 3) after temporary removal of the candidate
member from the bracing layout run the following
subroutine:

Algorithm 8:

1. Consider the structural support locations as root
nodes;

2. Grow an UMSRT on the current bracing graph from
the selected roots;

3. If any of the load-point nodes is marked initially-
covered, due to Algorithm 7, but is not labeled
via the current UMSRT, then mark the candidate
member as Undeletable in the current elimination
iteration;

4. Return to Algorithm 3.

More restricted versions will be obtained by
repeating the steps of the two previous algorithms
separately for any support node.

Preserving the Path from Each Lateral-Load
Node to all the Supports
As a subroutine in Step 8 of Algorithm 3, for every
lateral nodal load, run the following steps:

Algorithm 9:

1. Select the load exertion point as a root node;

2. Before elimination of the candidate member in
Algorithm 3 do the following:

a. Grow a DSRT from the selected root node;
b. Check for any support node that is included

in the generated DSRT. If so, mark it as an
initially-covered support by the selected load-
node.

3. Temporarily eliminate the candidate member and
do the following:

a. Grow a DSRT from the selected root node;
b. For any support node, if it is marked as initially-

covered but is not included in the generated
DSRT, mark the candidate member as Un-
deletable. If not, check the next support node.

4. Repeat the previous steps until no lateral node is
remained unchecked;

5. Return to Algorithm 3.

Further Considerations and Smoothing the
Achieved Optimal Design

Due to practical considerations, the output of the main
optimization algorithm may require more �nalizing
modi�cations. For example, when a lateral load path
hits an auxiliary intermediate common node between
two bracing members, they are desired to be in the
same line in order to reduce the extra lateral force
transfer to that beam [18]. In such a case, a partial
geometry optimization for this node may be applied by
the following routine:

Algorithm 10:

1. Consider the bracing graph associated to the ob-
tained layout;

2. Find any node having degree number 2 in the
bracing graph and mark it as a candidate for
geometry modi�cation;

3. Calculate the new location of the candidate node on
the corresponding beam to preserve the fact that
the 2 bracing members adjacent to this node are
geometrically in the same line;

4. Modify the coordinates of (move) the candidate
node to its new location, if no other node is
available.

Another practical consideration is to limit the
number of bracings in every frame opening, due to ar-
chitectural requirements. This may be simply applied
to Step 8 of the main optimization routine (Algorithm
3), via the steps of this subroutine:

Algorithm 11:

1. Temporarily eliminate the candidate member from
the bracing graph;

2. Distinguish every frame opening as a minimal
length cycle subgraph in the frame graph;

3. If the number of bracing diagonals with their ends
belonging to the treated cycle is less than the pre-
assigned number, mark this candidate member as
Undeletable;

4. Return to Algorithm 3.

In order to determine the nested minimal length
cycles in a graph, refer to [19].

The layout obtained at the end of the main
optimization procedure may be conformed toward a
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concentric bracing system at a superior level by Al-
gorithm 12 as follows:

Algorithm 12:

1. Decompose the nodal set of the protomorph em-
ployed to:
a. Main nodes at the location of beam-column

joints;
b. Auxiliary intermediate nodes in beams gener-

ated through construction of a proper proto-
morph;

c. Support nodes.
2. If the degree of any auxiliary node in the bracing

graph is one, then consider it as a root node and do
the following:
a. Grow an SRT on the frame graph from this root

in order to �nd the nearest main node to it,
regarding graph theoretical distance. This main
node will be at the end of a column;

b. Find the bracing member incident to the aux-
iliary node and if its other end is not on the
same column, substitute the auxiliary end of the
member with the nearest found main node in
the frame.

The result of the latter topological operator is,
hereinafter, called a Concentric Super Bracing System
(CSBS). In this regard, the traditional CBSs are, in
fact, subsets of possible CSBSs in a braced frame.

ILLUSTRATIVE EXAMPLES

Example 1: 2-Bay 6-Story Frame with
162-Member Protomorph

As a comparative benchmark example, a 2-bay 6-
story frame is considered as illustrated in Figure 4.
The unbraced moment frame with �xed supports in
half dimensions was originally optimized for minimum
weight by Huang and Arora [12] to satisfy the stress
constraints, according to the AISC design code under
uniform 
oor loads of 14.59 kN/m and point loads of
40.05 kN at story levels as a wind load. The 14 resulted
section groups in Figure 4 are listed as: W8 � 21,
W8 � 28, W10 � 26, W12 � 26, W14 � 26, W10 � 19,
W10 � 17, W8 � 10, W12 � 19, W12 � 14, W14 � 22,
W16� 26, W16� 31 and W24� 62.

A more severe wind load condition (wind speed
= 210 km/h) was then imposed by Mijar et al. [13]
to this unbraced frame. This frame did not satisfy the
code requirements and had to be braced. Consequently,
they employed the Voigt-Reuss material mixing rule to
optimize the bracing layout retro�t for this example
and then explored some baseline problems including
the minimization of compliance under the constraint of

Figure 4. (a) Member groups of the 2-bay frame under
14.59 kN/m 
oor loads and wind loading; (b) Finite
element design domain used in continuum
formulations [13,14].

a �xed volume fraction in the designable domain. They
�nally interpreted the result of this problem with 50%
reduction in wind load to standard W-sections, based
on equal mass M (Figure 5). Liang et al. [14] applied
their method to this problem using reverse formulation,
i.e. minimization of bracing weights subjected to
the mean compliance constraint. In both of these
continuum approaches, the ground structures were
formed by subdividing frame openings as topological
design domains into 1620 plane stress �nite elements
of a uniform thickness of 0.0254 m (Figure 4b).

Here, the deterministic method described in the
previous section, based on PBO, is adopted under the
same loading state, with a 50% reduced reversible wind
load. In order to obtain rather comparable results,
the initial section areas for all bracing members were
selected, such that the resulted bracing weights were
equal to the initial weight of the continuum FEM design
domain in the literature [13,14]. Consequently, the
performance index (PI) is calculated during the elim-
ination iterations of the main routine (Algorithm 3),

Figure 5. (a) Results of continuum optimization
methods; (b) the interpreted model obtained by
Voigt-Reuss material mixing formulation with 30% volume
fraction constraint [13], (c) and (d) Conceptual solution
by performance-based optimization with 22% volume
fraction and its interpreted layout [14].
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combined with a variety of other prescribed algorithms
and, by tracing the resulted history of PI, global and
local optima are identi�ed. The protomorph structure
of Figure 2c is selected for this example with 108
bracing diagonals and 54 frame members, which are
considerably less than the number of initial elements
employed in continuum approaches. Due to symmetry,
the maximum number of elimination iterations will be
at most 54.

The �rst attempt is purely the implementation
of PBO for the discrete skeletal model. As shown in
Figure 6, the maximum PI obtained as 1.94 belonged
to iteration 47 with the bracing layout of Figure 7a.
This layout led to a 0.025 m maximum sideway dis-
placement for 13.7 percent of the initial bracing weights
in the selected protomorph. It should be noted that
the bracing graph of Figure 7b is not connected and

Figure 6. The PI history obtained by Algorithm 3 for a
2-bay 6-story frame example and its global maximum at
iteration 47.

Figure 7. (a) The maximal PI bracing layout obtained
by a pure form of Algorithm 3; (b) Two components of the
associate bracing graph.

consists of 2 components. Therefore, transmission
of the lateral loads from any bracing in the upper
component to the supports requires the contribution of
the beams or columns of the frame and increases their
stress response. As a result, the stress constraints were
not completely satis�ed by this design.

In order to preserve spanning all the frame levels
by the bracing layout, Algorithm 11 is incorporated as
the second attempt. This time, the PI history curve
is smoother with greater maximum with respect to the
pure implementation of PBO. Regarding the combina-
tion of Algorithm 11 with Algorithm 3, the least archi-
tectural limitations belonged to iteration 49, whereas
there was no new candidate member unchecked. After
this, the procedure was continued, in order to see
if a better design could be achieved when releasing
this topological constraint (Figure 8). By limiting the
ratio of the thickness to diameter of the pipe section
considered as the bracing section areas, their local
buckling could be prevented.

Further study of the resulted topology is possible
by decomposing the layout obtained into the frame
graph and the bracing graph. Figure 9c demonstrates
the result of a contraction imposed on this bracing
graph. The original connected layouts, whose con-
tracted forms are analogous to ordinary bracing units,
are called Super Bracings [15], such as concentric V-
type and eccentric X-type super bracings (see Fig-
ure 9b). In this regard, any ordinary bracing type can
be considered as a subset of the super bracing.

Note that, due to the selection of a practical
protomorph and since the corresponding graph has
auxiliary nodes on the beams, the resulted super
bracing members may intersect beams at those points.
In such a case, the corresponding brace-to-beam joints
are modeled as hinge (moment-free) connections. The
capability of exact connection modeling in a brace-
to-column/beam is another advantage of the current

Figure 8. (a) The PI history for Example 1 obtained by
Algorithm 11 up to iteration 49 then continued by only
Algorithm 3; (b) Layout correspondent to the maximum
PI.
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discrete optimization method for skeletal structures
over continuum approaches.

Figure 10 shows the e�ect of modifying removal
criteria, �e, by extracted member ordering in Algo-
rithm 4, �e. As can be realized, in this case, the last
layout of Algorithm 11 is guided to shift toward the
supports. However, the resulted bracing graph is again
disconnected.

The e�ect of preserving the connectivity of the
bracing graph as a topological constraint, during op-
timization, is demonstrated in Figure 11. In this
case, the global optimum achieved has the maximal
performance index of 2.07, requiring 11.5% of the
total initial bracing weight, leading to a sideway of
0.024 m at the top story. This time, any lateral load
imposed to a bracing end can be transmitted through
the connected bracing graph to the supports.

In order to preserve such a path, via a bracing

Figure 9. (a) Layout of iteration 49 by Algorithm 11; (b)
The corresponding bracing layout consists of 2
super-bracings of X-type and V-type; (c) Contraction of
path graphs ended at the node on the symmetric line has
transformed the super bracing graphs into traditional
forms of bracing.

Figure 10. (a) The layout of last iteration 49 generated
during mixed Algorithms 11 and 4 in the main routine;
(b) Modi�ed layout by Algorithm 12.

graph, for support nodes to all the lateral loads,
Algorithms 7 and 8 are incorporated (Figure 12). In
Figure 13 the location of the lateral loads in one of
the symmetric loading cases is denoted by arrows. As
depicted in bold lines in Figure 13b, all the lateral-load

Figure 11. (a) PI history; (b) The optimal layout
achieved by incorporating Algorithm 5.

Figure 12. (a) PI history of Algorithm 8 up to iteration
40 and then continued by Algorithm 3; (b) The optimal
layout achieved by incorporating Algorithm 8 at iteration
39; (c) The maximal PI layout obtained in the tag part of
the trace continued by pure Algorithm 3 at iteration 51.



184 A. Kaveh and M. Shahrouzi

Figure 13. (a) The exertion points of lateral loads in the
selected protomorph; (b) An UMSRT grown in
Algorithm 7 from the support nodes in the bracing graph
of the protomorph and covered lateral-load points; (c)
Optimal layout by imposing Algorithm 8 to main discrete
PBO; (d) The load path from the exertion point in the
3rd story to the support node as a path subgraph in the
bracing graph of the optimal layout; (e) and (f) Two
possible paths from the load exertion point in the 5th
story to the supports.

exertion nodes, except one at the level of the 1st story,
are initially covered by the UMSRT grown from the
3 support nodes in the bracing graph of the selected
protomorph. It should be noted that Algorithm 3, for
any lateral load, only preserves the load path to at
least one support node, rather than all of them. For
example, Figure 13 shows such a path in the suboptimal
bracing graph of iteration 39 from the load-point at the
3rd story to only the middle support node, while there
are 2 load paths to either of the corner supports for the
lateral load imposed at the level of the 5th story.

The performance index at the end of Algorithm
8, iteration 40, was greater than unity, which is the
PI associated with the selected protomoph. It seems
a good idea to continue tracing PI by implementation
of pure Algorithm 3, starting from the ending layout
of Algorithm 8 as a new protomorph. In this tag
of the trace, the 1st local optimum belonged to a
sparser layout of iteration 44 (Figure 14a). Smoothing
it by Algorithm 10, the bracing system of Figure 14b
obtained, which includes 2 X-type and 1 V-type super
bracings, leading to minor is changes in the displace-
ment response. As a global optimum, the layout of
iteration 51 was achieved with an even greater perfor-

Figure 14. (a) Topology achieved at iteration 44 of
Algorithm 8 followed by Algorithm 3; (b) The
corresponding smoothed bracing layout by Algorithm 10.

mance index than the suboptimal layout of the 1st part
of the trace. However, it led to a greater displacement
at the top story and greater maximum stresses. This
layout was further modi�ed by Algorithm 10, as shown
in Figure 15b. The topology obtained is, in fact, an
X-type super bracing that exactly complies with the
interpreted layout of Mijar et al. [13] (Figure 5).

Applying Algorithm 9, load paths from their
exertion points to the supports are preserved during the
optimization. From every lateral load-point, a DSRT
is grown to identify the support nodes it covers. The
optimal design, due to Algorithm 9, belongs to the
layout shown in Figure 16b. In order to illustrate such
a technique, load-paths from a sample exertion point at
the 5th story are depicted in Figure 17. Compared to
the previous discrete algorithms and even continuum
methods, more support nodes are covered in the load
paths captured by Algorithm 9 and, consequently, less
stress/displacement responses are achieved, as shown
in Table 1.

Figure 15. (a) Global maximum PI topology achieved at
iteration 51 of Algorithm 8 followed by Algorithm 3; (b)
The corresponding smoothed bracing layout by
Algorithm 10.
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Table 1. Comparative results of sample achieved designs for 50% reduced wind load.

Layout
Design

Design Weight
Ratio
(%)

Performance
Index

Maximum
Displacement

(m)

Half� Number of
Major Elimination

Iterations

Average Number of
Bracing Diagonals in
Each Frame Opening

Figure 5a [13] 30 0.32 0.035 567 0.8

Figure 7a 13.7 1.94 0.025 47 1.3

Figure 8b 20.3 2.22 0.015 43 2

Figure 14a 20.8 1.81 0.010 44 2

Figure 15b 8.7 2.45 0.028 51 0.8

Figure 16b 33.8 1.61 0.008 36 3.1

Figure 16c 26.7 1.84 0.009 41 2.5

* Due to symmetric elimination of less e�cient members.

As the eliminating process is continued, by ap-
plying pure Algorithm 3, the 1st new local optimum
in the PI trace is obtained at iteration 41, while its
corresponding bracing layout satis�ed all the stress and
displacement constraints (Table 2). The maximal PI
belongs to the layout of Figure 16d.

Example 2: A 2-Bay 6-Story Frame with
186-Member Protomorph

In order to allow ordinary X-bracings for optimal
design, the protomorph of Figure 2d is considered as
the next attempt, regarding a full wind load case. This
case is treated by Algorithm 9 followed by Algorithm
11 and then Algorithm 3 (Figure 18). In the maximal
performance design of Figure 18b, there are paths from
the positions of all the lateral loads to support nodes,
while traditional X-bracings are only encountered in
the 1st story.

Tracing such a design sequence for sparser topolo-
gies due to architectural objectives, the layout of
iteration 55, as a second local optimum, and then
the smoothed layout of Figure 18d can be concerned.
It is realized that in the continuation of the opti-
mization trace, ordinary bracings have been gradu-
ally disappeared and only super bracings with long
diagonal paths were remained. This indicates that

super bracings are more e�cient layouts for resisting
lateral loadings. As an example, 3 X-type and 2
V-type super bracings are recognized in the layout
of iteration 55 (Figure 18c). The sparser layout of
Figure 18d, including 2 nested X-type and one V-
type super bracings, required only 12.8% of the initial
bracing weights to produce an even better performance
than in the previous continuum works (Table 2). In the
considered examples, super bracings generally provided
the shortest continuous load paths to the support nodes
rather than traditional bracing units.

DISCUSSION AND CONCLUSIONS

In the present work, the application of PBO is extended
to the topology optimization of discrete skeletal bracing
members in frame structures. Despite the concep-
tual designs in continuum methods, such a discrete
approach resulted in a sequence of design possibilities
practically applicable to the bracing layout. The main
method is further improved by means of a number of
graph theoretical operators, in order to handle a variety
of topological constraints and objectives, such as the
connectivity of lateral load paths via bracings toward
the supports.

In order to study the topology of the design do-
main, the structure is decomposed into the frame graph

Table 2. Comparative results of sample designs for full wind load.

Layout
Design

Design Weight
Ratio
(%)

Performance
Index

Maximum
Displacement

(m)

Half� Number of
Major Elimination

Iterations

Average Number of
Bracing Diagonals in
Each Frame Opening

Figure 5a [13] 30 0.32 0.070 567 0.8

Figure 5c [14] 22 1.15 0.024 632 1.5

Figure 18b 26.7 1.84 0.009 41 2.5

Figure 18d 12.8 1.99 0.016 60 1.3

* Due to symmetric elimination of less e�cient members.
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Figure 16. (a) PI history of Algorithm 8 up to iteration
40 and then continued by Algorithm 3; (b) The local
optimal layout at iteration 39; (c) the layout of iteration
41; (d) The maximal PI layout at iteration 51.

Figure 17. (a) A sample DSRT grown in the bracing
graph from the left lateral-load exertion point in the 5th
story (in bold lines), (b), (c) and (d) The resulted load
paths to each of the support nodes.

and the bracing graph. Graph theoretical operators
enable the optimization procedure to control lateral
load paths and enforce special topological constraints.
As a result, the performance index history has been
upgraded in a smoother manner. The selected pro-
tomorph allowed the formation of traditional bracing
patterns, however, the optimization resulted in new

Figure 18. (a) PI history for 100% wind load generated
by Algorithm 9 up to iteration 49 followed by
Algorithm 11 up to iteration 62 and then continued by
Algorithm 3; (b) The optimal layout achieved at iteration
44; (c) Sparser layout at iteration 55; (d) Smoothed layout
of iteration 60.

more e�cient bracing layout. Such layouts are further
studied and classi�ed as super bracing systems.

Since graph theoretical operators only deal with
the topology and connectivity of structural frame-
works, they are by no means limited to static linear
elastic analysis and can easily be extended to other
cases, such as material/geometric nonlinear analyses.
Applying a speci�c graph theoretical algorithm cor-
responds to the implementation of a particular topo-
logical constraint/objective. Therefore, this can be
considered as a new problem formulation, however, not
analytically assessed.

The bracing layout of the maximal PI may be
considered as a good optimum. However, some further
practical and architectural objectives may lead to
another design among the subsequent local optima.
Most of the optima in the treated examples led to
concentric super bracing systems, considered as the
most e�cient bracing layouts for sti�ening a building
frame. Theoretically, it is shown that such bracing
layouts can provide continuous lateral load paths to
the supports. This matter is more important in the
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seismic/wind retro�t cases, while the contribution of
original frame members in undergoing lateral loading
e�ects is to be minimized.

The results in Tables 1 and 2, show the superi-
ority of the present discrete optimization method for
controlling the displacement response within consid-
erably less iterations and costs for bracing weights.
By means of the developed algorithms, the selected
result at any iteration of the optimization process can
further be modi�ed, due to practical or analytical
considerations, such as the partial geometry smoothing
of super bracing diagonals or exchanging an eccentric
SBS by a concentric type. Finally, the graph theoretical
operations are shown to be suitable and powerful
tools in applying various topological constraints and
objectives to the optimization procedure, which cannot
be directly formulated by analytical relations.
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