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Steady-State Stresses in a Half-Space
Due to Moving Wheel-Type

Loads with Finite Contact Patch

M. Dehestani1;�, A. Vafai1 and M. Mo�d1

Abstract. In this paper, the steady-state stresses in a homogeneous isotropic half-space under a
moving wheel-type load with constant subsonic speed, prescribed on a �nite patch on the boundary, are
investigated. Navier's equations of motion in 2D case were modi�ed via Stokes-Helmholtz resolution
to a system of partial di�erential equations. A double Fourier-Laplace transformation procedure was
employed to solve the system of partial di�erential equations in a new moving reference system, regarding
the boundary conditions. The e�ects of force transmission from the contact patch to the half-space
have been considered in the boundary conditions. Utilizing a property of Laplace transformation leads
to transformed steady-states stresses for which inverse Fourier transformation yielded the steady-state
stresses. Considering two types of uniform and parabolic force transmission mechanism and a comparison
between the pertaining results demonstrated that the parabolic load transmission induce lower stresses
than the uniform one. Results of the problem for various speeds of moving loads showed that the stresses
increase as the moving loads' speeds increase to an extremum speed known as CIS. After the CIS speed,
stresses' absolute values decrease for higher speeds. Eventually CIS values for homogeneous half-spaces
with di�erent material properties were obtained.
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INTRODUCTION

The importance of the transportation engineering is
intensifying due to the increase in all kinds of com-
munications. New developments in technologies are
employed to provide more facilities in transportation
engineering. Hence structures which are modeled
as half-spaces are subjected to larger moving loads
with higher speeds. Thus understanding the exact
dynamic behavior of structures subjected to moving
loads, which enhance the design and construction of
these structures, is of signi�cant interest. Dynamic
responses of simple structures such as beams and
plates, subjected to moving loads, have been inves-
tigated by many researchers. Recent investigations
for simple structures under moving loads are devoted
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to special conditions and case studies. Andersen et
al. [1] reviewed numerical methods for analysis of struc-
ture and ground vibration from moving loads. They
investigated the main theoretical aspects of analysis
of moving loads in a local coordinate system, and
addressed the steps in the �nite-element and boundary
element method formulations. They also studied, in
their work, problems in describing material dissipation
in the moving reference system.

In case studies of simple structures, identi�cation
of moving loads on bridges was investigated by Yu and
Chan [2], who provided a review on recent progresses on
identi�cation of moving loads on bridges. Yu and Chan
in their study introduced the theoretical background
of four identi�cation methods and performed numeri-
cal simulations, illustrative examples and comparative
studies on the e�ects of di�erent parameters.

Xia et al. [3] investigated the dynamic interaction
of a long suspension bridge under running trains.
They found that the dynamic responses of the long
suspension bridge under the running train are relatively
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small, and the e�ects of bridge motion on the runability
of the railway vehicles are insigni�cant.

Mehri et al. [4] presented an exact and direct mod-
eling technique based on the dynamic Green function
for modeling beam structures with various boundary
conditions, subjected to a constant load moving at
constant speed.

In
uences of the inertial loads on simple struc-
tures were investigated in many papers. Moving loads
with inertial e�ects are known as moving masses. In
this �eld, Akin and Mo�d [5] introduced an analytical-
numerical method to solve the governing partial di�er-
ential equation of the beam under a moving mass. They
ignored the e�ects of the speed of the moving load.
Dehestani et al. [6] investigated the stresses in thin-
walled �nite beams with various boundary conditions
subjected to a moving mass under a pulsating force.
They have used separation of variables method to solve
the partial di�erential equations of beams wherein the
e�ects of the speeds of moving masses were consid-
ered.

Accomplished works on the semi-in�nite regions
under moving loads are not numerous compared with
works on the in
uences of moving loads on simple struc-
tures such as beams and plates. In this �eld, Celebi
and Schmid [7] studied ground vibrations induced by
moving loads. They presented two numerical frequency
domain methods in order to analyze the propagation of
surface vibrations in the free �eld adjacent to railway
lines induced by speci�c moving loads acting on the
surface of a layered and homogeneous half-space with
di�erent material properties.

Bierera and Bode [8] presented a semi-analytical
model in time domain, for moving loads with subsonic
speeds. They obtained the vertical displacements in-
duced by moving loads with constant and time-varying
amplitudes at a �xed observation point at the surface
of the 3D half-space in time domain. The authors also
introduced a semi-analytical, discrete model based on
Green's functions for a suddenly applied, stationary
surface point load with Heaviside time dependency
to solve the non-axisymmetric, initial boundary value
problem. They compared results for the transient
and the steady-state ground motions to the analytical
solutions.

Galvin and Dominguez [9] employed a 3D time do-
main boundary element formulation for elastic solids to
evaluate the soil motion due to high-speed moving loads
and in particular, to high-speed trains. Their results
demonstrated that the boundary element approach can
be used for actual analyses of high-speed train-induced
vibrations.

In this paper, steady-state stresses in a homoge-
neous, isotropic half-space under a moving load with
constant subsonic speeds are investigated. Transmis-
sion of the load to the half-space is accomplished

through a �nite contact patch which is more realistic
and was ignored in previous studies.

MATHEMATICAL MODEL

Description of the Model

Consider a homogeneous, isotropic, elastic half-space
y � 0 with no body forces, as shown in Figure 1,
subjected to a wheel-type load with a �nite rectangular,
2a � 2b, patch. Half-space is under the action of a
load P (x; t) which is prescribed through the patch on
the surface boundary and moves at right angle to the
positive direction of axis x from in�nity to in�nity at
uniform speed V .

In Figure 1, � represents the density of the
half-space material and, � and � are Lame's elastic
constants for plane stress condition in which:

� =
E�

1� �2 ; (1)

� =
E

2(1 + �)
; (2)

where E and � are elastic modulus and Poisson's ratio,
respectively.

Governing Equations

Navier's Equation of motion for a homogeneous,
isotropic half-space with no body forces can be ex-
pressed as:

��u = �r2u + (�+ �)rr:u; (3)

where u stands for the displacement vector component.
Applying the Stokes-Helmholtz resolution to the dis-
placement �eld yields:

u = grad�+ curl ; (4)

Figure 1. Moving wheel-type load on a homogeneous,
elastic, isotropic half-space.
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where � and  are scalar and vector-valued functions,
respectively, for which on account of the de�niteness,
we should have:

 i;i = 0: (5)

Substituting Equation 4 into Equation 3 leads to the
fact that Navier's equation is satis�ed, if the functions
� and  are solutions of the wave-type equations:

r2� =
1
c21

@2�
@t2

; (6)

r2 k =
1
c22

@2 k
@t2

; (7)

where c1 =
q

�+2�
� and c2 =

q
�
� are dilatational

disturbance propagation velocity and shear waves prop-
agation velocity, respectively.

Boundary Conditions

Surface of the half-space is assumed to be subjected
to wheel-type loads. In order to investigate the force
transmission mechanism in contact patch between load
and the boundary, two types of in
uence mechanism
are considered. For the �rst case, assume that the load
Q(t) is applied uniformly on the patch for which the
traction on the surface takes the form:

P1(x; t)=
Q(t)
4ab
fH(x�V t+a)�H(x�V t�a)g; (8)

where H denotes the Heaviside function. It is much
more accurate to consider the normal force (pressure)
distribution on the contact patch to be parabolic [10].
Thus in the second case, the load Q(t) is applied
through a parabolic function to the patch. Therefore
after some manipulations the traction on the surface
would be obtained as:

P2(x; t) =
3Q(t)
8ab

 
1�

�
x� V t
a

�2
!

fH(x� V t+ a)�H(x� V t� a)g: (9)

Hence the problem is to obtain the distribution of the
stresses in a 2D elastic half-space medium with the
boundary conditions for y = 0 to be:

�22 = �Pi(x; t); (10)

�12 = 0: (11)

The other boundary conditions can be obtained from
the fact that in�nitely far into the bulk of the medium
the stresses must be vanished. Thus the functions �
and  must be obtained in such a way that all stresses
approach to zero as y tends to in�nity.

ANALYTICAL SOLUTION

Regardingthe special type of the in
uence for the mov-
ing loads on structures, it is convenient to implement
a moving reference system instead of a �xed reference
system as:8><>:� = x� V t

y = y
� = t

(12)

Thus the governing Equations 6 and 7 take the forms:

(1�k2
1V

2)
@2�
@�2 �k2

1
@2�
@�2 +2k2

1V
@2�
@�@�

+
@2�
@y2 =0; (13)

(1�k2
2V

2)
@2 
@�2 �k2

2
@2 
@�2 +2k2

2V
@2 
@�@�

+
@2 
@y2 =0; (14)

where k2
1 = c�2

1 and k2
2 = c�2

2 . In most of the applicable
cases, speeds of the surface moving loads are not higher
than c2 of that half-space. Hence in this study, it is
assumed that the speeds are in subsonic range in which
k2

2V 2 < 1.
In order to solve the system of Equations 13

and 14 as the governing equations (regarding the
boundary conditions) a concurrent Fourier-Laplace in-
tegral transformation of position and time is considered
as:

�̂�(�; y; s)=
1Z

0

1Z
�1

�(�; y; �)ei��e�s�d�d�!�(�; y; �)

=
1

4�2i

1Z
�1

s1+i1Z
s1�i1

�̂�(�; y; s)es�e�i��dsd�;
(15)

�̂ (�; y; s)=
1Z

0

1Z
�1

 (�; y; �)ei��e�s�d�d�! (�; y; �)

=
1

4�2i

1Z
�1

s1+i1Z
s1�i1

�̂ (�; y; s)es�e�i��dsd�:
(16)

Employing the concurrent Fourier-Laplace integral
transformation to Equations 13 and 14, regarding the
boundary conditions, would give rise to:

�̂�(�; y; s)=A(�; s) exp
��(k2

1(s+ iV �)2+�2)
1
2 y
�
; (17)

�̂ (�; y; s)=B(�; s) exp
��(k2

2(s+iV �)2 + �2)
1
2 y
�
; (18)

where functions A(�; s) and B(�; s) should be obtained
using boundary conditions in Equations 10 and 11.
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Equation 4 and elastic constitutive relation between
strains and stresses in elastodynamic theory yield the
transformed stresses in the 2D case as:

�̂�11(�; y; s) = 2�
�
(0:5k2

2 � k2
1)(s+ iV �)2 � �2� �̂�

+ 2�i�
�
k2

2(s+ iV �)2 + �2� 1
2 �̂ ; (19)

�̂�12(�; y; s) = 2�i�
�
k2

1(s+ iV �)2 + �2� 1
2 �̂�

+ 2�
�
0:5k2

2(s+ iV �)2 + �2� �̂ ; (20)

�̂�22(�; y; s) = 2�
�
0:5k2

2(s+ iV �)2 + �2� �̂�

� 2�i�
�
k2

2(s+ iV �)2 + �2� 1
2 �̂ : (21)

Transformed types of boundary conditions in Equa-
tions 10 and 11 and transformed stresses given by
Equations 20 and 21 for y = 0 establish a system of
equation from which functions A(�; s) and B(�; s) can
be obtained as:

A(�; s) =
� �0:5k2

2(s+ iV �)2 + �2�
2�F (�; s)

�P (�; s); (22)

B(�; s) =
i�
�
k2

1(s+ iV �)2 + �2� 1
2

2�F (�; s)
�P (�; s); (23)

where:

F (�; s) =
�
0:5k2

2(s+ iV �)2 + �2�2
��2 �k2

2(s+iV �)2+�2� 1
2
�
k2

1(s+iV �)2+�2� 1
2 : (24)

Transformed Boundary Stresses

Concurrent Fourier-Laplace integral transforms for the
boundary stresses given by Equations 8 and 9 can be
obtained by the following equation:

�̂P (�; s) =
Z 1

0

Z 1
�1

P (�; �)ei��e�s�d�d�; (25)

as:

�̂P1(�; s) =
Q̂(s)
2b

sin(a�)
a�

; (26)

�̂P2(�; s) =
3Q̂(s)

8b

�
sin(a�)
a3�3 � cos(a�)

a2�2

�
; (27)

where:

Q̂(s) = LfQ(�)g =
Z 1

0
Q(�)e�s�d�: (28)

Because of the fact that for the case of a moving object,
the length of the contact patch 2a is very small, the
evaluation of the inverse formidable integrals whose
integrands are given in Equations 19, 20 and 21 may
not be worth the e�ort. Thus it is convenient to obtain
the asymptotic expansions of Equations 26 and 27 as a
tends to zero:

�̂P1(�; s) =
Q̂(s)
2b

p1(�); (29)

�̂P2(�; s) =
Q̂(s)
2b

p2(�); (30)

where:

p1(�) = 1� a2�2

6
+
a4�4

120
+O(�6); (31)

p2(�) =
1
4
� a2�2

40
+
a4�4

1120
+O(�6): (32)

Obtaining the Steady-State Stresses

The steady-state stresses are known as the stresses after
su�ciently large time duration which takes a constant
value with respect to the time. In order to obtain the
steady-state stresses, the stresses should be evaluated
for time � tending to in�nity. To this aim, consider the
Laplace transformation for the �rst derivative of the
stresses [11]:

L
�
@�ij(�; y; �)

@�

�
=
Z 1

0

@�ij(�; y; �)
@�

e�s�d�

= sLf�ij(�; y; �)g � �ij(�; y; 0): (33)

Use of Equation 33 would lead to:

�ssij (�; y) = lim
�!1�ij(�; y; �) = lim

s!0
(s�̂ij(�; y; s))

=
1

2�
lim
s!0

Z 1
�1

s�̂�ij(�; y; s)e�i��d�: (34)

Performing the limitations in the expanded form of the
stresses yield the steady-state stresses as:

�ss11(�; y) =
q

4�b

Z 1
�1

�
C11e�j�j
1y

+D11e�j�j
2y
�
pi(�)e�i��d�; (35)

�ss12(�; y)(�; y) =
iq

4�b

Z 1
�1
j�j��1

�
C12e�j�j
1y

+D12e�j�j
2y
�
pi(�)e�i��d�; (36)
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�ss22(�; y) =
q

4�b

Z 1
�1

�
C22e�j�j
1y

+D22e�j�j
2y
�
pi(�)e�i��d�; (37)

where 
i =
p

1� �2
i , �i = kiV and pi(�) should be

substituted from Equations 31 or 32, depending on the
case. q stands for the steady-state form of the load
which is equal to:

q = lim
�!1Q(�) = lim

s!0
(sQ̂(s)): (38)

Constant parameters Cij and Dij can be expressed as:

C11 =
�(�2

1 � 0:5�2
2 � 1)(1� 0:5�2

2)
(1� 0:5�2

2)2 � 
1
2
; (39)

C12 =
�(1� 0:5�2

2)
1

(1� 0:5�2
2)2 � 
1
2

; (40)

C22 =
�(1� 0:5�2

2)2

(1� 0:5�2
2)2 � 
1
2

; (41)

D11 =
�
1
2

(1� 0:5�2
2)2 � 
1
2

; (42)

D12 =
(1� 0:5�2

2)
1

(1� 0:5�2
2)2 � 
1
2

; (43)

D22 =

1
2

(1� 0:5�2
2)2 � 
1
2

: (44)

The integrations in Equations 35, 36 and 37 can be
carried out, concerning the identities:Z 1

0
�2m cos(��)e�
iy�d� = I(m)

i (�; y) cos(m�); (45)

Z 1
0

�2m sin(��)e�
iy�d� = J (m)
i (�; y) cos(m�); (46)

where m = 0; 1; 2; � � � and:

I(m)
i (�; y) =

@2m

@�2m

�

iy


2
i y2 + �2

�
; (47)

J (m)
i (�; y) =

@2m

@�2m

�
�


2
i y2 + �2

�
: (48)

Hence �nal expressions for the steady state stresses
in the half-space for the two cases introduced in the
previous sections can be obtained as:

Case 1:

�ss11(�; y) =
q

2�b

�
C11

�
I(0)
1 � a2

6
I(1)
1 +

a4

120
I(2)
1

�
+D11

�
I(0)
2 � a2

6
I(1)
2 +

a4

120
I(2)
2

��
; (49)

�ss12(�; y)(�; y)=
q

2�b

�
C12

�
J (0)

1 � a
2

6
J (1)

1 +
a4

120
J (2)

1

�
+D12

�
J (0)

2 � a2

6
J (1)

2 +
a4

120
J (2)

2

��
; (50)

�ss22(�; y) =
q

2�b

�
C22

�
I(0)
1 � a2

6
I(1)
1 +

a4

120
I(2)
1

�
+D22

�
I(0)
2 � a2

6
I(1)
2 +

a4

120
I(2)
2

��
: (51)

Case 2:

�ss11(�; y) =
q

2�b

�
C11

�
1
4
I(0)
1 � a2

40
I(1)
1 +

a4

1120
I(2)
1

�
+D11

�
1
4
I(0)
2 � a2

40
I(1)
2 +

a4

1120
I(2)
2

��
;

(52)

�ss12(�; y)(�; y)

=
q

2�b

�
C12

�
1
4
J (0)

1 � a2

40
J (1)

1 +
a4

1120
J (2)

1

�
+D12

�
1
4
J (0)

2 � a2

40
J (1)

2 +
a4

1120
J (2)

2

��
; (53)

�ss22(�; y) =
q

2�b

�
C22

�
1
4
I(0)
1 � a2

40
I(1)
1 +

a4

1120
I(2)
1

�
+D22

�
1
4
I(0)
2 � a2

40
I(1)
2 +

a4

1120
I(2)
2

��
:

(54)

NUMERICAL EXAMPLE

Consider an isotropic, homogeneous semi-in�nite re-
gion, shown in Figure 1, with � = 50 MPa, � = 0:33
and � = 2000 kg/m3, subjected to a moving load of
20 KN with constant speeds and prescribed on a patch
with 2a = 0:08 m and 2b = 0:2 m.

Steady-state stresses with respect to the position
of the moving load � for constant depth of y = 0:5 m
and constant speed of V = 0:3 k�1

2 , in Cases 1 and
2, have been evaluated and are shown in Figures 2
and 3, respectively. A comparison between the values
of the stresses in two cases demonstrates that the
half space experiences higher stresses when the load
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Figure 2. Variations of stresses at y = 0:5 m with respect
to the position of a moving load with V = 0:3k�1

2 in
Case 1.

is prescribed uniformly on the �nite patch, compared
with the case in which the load is prescribed in the
parabolic form. This shows the importance of the
circumstance in which the load is prescribing on the
half-space boundary.

Figures 4 and 5 show the variations of stresses
with respect to various depths in the half-space for
points under the moving load, � = 0, and constant
speed of V = 0:3 k�1

2 . Results demonstrated that the

Figure 3. Variations of stresses at y = 0:5 m with respect
to the position of a moving load with V = 0:3k�1

2 in
Case 2.

stresses decay quickly with increase in the depth. It
should be noted that for � = 0, the shear stresses in
two cases should be vanished due to the symmetry of
the problem de�nition.

Figures 6 and 7 show the variations of the stresses
for the point with coordinates (�; y) = (0; 0:5) sub-
jected to moving loads with various subsonic speeds
in two cases. Results demonstrate that the stresses
increase as the moving loads' speeds increase to an
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Figure 4. Variations of the stresses for � = 0 at various
depths in the half space subjected to a moving load with
V = 0:3k�1

2 in Case 1.

Figure 5. Variations of the stresses for � = 0 at various
depths in the half space subjected to a moving load with
V = 0:3k�1

2 in Case 2.

Figure 6. Variations of the stresses for the point with
coordinates (�; y) = (0; 0:5) subjected to moving loads
with various subsonic speeds in Case 1.

Figure 7. Variations of the stresses for the point with
coordinates (�; y) = (0; 0:5) subjected to moving loads
with various subsonic speeds in Case 2.
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Figure 8. CIS values for various k2=k1.

extremum speed. As shown in Figures 6 and 7, after
the extremum speed, stresses' absolute values decrease
for higher speeds. The extremum speed is equivalent to
the Critical In
uential Speed (CIS) which is introduced
in [12]. CIS which should be less than k�1

2 can be
obtained from the solutions of the following equation:�

1� 0:5k2
2(CIS)2�2

�
q

(1� k2
1(CIS)2) (1� k2

2(CIS)2) = 0: (55)

Solution of Equation 55 for various half-space materials
with di�erent k1 and k2 values are shown in Figure 8.
This �gure demonstrates that with increase in the
Poisson's ratio, the critical in
uential speeds approach
to a �nite limit.

CONCLUDING REMARKS

An analytical approach has been used to obtain the
steady-state stresses in a homogeneous, isotropic half-
space subjected to a moving load with a �nite contact
patch. To this aim, a concurrent double integral
transformation was employed to solve the system
of wave-type equations pertaining to the Navier's
equation of motion. A comparison between two
types of the load transmission in the contact patch
demonstrated that a parabolic load transmission in-
duce lower stresses compared with its corresponding
uniform load transmission. Half-space experiences
higher stresses for higher speeds of the moving loads
until reaching to an extremum speed known as CIS.
After the critical in
uential speed, the absolute values
of the stresses decrease for higher speeds. Obtain-
ing the CIS values for di�erent half-space materials
showed that the CIS values increase as the ratio
between the dilatational disturbance propagation ve-

locity and propagation velocity of shear waves, c1=c2,
increases.
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