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Application of a Maintenance Management
Model for Iranian Railways Based on the Markov
Chain and Probabilistic Dynamic Programming

Y. Shafahi1;� and R. Hakhamaneshi1

Abstract. Railway managers have a strong economic incentive to minimize track maintenance costs,
while maintaining safety standards and providing adequate service levels to train operators. The objective
of this study is to apply a procedure for making optimal maintenance decisions in Iranian Railways. This
study consists of two parts. First, a cumulative damage model, based on a Markov process, is applied to
model the deterioration of the track. For this reason, tracks are categorized into six classes, so that those
tracks with similar tra�c loads and geographical location are collected into one class. The track survey
data from 215 blocks (4,228 km) of the ten divisions of the Iranian Railway system, during 2002-2004,
is used to identify the transition matrix. Secondly, probabilistic dynamic programming is used to �nd the
optimal repair for each possible track state in the planning horizon. This approach allows an optimal
maintenance decision to be determined for the track at any point in time within the planning horizon.
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INTRODUCTION

The railway is a branch of the transportation system
that is very expensive to construct, but which has
a long life and low operating costs. Therefore, the
asset value is very high, which also leads to the
possibility that maintenance might prove expensive.
Like other infrastructures with high investment costs
in the construction phase, maintenance plays a crucial
role in its long-term cost e�ectiveness.

Maintenance planning for deteriorating facilities
seems to be hard because of their random aspects.
The process of the track deterioration is a�ected by
weather and tra�c loads randomly. Although such
uncertainties exist, railway managers should be asking
when the track will need to be repaired and which types
of repair will be the best choice. In this paper, an
e�ort will be made to apply a model in answer to these
questions for tracks in the Iranian Railway system.

The condition or \state" of a track dictates the
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cost of maintenance directly. Tra�c loads, weather,
the geometrics of the track and construction materials
are the most important factors that a�ect the track de-
terioration process. However, it is observed that, even
when these factors are similar, the track deterioration
rate may be unexpectedly di�erent. Thus, a model that
can handle this problem in such dimensions is necessary
for any railway system.

Several approaches and methods have been pro-
posed and, based on these, a considerable number
of maintenance planning tools have been developed
for various railway systems in North America and
Europe. A nonlinear regression model, based on a
product of the power functions, has been proposed
by the O�ce for Research and Experiments (ORE)
of the International Union of Railways [1] to predict
track deterioration. Operation research techniques are
commonly used to optimize track maintenance activity.
Such approaches have been described by Esveld [2] and
Zarembski [3]. Zhang [4] has proposed an Integrated
Track Degradation Model (ITDM). ITDM simulates
track degradation, based on the interaction between
di�erent track components under varying tra�c. It also
considers several mechanistic characteristics, including
train speed and axle load. Based on the ITDM,
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Simson et al. [5] have developed a Track Maintenance
Planning Model (TMPM), which aims to deal with
track maintenance planning in the medium to long
term. TMPM outputs the net present value of the
�nancial bene�ts of undertaking a given maintenance
strategy compared with a base-case maintenance sce-
nario. The Total Right-of-way Analysis and Costing
System (TRACS) has been described by Martland et
al. [6]. It is a system (software) developed by the
Association of American Railroads (AAR) and the
Massachusetts Institute of Technology (MIT) in the
USA. It is a computer-based tool developed to assist
rail management to address change in the infrastruc-
ture. By combining engineering-based deterioration
models with life-cycle costing techniques, the model
estimates track maintenance and renewal costs as a
function of route geometry, track components and
track conditions, as well as tra�c mix and volume.
TRACS has been used by North American railroads
as a tool for technology assessment costing, in support
of actions such as pricing, budgeting and line con-
solidation. Both the ITDM and the TRACS models
are based on an incremental approach, where each
event, such as rail grinding, relining and track renewal,
can be included. In recent years, the application
of soft computing techniques has paid attention to
predicting future track conditions and Shafahi and
Rasooli [7] have considered neuro-networks to pre-
dict such conditions. A neuro-fuzzy decision support
system for rail track maintenance planning has been
described by Dell'Orco et al. [8]. During the 1990s,
the International Railway Union (UIC), in conjunction
with the European Rail Research Institute (ERRI),
developed an expert system for track maintenance and
renewal (ECOTRACK). This model builds on the fact
that rules can be speci�ed for certain maintenance ac-
tivities under certain conditions. A historical database,
containing infrastructure information on components
and current conditions, is also a prerequisite to using
this model. ECOTRACK solves the planning problem,
given the rules speci�ed, and points out the activities
needed at each section at certain times. Recent
work on ECOTRACK at ERRI [9] has developed the
model further, in order to improve its functional-
ity.

Determining optimal maintenance during a plan-
ning horizon, while minimizing maintenance costs and
satisfying certain constraints in a railway system, is
the objective of this study. To reach this objective, a
method similar to Carnahan et al.'s procedure [10] for
Pavement Management System is chosen and applied
to Iranian Railway data. This approach consists of
two parts. First, a Markov model for track deterio-
ration is introduced. Second, a probabilistic dynamic
programming is used to �nd the optimal repair ac-
tions.

The rest of the paper is organized as follows.
First, the prediction of track conditions by using the
Markov model is discussed. Then, the results of using
Markov and ORE models are compared. Following
that, the dynamic programming procedure that is used
to solve maintenance scheduling problems is described.
And, �nally, the main conclusions are summarized.

PREDICTION OF TRACK CONDITION
USING MARKOV MODEL

Track condition is one of the most important param-
eters a�ecting track maintenance management. In
order to obtain a good track maintenance management
system, it is necessary to predict track conditions
through time. As mentioned earlier in this paper,
tra�c loads, weather, geometrics of the tracks and
construction materials are the most important factors
to a�ect the track deterioration process. However, it is
observed that, even when these factors are similar, the
track deterioration rate may be unexpectedly di�erent.
Because of this random behavior, using a probabilistic
model seems to be a good procedure for predicting
track conditions. The Markov process has the char-
acteristics to explain the random behavior of a track
clearly during its deterioration.

To describe the condition of the track, several
indexes and criteria have been de�ned and used in
di�erent railway systems around the world. Commonly,
the Track Quality Index (TQI) is used to de�ne
the track quality. TQI is normally determined by
Track Geometry Parameters (TGP). The term `track
deterioration' is used to describe any changes in track
geometry. Track deteriorations are classi�ed as: un-
evenness, twist, alignment and gauge. TQI is a function
of these four parameters.

In this study, the track state will be de�ned in
terms of the Combined Track Record index (CTR
index) rating, which can vary from 0 to 100, where
100 denotes the best possible track condition and the
states are de�ned as �ve intervals of the CTR index
(Table 1). It is supposed that the track began its life,
at some time in the past, in near-perfect condition.
It was then subject to a sequence of duty cycles
that caused its condition to deteriorate. The duty
cycle for the track in this study will be assumed to
consist of one year's weather and tra�c load. These
discrete state and discrete time unit de�nitions let
one express the deterioration process as a Markov
chain.

To have better models, in this study, the tracks
are categorized so that those with similar tra�c load
and geographical location are collected into one class.
A network of tracks, based on the topography, was di-
vided into three groups of plain, hilly and mountainous
areas, and based on tra�c load, was divided into two
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Table 1. Track state classi�cation by CTR index.

CTR Index 0-50 50-60 60-70 70-80 80-100

Track Quality Failed Medium Good Very good Excellent

Track State 1 2 3 4 5

groups of light and heavy tra�c. There are, thus, six
track classes (Table 2).

The basic assumption for a Markov process is that
the probabilities of going from one state to another
depend only on the current state, and not on the
manner in which the current state is reached. This
property is often called the `memoryless' property
of the process. In this case, this is a reasonable
assumption. Let:

pij= Probability that a track will be in state j in
the next year when it is currently in state i,

P = [pij ] is the transition matrix, which shows
the probabilities of various state transitions.

The authors' data shows that the track condition
will almost never decrease more than 10 CTR index in
a year. Thus, one can assume that, during each duty
cycle (a year), a track will either stay in its current state
or jump to the next lowest state. Thus, the nonzero
elements of the matrix, `P ', consist of diagonal and
adjacent lower diagonal elements. In other words:

pii = pi = The probability that a track will stay in its
current state, i, in the next duty cycle,

pi(i�1) =1� pi=qi = The probability that a track will
be in state i� 1 when it is currently in state i,

pij = 0 for all j 6= i, i� 1 and i� 1 > 0: (1)

Then, the transition matrix becomes:

P =

266664
1 0 0 0 0
q2 p2 0 0 0
0 q3 p3 0 0
0 0 q4 p4 0
0 0 0 q5 p5

377775 : (2)

The state of the track at any time, n, n = 1; 2; � � � can
be expressed in a probabilistic manner as a (1� 5) row

Table 2. Iranian Railways' classi�cation by topography
and tra�c conditions (K).

Tra�c Topography Condition

Condition Plain
Areas

Hilly
Areas

Mountainous
Areas

Light 1 2 3

Heavy 4 5 6

vector p(n):

p(n)=(pfX(n)=1g; pfX(n)=2g; � � � ; pfX(n)=5g);
(3)

where X(n) is the track state at time n and pfX(n) =
jg is the probability that a track is in state j at time n.
Obviously, the elements of the vector, p(n), must sum
to 1.0.

The initial state of the track is given by p(0). For
example, if one supposes that the track was in excellent
condition when it was new, then:

p(0) = (0; 0; 0; 0; 1): (4)

Other initial state vectors may be de�ned to re
ect the
uncertainty in the initial condition of the track.

It can be shown [11] that the state vector at
some future time may be calculated from the transition
matrix and the initial state vector, as follows:

p(1) = p(0)P

p(2) = p(1)P = p(0)P 2

� � �
p(n) = p(0)Pn:

(5)

Or, more generally,

p(m+ n) = p(m)Pn: (6)

The collected data for the state of the tracks during
their lives may be used to estimate the transition
matrix, P . To accomplish this task, a data base
containing these data is built, as well as several other
operational characteristics of the track.

Data Bank

The data for this empirical application was collected
from the Iranian Railways network and incorporated
four types of survey: Topography, annual tra�c and
axle load, date of construction or reconstruction and
the track condition of the block in each year. In this
study, the block, which is the distance between two
consecutive stations in the network of tracks, is the
smallest maintenance unit, similar to those used by
Iranian Railways.
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Nowadays, the condition of railways is monitored
by special diagnostic trains. MATISA, the diagnostic
train for Iranian Railways, measures the geometric
parameters of the railway track, such as: Alignment,
gauge, cross-level and pro�le, in order to allow one
to �nally compute the average CTR index for the
blocks.

The Iranian Railway network consists of 7,203
km of track (in 2004). Topography, annual tra�c
load, axle load and the latest date of construction
or reconstruction for 215 blocks (4,228 km) were
collected from the Iranian Railway system and the
average CTR indexes of these blocks for three years
(2002-2004) were computed. These data were col-
lected from di�erent divisions of the Iranian Rail-
ways, including Shomaleshargh, Khorasan, Shoma-
legharb, Azarbayegan, Gonoob, Lorestan, Shomal,
Arak, Gonoobeshargh and Hormozgan. On the basis of
this data, 60% (122 blocks, 2,544 km) are in plain areas,
19% of these tracks (44 blocks, 797 km) are in hilly
areas, and 21% (49 blocks, 887 km) in mountainous
areas. 70% of these tracks have been designed for 20-
tonne axle loads and the rest for 25-tonne axle loads.
Furthermore, 36% of them (72 blocks, 1,525 km) have
heavy tra�c passing over them.

Estimation of the Transition Matrix

It is necessary to transform the track survey data
into the CTR index versus age, in order to use the
data for estimating the transition matrix. To do
so, the age of the track is de�ned as the di�erence
between the current date (date of geometric parameter
recording) and the latest date of reconstruction or
construction. The CTR index, geographical location,
annual tra�c load and the latest date of reconstruction
or construction of the blocks must be speci�ed to
identify the transition matrix, P . The CTR index
versus the age data was speci�ed by computing the
average CTR index of the blocks that are of the same
age in each class. Thus, the track state was speci�ed
on the basis of the observed condition of the track.
Table 3 summarizes the CTR index versus index versus
the age data. On the basis of Table 3, there are some
blocks that are more than 20 years old in light tra�c
blocks. This means that there are some blocks that
have not been repaired for 20 years in the light tra�c
tracks in the Iranian Railways, but, in heavy tra�c
tracks, there are no blocks that are more than 9 years
old.

The sum of the squared di�erences between the
expected state predicted from the Markov process
(Equations 5) and the observed track condition at each
age for which data were available is used as the objec-
tive function to estimate the transition matrix. Mini-
mizing this objective function produces the elements of

the transition matrix. The Quasi-Newton method [12]
was used to minimize this objective function. Using
an initial guess for the transition matrix elements
and an excellent condition for the initial state vector,
the minimization algorithm obtained the transition
matrices. An independent transition matrix (Table 4)
was computed for each track class. The descending
process of the probability of staying in the current
state in all six classes represents the fact that the track
deterioration rate accelerates when the tracks are badly
deteriorated. It means that, in badly deteriorated
states, the inclination to jump to a lower state increases
(note the low di�erences between the respective �gures
in columns p5 and p4 and the signi�cant di�erences
between those in columns p3 and p2 in Table 4).
Furthermore, Table 4 also shows that tracks with light
tra�c have little di�erence in the deterioration rates
across track classes. Moreover, for heavy tra�c, tracks
in mountainous areas have rates of deterioration faster
than those in plain or hilly areas. Figure 1 shows the
observed data and the expected value of the transition
matrix that minimized the objective function for the
six classes of track.

A COMPARISON OF THE MARKOV
MODEL WITH THE ORE MODEL

The ORE of the International Union of Railways
proposed a simple model of track deterioration in the
more general form of a product of the power functions
in 1988. In this paper, the ORE model is rebuilt using
the existing data bank and the results are compared
with the proposed Markov model. Equation 7 shows
the rebuilt ORE model:

E = 36:57� T�0:0418 � P 0:2955; (7)

where:

E a track degradation index (in this paper,
CTR index);

T total accumulated tonnage since the track
was new (million tones);

P design axle load (tone).

The number of observations is 523 and all estimated
parameters are within the 95% con�dence interval.

For the comparison of two models, linear regres-
sion between the observation and estimation of each
model is used. Table 5 shows the results. Obviously,
when the regression coe�cient, \a", is close to 1.0 and
signi�cantly di�erent from 0, and the coe�cient, \b",
is close to 0.0 and insigni�cant, the model is a good
predictor of the actual observations. The R2 values in
Table 5 also show that the Markov model predicts track
deterioration better than the ORE model.
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Table 3. Summary of CTR index versus age data for di�erent classes of tracks (K = 1 to 6).

Plain Areas with Hilly Areas with Mountainous Areas with

Track Light Tra�c (K = 1) Light Tra�c (K = 2) Light Tra�c (K = 3)

Age No. of
Blocks

Average
CTR

Standard
Deviation

Track
State

No. of
Blocks

Average
CTR

Standard
Deviation

Track
State

No. of
Blocks

Average
CTR

Standard
Deviation

Track
State

1 11 94 3.1 5 2 94 0 5 8 87 3.4 5

2 44 93 4.6 5 3 87 6.2 5 9 88 2.3 5

3 44 89 4.3 5 5 79 8.5 4 9 86 1.3 5

4 55 94 4.6 5 - - - - 4 91 3.8 5

5 8 81 1.2 5 1 79 - 4 2 89 2.8 5

6 7 80 1.0 4 - - - - 5 80 6.7 4

7 10 77 4.3 4 - - - - 4 79 3.3 4

8 5 72 1.3 4 3 72 1 4 3 71 3.5 4

9 4 72 3 4 4 70 1 3 3 70 1 3

10 3 76 1.0 4 5 70 4.4 3 5 63 8.9 3

11 5 69 4.1 3 4 69 5 3 2 57 1.4 2

12 6 61 3.7 3 1 52 - 2 - - - -

13 5 56 1.8 2 3 50 0 1 - - - -

14 4 55 1.9 2 - - - - - - - -

15 5 51 2.3 2 1 48 - 1 - - - -

16 2 50 6.3 1 - - - - - - - -

17 2 50 0 1 - - - - 2 53 4.2 2

18 1 44 - 1 3 48 11 1 4 48 3.3 1

19 - - - - - - - - - - - -

20 4 48 0 1 3 44 4.5 1 2 46 1.4 1

21 4 41 0 1 - - - - - - - -

Plain Areas with Hilly Areas with Mountainous Areas with

Track Light Tra�c (K = 5) Light Tra�c (K = 4) Light Tra�c (K = 6)

Age No. of
Blocks

Average
CTR

Standard
Deviation

Track
State

No. of
Blocks

Average
CTR

Standard
Deviation

Track
State

No. of
Blocks

Average
CTR

Standard
Deviation

Track
State

1 3 82 0.6 5 - - - - 1 91 - 5

2 6 82 9.2 5 - - - - 3 73 1 4

3 7 75 15 4 2 72 5.7 4 9 76 7.3 4

4 4 73 8.7 4 5 78 12.2 4 11 78 7.8 4

5 2 75 2.1 4 4 75 9.7 4 3 71 11 4

6 3 75 0.6 4 1 71 - 4 - - - -

7 3 77 4 4 1 77 - 4 - - - -

8 7 63 6.5 3 9 65 6.6 3 7 54 2.4 2

9 7 55 8 2 9 62 10.7 3 7 53 1.1 2

10 - - - - 3 51 20 2 - - - -

11 - - - - 2 50 0.7 1 - - - -
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Table 4. Diagonal elements of transition matrices for the 6 classes of tracks.

Track Class (K) Terrain Tra�c p2 P3 p4 p5

1 Plain Light 0.3957 0.6104 0.7565 0.8641

2 Hilly Light 0.1264 0.6497 0.7365 0.8151

3 Mountainous Light 0.1931 0.5247 0.7310 0.8732

4 Plain Heavy 0.3404 0.5314 0.6753 0.8390

5 Hilly Heavy 0.3296 0.5546 0.7085 0.8067

6 Mountainous Heavy 0.1633 0.4897 0.6593 0.7417

Figure 1. Comparison of expected state from cumulative damage model with track condition data for tracks in the 6
classes under study.
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Table 5. Results of Markov and ORE models.

Model Observation-Estimation Relation
a (t-stat) b (t-stat) R2

ORE 0.119 (2.986) 72.810 (21.943) 0.119

Markov 0.779 (18.608) 20.008 (6.738) 0.832
NOTE: Observation-estimation relation:
y = ax+ b (x =observation, y = estimation)

DYNAMIC PROGRAMMING SOLUTION
FOR TRACK MAINTENANCE
SCHEDULING

If the track deterioration process is modeled as a
Markov process, probabilistic dynamic programming is
a convenient method to �nd the optimal maintenance
decisions. Dynamic programming is a mathematical
technique designed to solve decision problems, in which
there are a sequence of related decisions to make. The
method of solution is to divide the total problem into a
number of sub problems, then, working backward from
the end of the problem; each problem is solved in turn.

Suppose the planning horizon of the study is N
years, let:

n year number; n = 1; 2; � � � ; N
XK(n) the state of a track of class K in

year n; XK(n) = 1; 2; � � � ; 5
PK the transition matrix for the track

of class K
Rj the repair alternative j = 0; 1; 2,

representing routine maintenance,
track improvement and track
reconstruction, respectively

CK [XK(n); Rj ] Cost of implementation alternative
Rj for the track of class K when
the current state of the track
is XK(n)

The estimates of the costs used in this study are
obtained from the Financial A�airs O�ce of Iranian
Railways and are given in Table 6 for the year 2004.

It is supposed that the costs of all alternatives are
functions of the state of the track, except for recon-
struction that is not state dependent. For simplicity,
none of the costs are assumed to be dependent on
the track classi�cation index, K. Some constraints
may be considered in this process. For example, the
track condition can be constrained in any year, so that
the track state, XK(n), is kept above some minimum
level, Xmin(n), with a speci�ed probability, pmin(n), as
suggested by Carnahan et al. [10]. These constraints
may be enforced in any year of the planning horizon
or, perhaps only in the last year.

Starting with the optimal decision in the last
year of the planning horizon, we work backward on
a recursive relationship that �nds the decisions in all
previous years. The feasibility of the repair alternative
is decided in a straightforward manner. Repair alter-
natives, R1 and R2, are always feasible, since, when
they are implemented, the track state is upgraded to an
excellent condition. But, the feasibility of alternative
R0 always must be tested for the following condition:

XK(n)� 1�Xmin(n); or (XK(n)=Xmin(n)=j;

and pKj � pmin(n)): (8)

The optimal repair alternative, R�[XK(n)], with min-
imum cost, C�K [XK(n)], is chosen among the feasible
alternatives. After an optimal repair is determined
for year n, we can �nd the optimal decisions for
all subsequent stages by developing a recursive rela-
tionship. Since a \backwards pass" is being made
with the dynamic programming algorithm, these stages
correspond to previous years in the planning horizon.
Now, as in [10], let:

CKj;n(i) = The expected cost of stages n; n+ 1; � � � ;
N when the state of track is i at the
beginning of stage n and repair
alternative Rj is chosen for tracks in
class K.

If R0 is infeasible, then CK0;n(i) is set to in�nity;

Table 6. Costs of repair alternative (in million Rials per kilometer) for various states (i) and repair alternative
Rj : CK [i; Rj ]�.

Track
Quality

Track State
(i)

Routine Maintenance
(R0)

Improvement
(R1)

Reconstruction
(R2)

Failed 1 30 350 1000

Medium 2 27 325 1000

Good 3 22 300 1000

Very good 4 15 275 1000

Excellent 5 8 200 1000

* Assumed invariant for di�erent classes of track, K.
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otherwise, the CK0;n(i) is computed as:

CK0;n(i) = CK [XK(n) = i; R0]

+ pKi C
�K [XK(n+ 1) = i]

+ (1� pKi )C�K [XK(n+ 1) = i� 1];

i = 1; 2; : : : ; 5; n = 1; 2; : : : ; N: (9)

C
0k can also be computed by:

C
0K
n (i) = min

Rj
j>0

fCK [XK(n); Rj ]

+ pK5 C
�K [XK(n+ 1) = 5]

+ (1� pK5 )C�K [XK(n+ 1) = 4]g;
i = 1; 2; � � � ; 5; n = 1; 2; � � � ; N: (10)

The optimal repair cost for state XK(n) is computed
as:

C�Kn (i) = minfCK0n(i); C
0K
n (i)g; (11)

where C�Kn (i) is the minimum expected costs over the
remaining planning horizon, when the track is found in
state XK(n) = i at the beginning of stage n for tracks
in class K and:

C�KN+1 = 0; for all i and all K:

Actually, determining the optimal repair alternative
in any year, n, requires knowledge of the optimal
repair alternative for each state in the following year.
By starting in year N of the planning horizon, the
optimal repair for years (N � 1; N � 2; � � � ; 2; 1) can
be determined from this recursive approach.

Using the state transition matrices, PK (Table 4),
and the costs for each repair alternative, Rj (Table 6),
one may start the computation process. The feasibility
of repair alternatives available for each track state was
also modi�ed using expert judgment. For example, for
failed track, reconstruction is the only feasible alterna-
tive. Improvement is not permitted, since it will not
restore the failed track to an excellent condition. The
process may then determine those particular actions
that are not feasible, rather than having them excluded
from the feasible set.

The steps of the algorithm are as follows:

Step 1. Let n = N , K = 1 and i = 1 (n = year, K =
track class, and i = track state, indices);

Step 2. Check feasibility of repair alternatives (Equa-
tion 8 and expert judgment);

Step 3. Calculate CKj;n(i) (Equations 9 and 10), for all
j; given i, n and K;

Step 4. Calculate the optimal repair cost for state i,
C�Kn (i) (Equation 11); given i, n and K;

Step 5. Identify the minimum cost repair alternative,
R�n(i); given i, n, K;

Step 6. If i < x, then i + 1 ! i and go to Step 2,
otherwise, continue (here, x = maximum track
state index = 5);

Step 7. If K < k, then 1 ! i, K + 1 ! K and
go to Step 2, otherwise, continue (here, k =
maximum track class index = 6);

Step 8. If n > 1, then 1 ! i, 1 ! K, n � 1 ! n and
go to Step 2, otherwise, stop. Final solution
is attained.�

A computer program was developed to implement the
algorithm. The optimal maintenance program was
obtained for a 10-year planning horizon, �rst without
any constraint and, then, with the single constraint
that the track state be at least 3 in year 10, with
a probability of 0.95. That is, in this case, for any
K, N = 10, pkmin(10) = 0:95 and Xk

min(10) = 3.
For each track class, an independent table of optimal
maintenance actions and costs was computed. Any
of such tables can be used as a guide to specify the
optimal repair action for each possible track state
in the planning horizon. The optimal maintenance
actions and costs are given in Tables 7 and 8, for
the non-constrained and constrained track state cases
mentioned, respectively. Comparisons of the respective
costs in Tables 7 and 8 show that the optimal cost for
a non-constrained problem (Table 7) is less than that
of a constrained problem (in Table 8), as expected.
It is clear that, although there are similarities in the
solution of the problem for various track classes in
Table 7 or 8, such similarities cease to exist when track
states extend, or repair options increase in number,
or the cost structure of the repair options changes.
However, such cases require more data in order to make
the model operational.

CONCLUSIONS

In this study, a Markov model is presented for rail track
maintenance problems, similar to work presented by
Carnahan et al. [10] for road pavement management.
The model proved its robustness in predicting the
random behavior of the track deterioration process.
The results showed that the Markov model seems to
be superior to conventional regression models, such as
the ORE model. Furthermore, dynamic programming
demonstrated its abilities to �nd optimal decisions for
track maintenance systems, while minimizing the cost
of maintenance. Probabilistic dynamic programming
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Table 7. Optimal maintenance action and costs (million Rials/km) for 10-year horizon for tracks in the 6 classes without
constraint.

Track Ri
Tra�c

Condition
Area State Quality Years Cost�

1 2 3 4 5 6 7 8 9 10

1 Failed 2 2 2 2 2 2 2 2 2 2 1189

2 Medium 1 1 1 1 1 1 1 1 1 0 514

Plain 3 Good 0 0 1 1 0 0 0 0 0 0 487

4 Very good 0 0 0 0 0 0 0 0 0 0 392

5 Excellent 0 0 0 0 0 0 0 0 0 0 197

1 Failed 2 2 2 2 2 2 2 2 2 2 1220

2 Medium 1 1 1 1 1 1 1 1 1 0 545

Light Hilly 3 Good 0 0 0 0 0 0 0 0 0 0 500

4 Very good 0 0 0 0 0 0 0 0 0 0 401

5 Excellent 0 0 0 0 0 0 0 0 0 0 228

1 Failed 2 2 2 2 2 2 2 2 2 2 1194

2 Medium 1 1 1 1 1 1 1 1 1 0 519

Mountainous 3 Good 0 1 1 1 1 0 0 0 0 0 494

4 Very good 0 0 0 0 0 0 0 0 0 0 410

5 Excellent 0 0 0 0 0 0 0 0 0 0 202

1 Failed 2 2 2 2 2 2 2 2 2 2 1233

2 Medium 1 1 1 1 1 1 1 1 1 0 558

Plain 3 Good 0 0 0 0 1 0 0 0 0 0 522

4 Very good 0 0 0 0 0 0 0 0 0 0 444

5 Excellent 0 0 0 0 0 0 0 0 0 0 241

1 Failed 2 2 2 2 2 2 2 2 2 2 1244

2 Medium 1 1 1 1 1 1 1 1 1 0 569

Heavy Hilly 3 Good 0 0 0 0 0 0 0 0 0 0 527

4 Very good 0 0 0 0 0 0 0 0 0 0 433

5 Excellent 0 0 0 0 0 0 0 0 0 0 252

1 Failed 2 2 2 2 2 2 2 2 2 2 1305

2 Medium 1 1 1 1 1 1 1 1 1 0 630

Mountainous 3 Good 0 0 0 0 0 0 0 0 0 0 575

4 Very good 0 0 0 0 0 0 0 0 0 0 475

5 Excellent 0 0 0 0 0 0 0 0 0 0 313

* Minimum expected cost (million Rials/km).
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Table 8. Optimal maintenance action and costs (million Rials/km) for 10-year horizon for tracks in the 6 classes with
constraint.

Track Ri
Tra�c

Condition
Area State Quality Years Cost�

1 2 3 4 5 6 7 8 9 10

1 Failed 2 2 2 2 2 2 2 2 2 2 1253

2 Medium 1 1 1 1 1 1 1 1 1 1 578

Plain 3 Good 0 0 1 1 0 1 1 1 1 1 546

4 Very good 0 0 0 0 0 0 0 0 0 0 462

5 Excellent 0 0 0 0 0 0 0 0 0 0 261

1 Failed 2 2 2 2 2 2 2 2 2 2 1305

2 Medium 1 1 1 1 1 1 1 1 1 1 630

Light Hilly 3 Good 0 0 0 0 0 0 0 1 1 1 579

4 Very good 0 0 0 0 0 0 0 0 0 0 487

5 Excellent 0 0 0 0 0 0 0 0 0 0 313

1 Failed 2 2 2 2 2 2 2 2 2 2 1252

2 Medium 1 1 1 1 1 1 1 1 1 1 577

Mountainous 3 Good 0 0 0 1 1 1 1 1 1 1 551

4 Very good 0 0 0 0 0 0 0 0 0 0 474

5 Excellent 0 0 0 0 0 0 0 0 0 0 260

1 Failed 2 2 2 2 2 2 2 2 2 2 1306

2 Medium 1 1 1 1 1 1 1 1 1 1 631

Plain 3 Good 0 0 0 0 0 0 1 1 1 1 592

4 Very good 0 0 0 0 0 0 0 0 0 0 515

5 Excellent 0 0 0 0 0 0 0 0 0 0 314

1 Failed 2 2 2 2 2 2 2 2 2 2 1324

2 Medium 1 1 1 1 1 1 1 1 1 1 650

Heavy Hilly 3 Good 0 0 0 0 0 0 0 1 1 1 603

4 Very good 0 0 0 0 0 0 0 0 0 0 511

5 Excellent 0 0 0 0 0 0 0 0 0 0 333

1 Failed 2 2 2 2 2 2 2 2 2 2 1396

2 Medium 1 1 1 1 1 1 1 1 1 1 721

Mountainous 3 Good 0 0 0 0 0 0 0 0 1 1 667

4 Very good 0 0 0 0 0 0 0 0 0 0 565

5 Excellent 0 0 0 0 0 0 0 0 0 0 404

* Minimum expected cost (million Rials/km).
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could be adapted to the Markov process e�ciently,
and constraints on track condition are easily dealt
with by dynamic programming. Although there might
be room for further enhancement of the model, the
application of the presented model for Iranian Railways
proved to be a reasonable method for the allocation of
maintenance funds.
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