
Transaction A: Civil Engineering
Vol. 17, No. 5, pp. 339{349
c
 Sharif University of Technology, October 2010

Solution of Convection-Dominated Problems
on Irregular Meshes by Collocated Discrete
Least Squares Mesh-Less (CDLSM) Method

M.H. Afshar1 and G. Shobeyri1;�

Abstract. In this paper, a study is performed on the e�ect of irregularity of domain discretization on
the performance of the CDLSM method for the solution of convection-dominated problems. The method is
based on minimizing a least squares functional of the residuals of the governing di�erential equations and
its boundary conditions over a set of collocation points. Four convection-dominated benchmark examples
are solved using CDLSM method on three di�erent sets of nodal distribution with di�erent levels of
irregularity and the results are presented. These experiments show that CDLSM method is capable of
producing stable and accurate results for hyperbolic problems with shocked or high gradient solutions even
on highly irregular mesh of nodes. Mesh-less methods as alternative numerical approaches to eliminate
the well-known drawbacks of mesh-based methods have attracted much attention in the past decade due
to their 
exibility and their potentiality in negating the need for the human-labor intensive process of
constructing geometric meshes in a domain. Exploiting this ability, however, requires that the method
could solve the problem under consideration on unstructured distribution of nodes. This is particularly
important when a re�nement strategy is to be used to improve the performances of these methods.
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INTRODUCTION

In the past decades, a group of so-called mesh-free or
meshless methods have become one of the hottest areas
of research in computational mechanics. As their name
implies, one common characteristic of all these methods
is that they do not require the traditional mesh to
construct the numerical formulation. Mesh-free meth-
ods possess a number of interesting properties. For
example, they require node generation instead of mesh
generation. In other words, there is no pre-speci�ed
connectivity or relationship among the nodes, thus the
computational costs associated with mesh generation
are highly reduced. Another attractive property of
mesh-free methods is the computational ease of adding
and subtracting nodes from the pre-existing nodes.
The computational advantages of a mesh-free method
suggest that they have potentials in solving a broad
class of scienti�c and engineering problems.
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Various meshless methods have been developed
and used to solve di�erent problems including those
encountered in the 
uid mechanics discipline. Smooth
Particle Hydrodynamics (SPH) introduced by Gingold
and Monaghan [1], and used by Ataie and Shobeyri [2]
and Ataie et al. [3], Reproducing Kernel Particle
Method (RKPM) by Liu et al. [4], Element-Free
Galerkin method (EFG) by Belytschko et al. [5],
Mesh-less Local Petrov-Galerkin (MLPG) method by
Atluri and Zhu [6], partition of unity by Melenk and
Babuska [7], Hp-clouds by Duarte and Oden [8] and
Finite Point (FP) method by Onate et al. [9] are all
meshless methods from the point of view of the node
interpolation, and have already been widely applied to
various areas. The advantages of these meshless meth-
ods are apparent, however, serious limitations exist.
For instance, the di�culties of imposition of essential
boundary and treatment of material discontinuities,
uncertain choice of the weight functions, di�culties in
the integration of sti�ness matrix, and complexity in
algorithms for computing the interpolation functions
are all major technical problems in these methods.

The meshless methods have been proposed to
avoid the numerical di�culties of mesh entanglement
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in the Finite Element Method (FEM) which have
been widely used in di�erent engineering �elds [10-
12]. Meshless methods, however, have to pay for the
high cost in the computational time, the enforcement of
essential boundary condition and the treatment of ma-
terial discontinuities. Special technologies, such as the
Penalty method by Zhu and Atluri [13], transformation
of approximate nodal values to actual nodal values by
Cai and Zhu [14], nodal integration method by Beissel
and Belytschko [15], and e�cient computation of shape
functions by Beitkopf et al. [16] have been proposed to
overcome these problems.

Recently a family of collocation-based meshless
methods are emerging in the literature. Collocation
methods enjoy simplicity and e�ciency when used
as meshless methods but they su�er from stability
problems. Some researchers have, therefore, attempted
a hybridization of the collocation method with other
discretization schemes as a remedy to the shortcomings
of the collocation methods. Afshar and Arzani [17]
developed Discrete Least Squares Mesh-less (DLSM)
method for the solution of Poisson equation. In this
method a fully least squares approach was used in
both function approximation and the discretization
of the governing di�erential equations. The meshless
shape functions were derived using the Moving Least
Squares (MLS) method of function approximation.
The discretized equations were obtained via a discrete
least squares method in which the sum of the squared
residuals were minimized with respect to the unknown
nodal parameters. While most of the existing meshless
methods need background cells for numerical inte-
gration, DLSM did not require numerical integration
procedure. This method had the additional advantages
of producing symmetric, positive and de�nite matrices
even for non-self adjoint operators as encountered in

uid 
ow problems.

Zhang et al. used the Least squares Collocation
Meshless (LSCM) Method [18] to solve elliptic prob-
lems. In this method, a set of over determined system
of equations, in which the number of the equations
was greater than the number of unknowns, was con-
structed and solved by the least squares method. The
solution of some steady and unsteady heat conduction
problems were investigated by Liu et al. [19] using a
Meshless Weighted Least Squares (MWLS) method. A
sensitivity analysis on the MWLS parameters to solve
the problems of a cantilever beam and an in�nite plate
with a central circular hole was performed by Pan et.
al [20]. Armentano and Dur�an [21] carried out an error
estimates for moving least square approximations used
for the solution of 1-D convection-di�usion problems.
Wang et al. [22] tested a point weighted least squares
meshless method for the solution of 1-D and 2-D
Poisson equations.

Firoozjaee and Afshar [23] proposed Collocated

Discrete Least Squares Mesh-less (CDLSM) method
to solve elliptic partial di�erential equations, and
studied the e�ect of the collocation points on the
convergence and accuracy of the method. CDLSM
was later extended by Naisipour et al. [24] to solve
elasticity problems on irregular distribution of nodal
points. Afshar and Lashckarbolok [25] were �rst to
use the CDLSM method for the solution of hyperbolic
problems. They also suggested a posteriori error
estimate and adaptive re�nement strategy in conjunc-
tion with the CDLSM method for 1-D hyperbolic
problems. More recently, Afshar et al. [26] examined
the e�ect of the number of collocation points on the
accuracy of CDLSM method for both transient and
steady state one dimensional hyperbolic problems with
uniform nodal spacing. CDLSM has also been used
successfully to simulate free surface 
ows by Shobeyri
and Afshar [27].

CDLSM has shown to have some similarity with
MWLS as suggested by Liu et al. [19] and Pan et al. [20]
who use least squares method for the discretization
of the governing di�erential equations. A simple but
very decisive di�erence, however, exists between these
methods which is the use of the collocation points in
the CDLSM method. In CDLSM, the least squares
functional is formed at the collocation points while
it is calculated at nodal points in MWLS. At least
three advantages of the collocation points were shown
in [26] which are as follows. First, the collocation points
can stabilize the method, especially in problems with
shocked solution. Second, the collocation points can
improve the accuracy of the method even in problems
with smooth solutions. Third, faster convergence can
be achieved in steady-state problems using collocation
points. It has recently, however, come to the attention
of the authors, by one of the respected reviewers of the
paper, that in an alternative formulation of the MWLS
method proposed by Zhang et al. [28], a set of auxiliary
points in addition to the nodal points were also used
to eliminate the residuals of the governing equations.

In this paper, the CDLSM method is extended
for the solution of one and two dimensional convection
dominated problems and its performance for the so-
lution of steady and transient problems on irregular
distribution of nodes are investigated. Four test
problems from the literature, namely nonlinear 1-D
Burgers equation in transient form, 1-D dam break
problem, 2-D pure convection problem and �nally 2-D
transient Burgers equation are solved using proposed
CDLSM method on three set of node con�gurations
with di�erent level of irregularity and the results
are presented and compared to the analytical results
wherever available. These experiments show that the
proposed CDLSM method is capable of producing
stable and accurate results for the di�cult problems
considered.
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MOVING LEAST SQUARES (MLS)
METHOD

Several techniques have been developed to construct
meshless shape functions. The MLS approximation
by Lancaster and Salkauskas [29], the Radial Point
Interpolation Method (RPIM) by Liu and Gu [30]
and the Kriging interpolation by Gu [31] are only
some examples of existing methods. Amongst these
methods, the MLS method has gained more popularity
in the meshless community. In MLS, the function to
be approximated is represented by:

uh(x) =
mX
i=1

pi(x)ai(x) � pT (x)a(x): (1)

Here pT (x) is a set of linearly independent polynomial
basis and a(x) represents the unknown coe�cients to
be determined by the �tting algorithm. In Moving
Least Square (MLS) approximation, at each point x,
a(x) is chosen to minimize the sum of weighted squared
residuals de�ned by:

J =
1
2

nX
I=1

w(jx� xI j)[pT (xI)a(x)� uI ]2; (2)

where uI is nodal value of the function to be approx-
imated, n is the number of nodes and w(jx � xI j) is
the weight function de�ned to have compact support.
Many weight functions are established and used by
di�erent researchers. In this paper an exponential
weight function is used as follows:

w(r) =

8><>:
2
3 � 4r2 + 4r3 for r � 1

2
4
3 � 4r + 4r2 � 4

3r
3 for 1

2 < r � 1
0 for r > 1

(3)

in which r = s=smax, s = kx � xIk and smax is the
radius of the support.

The coe�cients a(x) are found by minimizing
J with respect to these coe�cients. Carrying out
the di�erentiation and setting it to zero leads to the
following relation for the unknown parameters a(x):

a(x) = A�1(x)B(x)u; (4)

where:

A = PTW(x)P; (5)

B = PTW(x); (6)

uT = (u1; u2; � � � ; un); (7)

P =

26664
p1(x1) p2(x1) � � � pm(x1)
p1(x2) p2(x2) � � � pm(x2)

...
...

...
...

p1(xn) p2(xn) � � � pm(xn)

37775 ; (8)

and:

W(x) =26664
w(jx� x1j) 0 � � � 0

0 w(jx� x2j) � � � 0
...

...
...

...
0 0 � � � w(jx� xnj)

37775 : (9)

The approximation of the unknown function can now
be written in the familiar form of:

uh(x) =
nX
I=1

NI(x)uI ; (10)

where NI(x) denote the shape function of node I
de�ned as:

N = pT (x)A�1(x)B(x): (11)

MLS shape functions generally do not satisfy the
Kronecker delta condition. Hence the parameters uI
cannot be treated like nodal values of the unknown
function (uh(xi) 6= uI).

Generally, it is necessary to obtain the shape
function derivatives. The spatial derivatives of the
shape functions are obtained as:

dN(x)
dx

=
dP
dx

A�1B + P
d(A�1)
dx

B + PA�1 dB
dx

:
(12)

COLLOCATED DISCRETE LEAST
SQUARES MESHLESS (CDLSM) METHOD

Consider the general form of di�erential equations
governing the transient convection-di�usion problems
written in matrix form as:

@u
@t

+ Ai(u)
@u
@xi
� k@2u

@x2
i

= Q(u);

i = 1; 2; on 
: (13)

Subject to appropriate Dirichlet and Neuman bound-
ary conditions:

u = u on �u;

B(u) = g on �t:
(14)

Here, u denotes the problem unknown vector, Ai is the
Jacobian matrix in the ith dimension which is generally
a function of the unknown vector u, Q is the source
term vector, k is the di�usion coe�cient assumed to
be independent from the spatial dimensions and B is a
di�erential operator de�ned on Neuman boundaries.
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A semi-discretization is �rst carried out using the
� method in time as follows:

un+1 � un

+�t�
�
An+1
i (u)

@un+1

@xi
�k@2un+1

@x2
i
�Qn+1

�
+�t(1� �)

�
An
i (u)

@un

@xi
�k@2un

@x2
i
�Qn

�
=0;

(15)

with 1
2 � � � 1 for the stability of the temporal dis-

cretization scheme. Assuming Q = Su, the linearized
residuals in the problem domain and its boundaries can
now be de�ned as:
Rn+1


 = un+1 � un

+ �t�
�
An

i (u)
@un+1

@xi
�k@2un+1

@x2
i
�Snun+1

�
+�t(1��)

�
An

i (u)
@un

@xi
�k@2un

@x2
i
�Snun

�
;
(16)

Rn+1
�t = B(uk)� g(xk); (17)

Rn+1
�u = un+1 � �u: (18)

The philosophy of least squares is to �nd an approx-
imate solution that minimizes the least squares func-
tional to be de�ned later. Assume that the problem
domain and boundaries are discretized by some nodal
points, and their number is n. Beside the nodal points,
the collocation points are used in the problem domain
and on its boundaries to construct the least squares
functional. The total number of collocation points is
M comprised of Md internal collocation points, Mu
collocation points on the Dirichlet boundary and Mt
collocation points on Neuman boundary, i.e.:

M = Md +Mu +Mt: (19)

The approximate value of the function u at a colloca-
tion point xk can be obtained through interpolation:

u(xk) =
nkX
i=1

Ni(xk):ui; (20)

where nk is the number of nodal points having xk
in their support domain. Substituting Equation 20
into Equations 16, 17 and 18 leads to the di�erential
equation residual Rd, the Neuman boundary condition
residual Rt and the Dirichlet boundary condition resid-
ual Ru de�ned as:

R(d)
k = L(uk)� f(xk) =

nkX
j=1

L(Nj(xk))uj � f(xk);

(k = 1 �M); (21)

with

L(�) = (�) + �t�
�
An
i (u)

@(�)
@xi
� k@2(�)

@x2
i
� Sn(�)

�
;
(22)

f = un ��t(1� �)
�
An
i
@un

@xi
� k@2un

@x2
i
�Qn

�
; (23)

R(t)
k =B(uk)�g(xk)=

nkX
j=1

B(Nj(xk))uj � g(xk);

(k = 1 �Mt); (24)

R(u)
k = uk � �u =

nkX
j=1

(Nj(xk))uj � �u;

(k = 1 �Mu): (25)

Now the least squares functional of all residuals at all
collocation points can be constructed as:

J=
1
2

 
MdX
k=1

[R(d)
k ]2+�

MtX
k=1

[R(t)
k ]2+�:

MuX
k=1

[R(u)
k ]2

!
:
(26)

The factors � and � in the above equation are meant to
represent the relative weight of the boundary residuals
with respect to the domain residual.

Minimization of Equation 26 with respect to the
nodal parameters ui leads to:

@J
@ui

=
MX
k=1

@R(d)
k

@ui
[R(d)
k ] + �

MtX
k=1

@R(t)
k

@ui
[R(t)
k ]

+ �
MuX
k=1

@R(u)
k

@ui
[R(u)
k ] = 0: (27)

Substituting Equations 21, 24 and 25 into Equation 27
yields the �nal system of equations:

KU = F: (28)

The typical components of the matrix K and right hand
side vector F are de�ned as:

Klm =
MdX
i=1

[L(Nl)]Ti [L(Nm)]i

+ �
MtX
i=1

[B(Nl)]Ti [B(Nm)]i

+ �
MuX
i=1

[(Nl)]Ti [(Nm)]i;

l;m = 1; � � � ; n; (29)
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Fl =�
MdX
i=1

[L(Nl)]Ti fi + �
MtX
i=1

[B(Nl)]Ti gi

+ �
MuX
i=1

[(Nl)]Ti (�u);

l = 1; � � � ; n: (30)

The system of equations can now be formed and solved
at each time step and the required solution produced in
a time marching manner until a steady state solution is
reached if a steady state solution is desired. It should
be noted here that the proposed method is stable for
any time and space step sizes due to the implicit nature
of the method. The sti�ness matrix K in Equation 29
can be seen to be symmetric and positive-de�nite.
Therefore, the �nal system of equations can be solved
using e�cient iterative procedure such as conjugate
gradient methods.

NUMERICAL EXAMPLES

In this section, a set of transient and steady state
hyperbolic problems are solved on a series of nodal
distributions with di�erent level of irregularity and the
results are compared to assess the e�ect of mesh ir-
regularity on the performance of the proposed CDLSM
method. In 1-D problems, the standard deviation of
the nodal spacing is considered as a measure of mesh
irregularity while for 2-D problems, the average value
of the absolute di�erence between the radius of support
domain on irregular mesh with those on regular mesh
is considered as the mesh irregularity.

The mesh irregularity index can be de�ned math-
ematically as:

For one-dimensional problems:

Iindx =

 
1

Mn � 1

MnX
i=1

(xreg
i � xirreg

i )2

! 1
2

:

For two-dimensional problems:

Iindx =
1
Mn

MnX
i=1

(abs(sreg
maxji � sirreg

max ji));

where Mn is the number of nodal points in the com-
putational domain, xreg

i , sreg
maxji, xirreg

i and sirreg
max ji are

the positions of nodal points and the radius of support
domain for regular and irregular nodal distributions,
respectively.

The accuracy of MLS interpolation greatly dead-
ens on how to de�ne support domain for the point
of interest. Therefore, an e�cient method to choose

support domain is required for accurate and e�cient
approximation. For one-dimensional problems, the
size of the support domain (smax) is de�ned so that
at least two nodes be in the support domain. For
two-dimensional problems, the radius of the support
domain is de�ned by:

smax = �sdc;

where �s is a user-de�ned coe�cient and dc is a
measure of the average nodal spacing. For irregular
nodal point distributions dc is chosen as the average
distance of the �ve nearest nodal points to the point
under consideration. Generally, �s = 2:0 � 3:0 leads to
accurate results for many problems [32]. Here, �s = 2:0
and 2:7 are used for pure convection and the Burgers
problems, respectively.

It also should be noted that polynomial basis of
order zero (P = [1]) and order two (p = [1; x; y; xy;
x2; y2]) are used for 1-D and 2-D problems, respectively,
to construct MLS shape functions.

Transient 1-D Burgers Equation

This is a problem governed by the inviscid Burgers
equation de�ned by following parameters of Equa-
tion 13:

A = u; k = 0; Q = 0:

The problem is solved on the domain 0 � x � 1 with
the following initial and boundary conditions:

u(0) = 2; 0 � x � 0:5;

u(0) = 0; 0:5 < x � 1;

u(t) = 2; x = 0:0;

u(t) = 0; x = 1:

The exact solution to this problem is represented by a
discontinuity moving with velocity of 1 m/s. Burgers
equation is a simple non-linear model representing
physical problems described by the convection-di�usion
and convection-reaction process. Many physical prob-
lems such as sound and shock waves in viscous medium
and magnetohydrodynamic waves can be described by
Burgers equation.

This problem is solved on a mesh of 61 nodal
points with 121 distributed collocation points, 61 of
them coinciding with the nodal points and each of
the remaining collocation points is located between
two nodal points. The problem is solved on three
meshes of 0.0, 0.0078, and 0.0098 irregularity using a
time step size of 0.003. The mesh of nodes and the
corresponding results are shown in Figures 1 to 3 and
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Figure 1. Solution of steady Burgers problem on a mesh
of 0.0 irregularity (uniform mesh).

Figure 2. Solution of steady Burgers problem on a mesh
of 0.0078 irregularity.

Figure 3. Solution of steady Burgers problem on a mesh
of 0.0098 irregularity.

compared with the analytical solution at time of 0.3 s.
The results clearly show the ability of the proposed
CDLSM method to correctly capture the shock even
for highly irregular mesh of Figure 3.

Breaking of a Dam

The non-linear shallow-water equations in one dimen-
sion governing the breaking of a dam problem can be
de�ned by the following parameters of Equation 13:

u =
�
H + �

(H + �)u

�
; k = 0;

A =
�

0 1
�u2 + g(H + �) 2u

�
;

Q =
�

0
g(H + �)dH=dx

�
;

where H is the depth, � is the surface elevation, u is
the velocity, g is the acceleration due to gravity and
dH
dx = 0 is the bed slope. The breaking of a dam
is a signi�cant practical problem in civil engineering.
It is necessarily required to predict the 
uid 
ow
induced by breaking of dam for designing a dam and
its surrounding environment. Dam break 
ow is an
ideal test problem to examine the accuracy of numerical
approaches, and it can be simulated by removal of a
barrier holding a body of water at rest in numerical
simulations.

The problem of a propagating jump disconti-
nuity due to the breaking of a dam was computed
by Lonher et al. [33] using a Taylor-Galerkin �nite
element method, Carrey and Jiang [34], Zienkiewicz
and Taylor [35] and Afshar and Morgan [36] using
least square �nite element schemes. In the present
study, the initial condition of u = 0, � = 2 for
0 � x � 20 and u = 0, � = 0 for 20 < x � 40
was used. The depth H and g are assumed constant
and equal to unity. The problem is solved here
on a mesh of 81 nodal points with 321 distributed
collocation points, 81 of them coinciding with the nodal
points. The problem is solved on three meshes of
0.0, 0.22, and 0.41 irregularity using a time step size
of 0.1. The mesh of nodes and the corresponding
results are shown in Figures 4 to 6 and compared
with the results of Zienkiewicz and Taylor [35]. The
results again show that proposed CDLSM method
can handle propagating shocked solution on highly
irregular meshes.

Two-Dimensional Pure Convection Problem

Pure convection problems in 2-D can be described by
the following parameters of Equation 13:

A1(u) = A2(u) = 1;
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Figure 4. Solution of dam break equation problem at
T = 5 s on a mesh 0.0 irregularity (uniform mesh).

Figure 5. Solution of dam break equation problem at
T = 5 s on a mesh 0.22 irregularity.

Figure 6. Solution of dam break equation problem at
T = 5 s on a mesh 0.41 irregularity.

where A1 and A2 are constant coe�cient representing
the components of the velocity �eld along x and y axes,
respectively. The boundary conditions of the problem
are de�ned as:(

u = 0 x = 0; 0 � y � 1
u = 1 y = 0; 0 � x � 1

Viscosity e�ects are neglected in pure convection
problems and, therefore, the mathematical solution
of these types of problems can be sharp fronts and
discontinuities. Viscosity plays a signi�cant role to
smooth the sharp discontinuities in the real physical
phenomena.

The problem is �rst solved on a regular mesh
of 441 nodal points (�x = �y = 0:05) using 841
uniformly distributed collocation points 441 of which
coinciding with the nodal points. Figure 7 shows the
distribution of nodal points along with the contour lines
of solution obtained. This solution was obtained using
a time step size of 0.015 and � = 0:5.

The problem is also solved on two meshes with
irregularity indexes of 0.011 and 0.0195 using the
same computational parameters as used on the uniform
mesh. Again 841 collocation points are used as in
the case of uniform mesh so that the computational
e�ort is the same as that of uniform mesh. 441 of the
collocation points coincided with the nodal points and
the remaining 400 collocation points were distributed
uniformly on the computational domain. Figures 8
and 9 show the nodal distribution and the solution
contours on two irregular meshes used. The solutions
along y = 0:5 obtained using di�erent meshes are
compared in Figure 10 showing that the accuracy of
the results produced by proposed CDLSM method is
not a�ected much by the irregularity of the meshes
used.

Figure 7. Solution of pure convection problem on
uniform mesh.
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Figure 8. Solution of pure convection problem on a mesh
0.011 irregularity.

Figure 9. Solution of pure convection problem on a mesh
0.0195 irregularity.

Figure 10. Comparison of solution of pure convection
problem on di�erent meshes.

2-D Viscous Burgers Equation

2-D viscous Burgers equation can be represented by the
following parameters of Equation 13.

A1(u) = A2(u) = u; Q(u) = 0:

The exact solution of the problem is de�ned as fol-
lows [37]:

u(x; y; t) =
1

1 + e(x+y�t�0:25)=(2k) : (31)

From which the initial and boundary conditions can be
de�ned.

The computational parameters of � = 0:5, �t =
0:01 and k = 0:03 were used on three meshes of irreg-
ularity indexes 0.0, 0.02 and 0.057, respectively, to get
the solution at time t = 0:5 seconds. Figures 11 to 13
shows the contours of the solutions obtained on three

Figure 11. Solution of 2-D Burgers problem at t = 0:5 s
on a regular mesh.

Figure 12. Solution of 2-D Burgers problem at t = 0:5 s
on a mesh of 0.02 irregularity.
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Figure 13. Solution of 2-D Burgers problem at t = 0:5 s
on a mesh of 0.057 irregularity.

Figure 14. Comparison of exact and numerical solutions
obtained on di�erent meshes at t = 0:5 s.

meshes of 441 nodal points using 841 collocation points.
Once again 441 of the collocation points coincided with
the nodal points while the 400 remaining points was
considered to be uniformly distributed on the domain.
A comparison of the solutions obtained along y = 0:5
with that of exact solution is shown in Figure 14,
indicating the ability of the method to produce nearly
exact solution irrespective of the irregularity of the
meshes used.

CONCLUDING REMARKS

A fully least squares approach named Collocated Dis-
crete Least Squares Mesh-less (CDLSM) method was
used in this paper for the solution of convection-
dominated problems on irregular meshes. In this
method a fully least squares approach is used in both
function approximation and the discretization of the

governing di�erential equations. The meshless shape
functions were derived using the Moving Least Squares
(MLS) method of function approximation. The prob-
lem domain was discretized by nodal points which are
used to construct the trial function. The least square
functional is constructed using collocation points that
are basically independent of the nodal points. A study
is performed on the e�ect of irregularity of domain
discretization on the performance of the proposed
Collocated Discreet Least Square Mesh-less (CDLSM)
method. Four benchmark examples of hyperbolic
nature, namely steady nonlinear 1-D Burgers equation,
1-D dam break problem, 2-D pure convection problem
and 2-D viscous Burgers equation were solved on
three meshes of di�erent irregularity, and the results
were presented and compared with the exact solutions
where available. The results clearly indicated that the
proposed CDLSM method is able to produce highly
accurate results for hyperbolic problems even on highly
irregular meshes of nodes.
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