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Predicting Density and Compressive Strength
of Concrete Cement Paste Containing Silica
Fume Using Artificial Neural Networks

E. Rasa', H. Ketabchi’ and M.H. Afshar®*

Abstract.  Artificial Neural Networks (ANNs) have recently been introduced as an efficient artificial
intelligence modeling technique for applications involving a large number of variables, especially with
highly nonlinear and complezx interactions among input/output variables in a system without any prior
knowledge about the nature of these interactions. Various types of ANN models are developed and used
for different problems. In this paper, an artificial neural network of the feed-forward back-propagation
type has been applied for the prediction of density and compressive strength properties of the cement paste
portion of concrete miztures. The mechanical properties of concrete are highly influenced by the density
and compressive strength of concrete cement paste. Due to the complex non-linear effect of silica fume on
concrete cement paste, the ANN model is used to predict density and compressive strength parameters. The
density and compressive strength of concrete cement paste are affected by several parameters, viz, water-
cementitious materials ratio, silica fume unit contents, percentage of super-plasticizer, curing, cement
type, etc. The 28-day compressive strength and Saturated Surface Dry (SSD) density values are considered
as the aim of the prediction. A total of 600 specimens were selected. The system was trained and validated
using 350 training pairs chosen randomly from the data set and tested using the remaining 250 pairs.
Results indicate that the density and compressive strength of concrete cement paste can be predicted much
more accurately using the ANN method compared to existing conventional methods, such as traditional

regression analysis, statistical methods, etc.
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INTRODUCTION

Concrete has been used as a construction material for
more than a century. During this period of time,
concrete has undergone a continuous development, e.g.
the growing use of secondary cementitious materials in
the binding phase. The use of binder admixtures in
the production of concrete with enhanced performance
(also known as High Performance Concrete or simply
HPC) has received a great amount of attention recently.
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One of the most important binder admixtures to offer
a significant contribution to HPC production is silica
fume, a pozzolanic material [1,2].

Concrete, as a non-homogeneous material, con-
sists of separate phases; hydrated cement paste, tran-
sition zone and aggregate. Although most of the
characteristics of concrete are associated with the aver-
age characteristics of a component microstructure, the
compressive strength and failure of concrete are related
to the weakest part of the microstructure. Cement
paste properties are of great significance in concrete
technology. The compressive strength of cement paste
is mainly related to Van der Walls forces. Therefore,
the more compacted the concrete, the higher is the
compressive strength. One porosity reducing factor
is the water-cement ratio and the other factor that
affects concrete porosity is filler materials, such as silica
fume [1,2].

In recent years, ANNs have shown exceptional
performance as regression tools, especially when used
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for pattern recognition and function estimation. They
can capture highly non-linear and complex relations
among input/output variables in a system without any
prior knowledge about the nature of these interactions.
Unlike traditional parametric models, these models are
able to construct a supposedly complex relationship
between input and output variables with an excellent
level of accuracy compared with that of conventional
methods [3]. The main advantage of ANNs is that
one does not have to assume an explicit model form,
which is a prerequisite in the parametric approaches.
Indeed, in ANN models, a relationship of a possibly
complicated nature between input and output variables
is generated by the data points. In comparison to
parametric methods, ANNs can deal with relatively
imprecise or incomplete data and approximate results,
and are less vulnerable to outliers. They are highly par-
allel, that is, their numerous independent operations
can be executed simultaneously [4].

Basma et al. [5] proposed a method for the
prediction of cement degree of hydration using ANN.
The results indicated that the ANNs are very efficient
in predicting the concrete degree of hydration with
great accuracy using minimal processing data. Nehdi et
al. [6] applied a neural network model for performed-
foam cellular concrete. Results showed that the pro-
duction yield, foamed density, unfoamed density and
the compressive strength of cellular concrete mixtures
can be predicted much more accurately using the ANN
method compared to existing parametric methods.
Jespen [7] designed a neural network to investigate
the influence of different parameters on the salt frost
resistance of concrete. Ju-Won Oh et al. [8] developed
an ANN model for the proportioning of concrete
mixtures. Nehdi et al. [9] used an ANN model for
predicting the performance of self-compacting concrete
mixtures. Zong, Gung and Yun [10] utilized an auto-
matic knowledge acquisition system, based on neural
networks, to design concrete mixtures. In a later work,
Gung and Zong [11] proposed a method to predict
28-day compressive strength by using multi layer feed
forward neural networks. Lai and Serra [12] developed
a model, based on neuro computing, for prediction
of the compressive strength of cement conglomerates.
Yeh [13] developed a strength based Artificial Neural
Network (ANN) model, which was found to be more
accurate than the one based on regression analysis.
It was also discovered that his ANN model gave the
detailed effects of the proportions of each variable from
the concrete mixtures. Dias and Pooliyadda [14] used
back propagation neural network models to predict the
strength and slump of ready mixed ordinary concrete
and high strength concrete, in which chemical admix-
tures were used.

Attempts have been made in the past to devise a
kinetic model for cement paste properties to predict the
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phenomena occurring in concrete, but the focus of these
models has been on predicting density, compressive
strength, deformation under loading, the cracking of
sufficiently hardened concrete and etc. The models
have not yet reached the stage where they can explain
the changes in the physical properties of the cement
paste portion of the concrete [5-14].

Predicting the properties of cement paste is of
great significance and difficult to achieve as a function
of the mixture gradient and physical properties of
concrete, hence, a nonlinear prediction model needs
to be considered. The uncertainties associated with
the parameters affecting the density and compressive
strength of cement paste make it difficult to exactly
estimate such properties [1,4]. Knowing the properties
of cement paste, a better understanding of concrete
performance properties can be taken into account [1,2].
Considering the influence of silica fume on the transi-
tion zone and cement paste and the complex and non-
linear effect of silica fume on concrete cement paste,
a set of experiments were carried out on cement paste
with different water-cementitious materials and silica
fume unit contents, in order to investigate the effect
of silica fume on cement paste. An ANN model is
then developed, based on the data produced, to predict
density and compressive strength parameters.

NEURAL NETWORKS

ANN modeling, a paradigm for computation and
knowledge representation, is originally inspired by
the understanding and abstraction of the biological
structure of neurons and the internal operation of the
human brain. A neural network is a network of many
simple processors that are called nodes. A multilayer
perceptron may be thought of as consisting of layers of
parallel data processing cells. Each node (neuron) has a
small amount of local memory. Nodes in the input layer
only act as buffers for distributing the input signals to
nodes in the hidden layer. The nodes are connected by
connections; each usually carrying numeric data called
weights, encoded by any of the existing methods. Fach
node in the hidden layer sums up its input signals after
weighting them with the strengths of the respective
connections from the input layer and computes its
output as a function of the sum. The nodes operate
only on the local data and on the inputs they receive via
the connections. The differences between the computed
output and the target are combined together by an
error function to give the network the verification set,
and used to keep an independent check of the progress
of the algorithm. Training of the neural network is
stopped when the error for the verification set begins
to increase [3,4,8].

The main principle of neural computing is the
decomposition of the input-output relationship into a
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series of linearly separable steps using hidden layers [4].
There are three distinct steps in developing an ANN-
based solution:

1. Data transformation or scaling;

2. Network architecture definition, where the number
of hidden layers, the number of nodes in each layer
and the connectivity between the nodes are set;

3. Construction of a learning algorithm in order to
train the network [3,6].

Figure 1 shows the simple architecture of a typical
network that consists of an input layer, hidden lay-
ers, an output layer and connections between them.
Nodes in the input layer represent possible influential
factors that affect the network outputs and have no
computation activities, while the output layer contains
one or more nodes that produce the network output.
Hidden layers may contain a large number of hidden
processing nodes. A feed-forward back-propagation
network propagates the information from the input
layer to the output layer, compares the network outputs
with known targets and propagates the error from the
output layer back to the input layer, using a learning
mechanism to adjust the weights and biases [3,8].

In general, the net input to each node is calculated
as:

Ngl‘ :ZW;rXffl*'ﬂ} (1)
=1

where W]Zl is the weight that connects node j in layer
[ to node 7 in layer [ — 1; n is the number of nodes in
layer [ — 1; [3; is a threshold value assigned to node j
in layer I; and Xffl is the input coming from node 7 in
layer [ — 1 to node j in layer [. The net input, N}, is
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Figure 1. Neural network design topology.
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then modified by an activation function, f, to generate
an output value, le, given by:

v] = F(NY). 2)
where f is a nonlinear activation function assigned to
each node in the network. The learning mechanism of
this back-propagation network is a generalized delta
rule that performs a gradient-descent on the error
space, in order to minimize the total error between the
calculated and desired values at the output layer during
modification of the connection weights. The implemen-
tation of this algorithm updates the network weights
and biases in the direction in which the error decreases
most rapidly. Training is accomplished in an iterative
manner. Each iteration cycle involves the feed-forward
computation followed by an error-backward propaga-
tion to modify the connection weights. Convergence
depends on the number of hidden layer nodes, learning
rate parameters and the size of the data set required
to create the proper results. Furthermore, there is no
structured algorithm to obtain the optimal structure
and parameters of neural networks; therefore, one
should find the optimal network by trial and error. The
most interesting property of a network is its ability to
generalize new cases. For this purpose, an independent
data set is used to test the neural network and check
its performance. When verification and test errors
are reasonably close together, the network is likely to
generalize well [3,8].

Upon successful completion of the training pro-
cess, a well-trained neural network is not only capable
of computing the expected outputs of any input set of
data used in the training stage, but should also be able
to predict, with an acceptable degree of accuracy, the
outcome of any unfamiliar set of input located within
the range of the training data [3,6].

SELECTION OF DATABASE

The selection of the database chosen to train a neural
network such that it will be capable of capturing the
relationships between the parameters of the cement
paste mixtures and its mechanical properties, density
and compressive strength, is of great importance. It
must be trained on large and comprehensive sets
of reliable experimental data that contain influential
factors regarding cement paste density and compressive
strength [9].

The data set for neural network analysis was a
subset from the database of a cement paste containing
silica fume mixture properties [15]. The density and
compressive strength were measured in the laboratory
by preparing several mixtures of cement paste. In this
study, cement, silica fume, water and super plasticizer
were used for the production of these mixtures. Two
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Table 1. Range, average and standard deviation of measured input and output variables.

Variables Range Average | Standard Deviation

Water-cementitious materials ratio (W/cm) | 0.35 to 0.65 0.57 0.05
Cement (kg/m?) 430 to 1140 802.3 106.8
Silica fume (kg.m®) 75 to 625 290 87.13
Super-plasticizer (kg/m?) 0 to 25 2.5 1.88
Cement type 1 and 2 - -

Density (kg/m?) 1600 to 2100 1715.4 59.36
Compressive strength (MPa) 15 to 65 36 8.02

types of cement (Type I and Type IT) with the W/cm of
0.35 to 0.65 and silica fume unit contents of 75 kg/m?
to 625 kg/m? were used to prepare the specimens. All
the specimens were cured for 28 days at an average
temperature of 20°C. This led to the development of a
large number of data sets. Table 1 shows the ranges,
average values and standard deviation of all relevant
parameters. A detailed examination of the data in
the database showed that many were missing the
information necessary for the neural network analysis.
Ultimately, a total of 600 data pairs have, therefore,
been selected from the experimental database, as stated
earlier.

NEURAL NETWORK ARCHITECTURE

There is no effective procedure for identifying the opti-
mal architecture of a network before training. However,
it is important for the hidden layers to have a small
number of nodes. An excessive number of hidden nodes
may cause the network to memorize the training data.
In such cases, the ANN would not be able to interpolate
effectively between adjacent training data points. Too
few hidden nodes, on the other hand, will limit the
network’s ability to construct an adequate relationship
between input and output variables [3].

The number of hidden layers and nodes are
usually determined via a trial and error procedure.
There are some rules to estimate the number of hidden
nodes. According to the method suggested by Dave
Anderson and George McNeill [3], an upper bound
for the number of processing nodes in the hidden
layers can be calculated by dividing the number of
input-output pairs in the training set by the total
number of input and output nodes in the network,
multiplied by a scaling factor between five and ten.
Larger scaling factors are used for relatively noisy
data.

The water-cementitious materials ratio (W /cm),
the unit contents of the cement, the silica fume and
super plasticizer and cement type parameters are rep-
resented by the input nodes, while the output layer con-
tains two nodes representing density and compressive

strength. Following the guidelines suggested by Dave
Anderson and George McNeill [3] and some preliminary
computations, a network architecture containing two
hidden layers was adopted. The first hidden layer
included five nodes, while the second hidden layer had
only three nodes and a full connection between the
nodes in the adjacent layers was selected. The network
architecture can be seen schematically in Figure 2. The
assignment of transfer functions and the number of
nodes are also shown in Table 2. A free access ANN
package (Qunet) of the feed-forward back-propagation
type was used in this study [16].

SPL Cement type

Input layer

Hidden layer 1

Hidden layer 2

Output layer

Density Strength

Figure 2. Architecture of neural network model.

Table 2. Network information.

Number of Transfer
Layer
Nodes Function
Input layer 5 Linear
Hidden layer 1 5 Gaussian
Hidden layer 2 3 Tanh
Output layer 2 Sigmoid
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TRAINING OF ANN MODEL

The training procedure was carried out by presenting
the network with the set of experimental data in a
patterned format. FEach training pattern includes an
input set of five parameters representing the cement
paste mixture ingredients (that is, W/cm, C, SF, SPL,
cement type) and a corresponding output set repre-
senting the cement paste properties (that is, density
and compressive strength). The network is presented
with the variables in the input vector of the first train-
ing pattern, followed by an appropriate computation
through the nodes in the hidden layers and prediction
of the appropriate outputs. The error between the
predicted output and target value is calculated and
stored. The network is then presented with the second
training pattern and so on until the network has gone
through all the data available for training the network.
The Root-Mean-Square (RMS) of the error is then
calculated and back propagated to the network. Biases
and weights or the connection strength between nodes
are modified during the back propagation phase such
that the (RMS) errors are reduced. The process of
the introduction of training input-output pairs to the
network, calculation of the (RMS) error and, f{inally,
the adjustment of weights and biases to reduce the
(RMS) error are referred to as one iteration. This
process continues until convergence is achieved or the
maximum number of iterations is reached [3,6]. The
trained ANN model is represented by the connection
weights once the above procedure is converged. This
process is illustrated in Figure 3.

To avoid the over-fitting of the neural network
model to the data during iterative training, a separate
set of the data set was used to validate the model at
some intervals during training. Training is stopped
when the error for the validation set begins to in-
crease. The network was trained and validated, based
on 350 training patterns chosen randomly from the
600 available data sets. The remaining 250 pairs of
independent data were used to test the network after
completion of training and validation in order to assess
its performance on data to which it has never before
been exposed. The training process and the associated
ANNSs analyses were carried out with an optimal value
of learning rate of 0.0035 and maximum number of
iterations of 20000 with an error goal of 0.000.

RESULTS AND DISCUSSION

The network was trained to predict cement paste
properties (density and compressive strength) using
a total of 350 training and validating data sets and
250 testing data sets. Figures 4a and 4b compare the
output and target values of the density and compressive
strength of cement paste for all the 600 available data
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Selection of database

A

[ Determination of number of input and output nodes ]

4’_[ Determination of number of hidden layers and nodes ]

[ Presenting the patterned data sets ]

A [ Training by iterative process ]

[ Calculation of final RMS error, bias and weight ]

< [ Trial and error procedure ]

l

[ Identifying the optimal network architecture ]

[ Presenting unfamiliar data sets to the network ]

[ Predicting expected outputs ]

[ Comparing the predicted with measured values ]

Figure 3. Processing neural network model.
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Figure 4a. Targets/outputs vs pattern sequence (node 1).

sets. Table 3 shows the training information and
Figures 5a and 5b show the convergence characteristics
of the ANN model during the training and testing
phases, respectively. The correlation histories are also
shown in Figures 6a and 6b for the training and testing
stages. It is clearly seen that correlation is very high in
the early stages of the training process, but gradually
becomes slower in later iterations.

Figure 7 illustrates the distribution of the network
outputs vs the target values for the training data
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Figure 5b. Testing RMS error history vs iteration.
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sets. All data points are distributed along the optimal
agreement line, with the training and testing Root-
Mean-Square (RMS) errors of 0.034385 and 0.034780,
respectively. The final biases and absolute maximum
errors and correlation for output nodes are also listed in
Table 4. The correlation between predicted and mea-
sured compressive strength is seen to be satisfactory. It
is generally lower for density, especially at higher com-
pressive strength values. In practice, the compressive
strength results of the cement paste mixture exhibit
high variability between batches affected by the mixing
technique, consolidation, temperature, curing and the
testing method. The relatively larger prediction error
and less correlation compressive strength may, there-
fore, be associated to high variability in the mixture
development rather than the prediction method.

To test the accuracy of the ANN model, the final
trained model was called upon to recall the data not
used in the training process. A total of 20 cement

Table 3. Training information.

Iterations 20000

Training RMS Error* 0.034385
Testing RMS Error* 0.034780
Learn Rate 0.003500

* The sum of squared differences between the network
targets and actual outputs for a given input vector or

set of vectors (root-mean-square error).

1.0
ks
s 038
o
g
2
5
T
5 0.6
O

0.4

0 5000 10000 15000 20000
Iteration

Figure 6a. Training correlation history vs iteration.

Table 4. Biases, max errors and correlations for output layer.

Bias* Max Error Correlation
Node Training Test Training Test Training Test
Data Data Data Data Data Data
1 0.6651 -0.2158 | 22.46985 | 32.76013 0.99723 0.99469
2 0.0312 -0.0285 5.51261 4.77564 0.91853 0.90763

* A node parameter that is summed with the node’s weighted inputs and passed through

the node’s transfer function to generate the node’s output.
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Table 5. Measured and predicted values of outputs variables for data sets used in testing of ANN model.

Testing Data Sets Density (kg/m?) Compressive
Strength (MPa)
Water-
Cementitious | Cement Silica Super Cement
No. Fume |Plasticizer Measured | Predicted | Measured | Predicted
Materials | (kg/m?®) R R Type
Ratio (kg/m”) | (kg/m’)
1 0.37 926.280 | 463.140 11.115 2 1914.62 1930.00 50.38 51.62
2 0.4 934.800 | 420.660 9.348 2 1906.99 1908.75 50.38 50.61
3 0.42 923.163 | 387.729 7.385 2 1868.85 1866.26 51.54 49.42
4 0.45 1020.558 | 306.168 6.123 2 1929.88 1922.62 50.76 49.99
5 0.5 1117.818 | 78.247 0.000 2 1794.10 1793.34 24.03 25.70
6 0.5 1026.040 | 174.427 1.026 2 1801.73 1806.62 33.97 33.92
7 0.55 762.036 | 320.055 3.201 2 1680.44 1679.53 39.00 41.36
8 0.55 1062.902 | 75.403 0.000 2 1762.82 1756.40 18.99 20.29
9 0.57 780.843 | 304.529 2.343 2 1706.38 1704.96 34.49 37.44
10 0.58 768.702 | 292.107 2.075 2 1678.15 1678.54 32.41 34.90
11 0.6 942.854 | 113.143 0.000 2 1689.59 1684.68 19.38 19.60
12 0.65 746.887 | 261.411 1.494 2 1665.19 1671.75 27.51 29.38
13 0.35 1078.299 | 431.320 21.566 1 2049.55 2016.79 62.39 59.11
14 0.4 913.335 | 456.667 11.873 1 1929.88 1959.84 50.76 52.98
15 0.45 936.546 | 421.446 6.556 1 1975.64 1952.66 51.54 51.45
16 0.5 916.808 | 302.547 0.917 1 1829.95 1844.31 44.37 43.32
17 0.55 789.731 | 355.379 3.159 1 1778.08 1784.68 47.28 47.80
18 0.6 731.917 | 329.363 1.464 1 1699.51 1698.11 35.30 37.28
19 0.62 665.399 | 365.970 1.996 1 1672.81 1673.76 38.90 36.39
20 0.65 845.297 | 194.418 0.000 1 1715.53 1707.36 29.45 27.26

paste mixtures, unfamiliar to the network in the range
of training data sets, were presented to the ANN
model and the network was required to predict the
density and compressive strength associated with each
mixture. The mixture proportion and the measured
and predicted values are listed in Table 5.

As mentioned previously, a set of experimental
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Figure 6b. Testing correlation history vs iteration.

data, including 600 pairs of data, was used in this
study, from which 350 training and validating patterns
were chosen arbitrarily and the remaining 250 pairs
were used as measured data, to test and verify the
efficiency and validity of the predicted values by the
network. A good agreement between the measured
and predicted values of the density and compressive
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Figure 7. Net outputs vs targets.
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strength is observed, as shown in Figure 8a and 8b. 065
It can be, therefore, concluded that the proposed z L
ANN model is adequately able to predict the above S
mentioned properties of cement paste. % [
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10b. The existence of an optimum content of silica
fume in the cement paste is clearly verified. It is
also shown that this optimum is not constant but
depends on the W/cm of the mixture. It is also
noted that, for each value of W/cm, the maximum
density occurs at a silica fume unit content value
different from that resulting in maximum compressive
strength. This difference can be contributed to the
way in which the silica fume affects the density and
compressive strength of the mixture. Silica fume
content affects the compressive strength characteristics
of the mixture through chemical pozzolanic activity
and physical micro filler action, while its influence on
the density is limited to physical filler action. The
optimum content of silica fume for maximum density
and compressive strength is seen, from Figures 10a and
10b, to be in the range of approximately 125 kg/m? to
200 kg/m? and 225 kg/m? to 475 kg/m?, respectively.
This conclusion can, of course, only be drawn for the
data used in this experimentation.

Bhanja and Sengupta [17] have investigated the
effects of silica fume and reported similar observations,
indicating that both the pozzolanic and filler effects of
silica are highly significant. Considering the differences
between the optimum silica fume content for density
and compressive strength, it can be concluded that
the role of silica fume in maximizing the cement paste
compressive strength is twofold, namely; filler effect
and pozzolanic effect. Some researchers, however,
contradict these conclusions. A. Bentur and K.L.
Scrivener [18] have an opposite report. Papadakis [19]
has reported that the silica fume added in excess
of that required for pozzolanic action is inert and,
thus, not necessary. Goldman [20,21] and Bhanja and
Sengupta [17] have reported that the amount of silica
fume contributing to the physical effect is comparable
to, or even more significant than, the amount con-
tributing to the pozzolanic effect. Based on chemical
considerations, Cohen has concluded that the highest
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Figure 10b. Compressive strength vs silica fume unit
contents at different constant W/cm.
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strengths can be obtained with a 30 to 40% weight of
silica fume. Wild, Sabir and Khatib [22] reported that
the 28-day strength of silica fume concrete increased
continuously up to a 16% replacement level, thereafter
decreased and, again, increased, reaching maximum
value at 28%, at a constant W /cm of 0.35.

It is worth mentioning that the proposed ANN
model can be adjusted to include the effect of additional
parameters, given the availability of sufficient data to
train the network for the effects of these additional
parameters. The number of input variables and the
architecture of the network can be modified to include
new mixture components. Hence, it is recommended
to extend this model, once a more comprehensive
database encompassing the effects of such parameters
is available.

CONCLUSIONS

This paper presents a nontraditional approach to the
prediction of the density and compressive strength of
a cement paste mixture, based on ANN technology.
Based on the findings of this investigation, the following
conclusions can be drawn:

1. The proposed model demonstrates the ability of
a feed-forward back-propagation neural network to
predict the properties of the cement paste portion
of concrete with sufficient accuracy. The model
performed quite well in predicting, not only the den-
sity and compressive strength properties of cement
paste mixtures used in the training process, but also
those of test mixtures that were unfamiliar to the
neural network.

2. Predicting the properties of cement paste as a
function of the mixture ingredient, using analytical
and traditional methods, is difficult to achieve,
whereas a trained neural network model can predict
such properties easily and accurately. Therefore,
ANN can provide a drastically powerful alternative
approach.

3. Although the prediction capability of any ANN

model is limited to data located within the bound-
aries of the training range, the proposed model can
be retrained to include a wider range of input vari-
ables by providing additional training sets covering
the new range;

4. The existence of the optimum content of silica fume

was well illustrated. It was also concluded that
the optimum content of silica fume increases with
increasing the value of the water-cementitious ma-
terials ratio, while the corresponding compressive
strength decreases.
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