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A Shortest Path Problem in an
Urban Transportation Network Based

on Driver Perceived Travel Time

H. Ramazani1, Y. Shafahi1;� and S.E. Seyedabrishami1

Abstract. This paper proposes a method to solve shortest path problems in route choice processes when
each link's travel time is a fuzzy number, called the Perceived Travel Time (PTT). The PTT is a subjective
travel time perceived by a driver. The algorithm solves the fuzzy shortest path problem (FSPA) for drivers
in the presence of uncertainty regarding route travel time. For congested networks, the method is able to
�nd the shortest path in terms of perceived travel time and degree of saturation (congestion) along routes
at the same time. The FSPA can be used to support the fuzzi�cation of tra�c assignment algorithms. The
applicability of the resulting FSPA for the tra�c assignment was tested in conjunction with incremental
tra�c loading and was applied to a large-scale real network. The results of the tra�c assignment based on
the FSPA, User Equilibrium (UE) and a stochastic loading network model (Dial's assignment algorithm)
were compared to the observed volume for certain links in the network. We conclude that the proposed
method o�ers better accuracy than the UE or Dial's assignment algorithm for the network under testing.
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INTRODUCTION

An important consideration in the route choice pro-
cess for urban transportation networks is how drivers
perceive link travel time and �nd the appropriate
path to their destination based on path travel time.
Traditional assignment algorithms (e.g. incremental
assignment or User Equilibrium (UE)), assume that
all drivers experience the same link travel time. In
reality, this is not the case, because drivers may have
di�erent perceptions of travel time for a particular
path. Another assumption behind traditional assign-
ment algorithms is that each individual uses a single
value for travel time. For a more realistic description of
the problem, this assumption can be disregarded when
one knows that the tra�c demand and consequently
the volume of each link are stochastic in nature or that
an unexpected event may in
uence a link's travel time.
The variation in tra�c volume in conjunction with
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the degree of saturation and unexpected events may
a�ect the driver's perception of travel time. Generally
a driver's perception of link travel time arises from
his/her experience in previous route choice scenarios
between the same origin and destination.

Many studies have been carried out on travel
time uncertainty in route choice. Two di�erent meth-
ods are applicable to model travelers' choices under
uncertainty. One uses a probabilistic choice model
that is often based on utility functions. The other
method, discussed in this paper, makes use of fuzzy
logic. Fuzzy logic is a powerful technique used for
considering uncertainties related to human perception
in modeling contexts. Here, we establish an innovative
fuzzy de�nition for Perceived Travel Time (PTT) using
membership functions and the route choice process.
Also, a Fuzzy Shortest Path Algorithm (FSPA) based
on a labeling procedure is proposed for application to
tra�c assignments in an urban transportation network
in which a PTT is assigned to each link.

A great deal of recent research has attempted to
use fuzzy concepts to solve the shortest path problem.
The most recent papers addressing the fuzzy shortest
path problem include those by Chang and Lee (1999)
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who used an overall existence ranking index to assign
di�erent types of status (optimistic, pessimistic or
neutral person) to drivers [1], and Okada and Soper
(2000) who introduced an order relation between fuzzy
numbers based on the concept of a fuzzy minimum [2].
In another paper, Okada (2004) considered interactiv-
ity among fuzzy numbers assigned to arc length by
de�ning a new comparison index [3]. Blue et al. (2002)
formulated several standard graph-theoretic problems
(shortest path and minimum cut) for fuzzy graphs
using a uni�ed approach that is distinguished by its
uniform application of guiding principles, such as the
construction of membership grades via the ranking
of fuzzy numbers etc. [4]. Chuang and Kang (2005)
assigned a fuzzy set with a triangular membership func-
tion to each arc length and proposed a new algorithm
to deal with the fuzzy shortest problem [5]. They
also proposed a heuristic procedure to �nd the Fuzzy
Shortest Path Length (FSPL), among all possible paths
in a network, based on the idea that a crisp (non-fuzzy)
number is a minimum if, and only if, any other number
is larger than or equal to it. They then proposed a
way to measure the degree of similarity between the
FSPL and each fuzzy path length. The path with
the highest degree of similarity was chosen as the
shortest path. Moazeni (2006) de�ned an order relation
between fuzzy quantities with �nite support [6]. Ji
et al. (2007) considered di�erent decision criteria to
specify the shortest path in a fuzzy environment and to
solve the model using hybrid intelligent methods. The
hybrid intelligent methods included a combination of
simulations and a genetic algorithm [7]. Hernandes et
al. (2007) proposed an iterative algorithm that uses a
generic ranking index for comparing the fuzzy numbers
involved in the problem, in such a way that each time
the decision-maker wants to solve a concrete problem,
(s)he can choose (or propose) the ranking index that
best suits that problem [8].

Some studies have used fuzzy theory in route
choice contexts to address behavioral characteristics.
The most important studies are by the following au-
thors: Teodorovic and Kikuchi who proposed [9] an ap-
proximate reasoning model used for tra�c assignment
between two alternative routes on a highway network;
Murat and Uludag [10] who compared a fuzzy logic
model with a linear regression model to show how
the application of fuzzy logic to de�ning link travel
times increases route choice accuracy; and Binetti and
De Mitri [11] who used fuzzy numbers to represent
the imprecision in path costs for a road network.
Additionally, Binetti and De Mitri utilized the method
of successive averages to generate user equilibrium

ows in a simple network. The model yielded realistic
results. Finally, Arslan and Khisty [12] presented a
heuristic way of handling fuzzy perceptions and used
the Analytical Hierarchy Process (AHP) to explain

route choice behavior in transportation systems. This
method provided intuitive and promising results.

In comparison to those mentioned above, the
present study demonstrates a fuzzy de�nition of PTT
by developing the route choice process using a shortest
path algorithm. The algorithm utilizes a labeling
procedure in an urban transportation network with
perceived fuzzy travel time. The proposed FSPA is
de�ned in such a way that it can easily be used in fuzzy
assignment algorithms. The criterion used in this paper
to compare link travel times as fuzzy numbers is more
consistent with the actual route choice process.

In the next section, the method of formulating
a PTT using fuzzy sets is described. After that,
a route choice decision-making process is presented
followed by the FSPA. The results for a real network
are shown in the subsequent section and the conclusions
are presented in the last section.

PTT DEFINITION AND CONCEPTS

Generally, there are two kinds of uncertainty. The �rst
type of uncertainty is derived from the imprecision that
is inherent in taking measurements or surveys, which
can be a�ected by unpredicted events (e.g. an acci-
dents or weather conditions) or demand 
uctuations.
The second type is linked with human perception.
According to the work of Zadeh [13,14], probability
theory is very useful for dealing with the uncertainty
inherent in measurements; however, it is not very
useful for dealing with the uncertainty associated with
human perceptions. The former involves crisp sets,
while the latter involves fuzzy sets [15]. Because PTT
uncertainty is derived from human perceptions, it is
more useful to use fuzzy concepts when considering the
uncertainty in drivers' deductions for PTT.

Although many researchers have attempted to
determine travel time uncertainty using fuzzy concepts,
no distinct process has been applied to fuzzy tra�c
assignment models to build and de�ne Membership
Functions (MF) [16]. In fact, the de�nition of a
MF in existing fuzzy models is not well-constructed.
Generally, a triangular MF is used for the PTT to
simplify the computation process. The triangular MF
has three speci�cation parameters: the MF center, the
right limit, and the left limit. The PTT MF center
denotes the most common travel time of a link. The
right limit is associated with the highest possible travel
time. The left limit is associated with the minimum
possible travel time. Typically, the computed travel
time of a link based on its assigned volume is assumed
to be the center of the PTT MF for that link.

To de�ne the left and right limits of the MFs
in this work, a method is proposed that re
ects the
tra�c state of each link. Basically, this method
assumes that the volume of each link varies from day
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to day. This variation causes di�erences in travel time
and consequently users have a set of travel times in
mind. The PTT is modeled using fuzzy numbers. The
assumption of variable volumes for each link is not
unique for this study, as it is also used in probabilistic
tra�c assignment, where link volume is a random
variable [17]. The method assumes that the volume of
each link varies between a lower and an upper bound
that are (1��l) and (1 +�r) times the most observed
volume (i.e. the volume assigned to the link within
the assignment steps), respectively (�l and �r are two
numbers specify a lower and upper bound for link
volume, respectively). As shown in Figure 1, the PTT
is assumed to have a triangular membership function.
The left and right limits of the PTT MF correspond to
the travel times of the lower and upper bounds of the
volume, respectively. As mentioned earlier, the travel
time for the most observed volume is the center of the
PTT MF. Hence, knowing (�l), (�r) and the volume
assigned to the link, the PTT MF can be constructed.
The PTT triangular membership function parameters,
~t, are the left, center and right limits of the PTT
membership function and are denoted as tl, tc, tr,
respectively. Function t[x] calculates the link travel
time as a function of the link tra�c volume shown by x.

The speci�cation parameters of the triangular MF
(i.e. the left, center and right limits shown in Figure 1)
are highly dependent on the problem at hand. These
parameters can be calculated by comparing the results
of the tra�c assignment used in the PTT MF, shown
in Figure 1, to the volume of the observed links. A
computational procedure for the estimation of � is
suggested in the PTT application section using a real
network assignment algorithm. However, a PTT MF
can also be determined through use of questionnaires
that ask drivers for their PTT for a speci�c link, but
in this paper, no PTT data are available.

The PTT MF for each path is computed using the
fuzzy summation of the PTT MFs for all links. One of
the advantages of triangular MFs over other types of
(non-linear) fuzzy numbers is that there is a closed form
for the summation of these numbers. For example, the

Figure 1. PTT MF shape and parameters.

PTT MF for path K is calculated as follows:

~tK =

 X
a2K

ta[(1� �l)xa];
X
a2K

ta(xa);

X
a2K

ta[(1 + �r)xa]

!
; (1)

where:

~t: PTT for route k,
ta[xa]: Link a travel time as a function of link a

tra�c volume
xa: Link a tra�c volume,
�l, �r: Coe�cients of the observed tra�c volume

specifying the tra�c volume lower and
upper bounds, respectively.

The advantage of constructing the MF in this manner
is that it takes the degree of saturation of a link
into consideration as an important factor in path
assignment. Two links with the same fuzzy travel time
center will not have equal right and left limits when
their degrees of saturation di�er. Because the fuzzy
travel time center is the same as the travel time for
the UE, it means that this method of MF construction
incorporates the e�ect of congestion in route choice,
unlike the UE algorithm. Then, one may ask the
question: \What is the relationship between congestion
and the value of the right and left limit?" In order to
answer this question, two links with the same travel
time and di�erent degrees of saturation were analyzed.
It is assumed that link travel time follows the Bureau
Public Roads (BPR) function. The general form of the
BPR function is:

t(x) = t0
�
1 + �

� x
C

���
; (2)

where x = link volume, C = link capacity, t0 = free-

ow link travel time, and t(x) = �nal travel time.

Suppose links \a" and \b" have equal travel times
(ta = tb) and that Xb < Xa (where Xi is the degree of
saturation for link \i"), then, according to Equation 2
the following equations can be constructed:

t0a

"
1 + �

�
xa
Ca

��#
= t0b

"
1 + �

�
xb
Cb

��#
: (3)

Substituting Xa = xa
Ca and Xb = xb

Cb into Equation 3
gives:

t0b � t0a = t0a:�:(X
�
a )� t0b :�:(X�

b ): (4)

If t0a < t0b , then according to Equation 4:

t0b � t0a = t0a:�:(X
�
a )� t0b :�:(X�

b ) > 0: (5)
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If the left side of Equation 5 is multiplied by a positive
number (1 + �r)�(> 0),

t0b � t0a < (1 + �r)� � bt0a:�:(X�
a )� t0b :�:(X�

b )c; (6)

) t0b + (1 + �r)� � bt0b :�:(X�
b )c < t0a + (1 + �r)�

� bt0a:�:(X�
a )c; (7)

) t0bb1 + (1 + �r)� � �� (X�
b )c

< t0ab1 + (1 + �r)� � �� (X�
a )c: (8)

According to Equations 2 and 4, Equation 8 will change
to the following:

) tbb(1 + �r)(Xb)c < tab(1 + �r)(Xa)c: (9)

The above computation proves that the right limit of
the PTT MF of link \a" is bigger than the right limit
of link \b", because the degree of saturation of link \a"
is bigger than that of link b; however, the center of
the PTT MF for both links is equal. Because other
travel time functions use similar concepts, this proof
is approximately true for other cases. Following this
reasoning, it can be proven that the left limit of the
PTT MF for link \a" is smaller than that of link \b".

ROUTE CHOICE DECISION-MAKING
PROCESS

To choose the best path, the PTT values of all possible
choices should be compared. The next issue is choosing
an appropriate operator to rank fuzzy numbers. In this
paper, Dubois and Prade's method for ranking fuzzy
numbers using the possibility theory [18] is utilized.
Their method is used to compare PTTs between a
distinct origin and destination for di�erent paths and
to select the best path. For comparison, Dubois
and Prade used both the possibility and the necessity
theory. Supposing that \M" and \N" are two fuzzy
numbers de�ned by two triangular MFs, Dubois and

Prade de�ned four indices:

I1(M) = Poss (M � N);

I2(M) = Poss (M < N);

I3(M) = Nec (M � N);

I4(M) = Nec (M < N): (10)

Poss and Nec stand for possibility and necessity, re-
spectively. Schematic de�nitions of these indices are
shown in Figure 2.

As Figure 2 illustrates, I1(M) is the intersection
point of [N;+1) and the left side of \M"'s MF.
More details about these indices are described in
Henn [19].

The question may then arise as to \which of these
indices is appropriate for the purpose of the shortest
path when PTT is assigned to each link?" First of all,
this index should discriminate between a fuzzy number
(uncertainty) and a crisp number (certainty), otherwise
the use of fuzzy numbers instead of deterministic travel
time is meaningless. To see which of these indices
has the above trait, some investigation is needed.
For example, two fuzzy numbers \M" and \N" that
represent the travel times on two parallel paths are
compared. As shown in Figure 3, \N" is a singleton
fuzzy number (displayed as line \bd"), and \M" is
a fuzzy number with a triangular MF (displayed as
triangle \acd").

The four indices for these two sample fuzzy
numbers are as follows:

I1(M) = I1(N) = 1;

I2(M) = I3(N) = 1;

I3(M) = I2(N) = 0;

I4(M) = I4(N) = 0: (11)

Based on the indices I1 and I4, there is no di�erence
between M and N ; however, indices I2 and I3 indicate
that these two fuzzy numbers are di�erent. This means
that I1 and I4 do not take any uncertainty into account.

Figure 2. Schematic de�nitions of dubois and prade indices [18].
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Yet, the aim of the fuzzy de�nition of PTT is to
consider uncertainties, thus, these two indices do not
meet our purpose.

The path with a PTT of \N" has a speci�c
travel time, but the travel time of the other path
with a PTT of \M" is uncertain. Path N is the best
choice for a risk-averse driver; however, the path with
uncertainty in travel time, M , is the best choice for a
risk-seeking driver. The risk-seeking driver thinks that
it is advantageous to reduce travel time by selecting the
uncertain path, because by taking route M , there is the
possibility that travel time will be less than route N .
The risk-averse driver does not take the risk and selects
path N to avoid potential excessive travel time in route
M . Regarding this kind of behavior for risk-seeking and
risk-averse users, I2 and I3 are appropriate for these
drivers, respectively, because in the system of I2, M is
the best choice and based on I3, N is better than M .
As a result, indices I1 and I4 only consider expected
travel time (the center of the PTT MF); however,
the other two indices I2 and I3 also account for PTT
uncertainties and are, respectively, appropriate for risk-
seeking and risk-averse drivers. Henn points out how
the indices are sensitive to some parts of the MFs [19].
Figure 4 indicates that index I2 is used to compare
the left sides of the MFs and I3 is used to compare

Figure 3. Fuzzy numbers \M" and \N".

Figure 4a. E�ective MF parts based on index I2.

Figure 4b. E�ective MF parts based on index I3.

the right sides. This is intuitive when one knows that
risk-averse decision makers choose an alternative in
a pessimistic manner and use the right part of cost
MFs in making their decision. Similarly, risk-seeking
decision makers make choices based on the left part of
the cost MF.

In reality, if a path's PTT uncertainty increases,
then the proportion of tra�c using this path de-
creases [16]. Because I3 describes a person who avoids
uncertainty at the right part of travel time MF, it turns
out that the index I3 can be appropriately used to
compare the PTT MFs of certain paths in order to
select the best one.

A combination of index I3 and the way a MF
is constructed will eventually lead to a case in which
drivers choose, from between two links, the link with
a lower degree of saturation when the expected travel
times (centers of the MF) are equal for both. According
to the PTT MF de�nition in the previous section,
if two links have equal expected travel times (i.e.
the same center value in their MFs) but di�erent
degrees of saturation, then the links' MF limits will be
di�erent. The link with the higher degree of saturation
has a lower left limit and a higher right limit. On
the other hand, a person who is in the I3 category
will not prefer the choice with the higher right limit
or, in other words, the link with higher degree of
saturation, when the expected travel times are the
same. For a person with an I2 index, the path with
more congestion is preferable; therefore, this is another
indication that the I3 index should be used for the
purpose of shortest path determination in a congested
network.

Although I3 is selected for use in the FSPA for a
network with congestion, the FSPA is also applicable
to a risk-seeking individual; therefore, the values of
indices I2 and I3 for two triangular fuzzy numbers
are computed. Suppose that M = (mL;m;mR) and
N = (nL; n; nR) are two fuzzy numbers. According to
Figure 2, I2(M) is the cross-point of (�1; N [ and the
left side of the \M" MF. The membership degree of
(�1; N [ and left side of the \M" MF are determined
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as follows:

�(�1;N [ =

8><>:1 if x � nL
n�x
n�nL if nL < x < n
0 if x � n

(12)

�M (x < m) =

(
0 if x < mL

x�mL
m�mL if mL < x < m

(13)

Index I2 is computed as follows:

I2(M) =
n�mL

(m+ n)� (mL + nL)
: (14)

Similar to the above computation, the values of index
I3 for \M" and \N" are determined as follows:

I3(M) =
nR �m

(mR + nR)� (m+ n)
: (15)

It is assumed that when the indices for the two fuzzy
numbers \M" and \N" are equal, \M" and \N" are
also equivalent. For example, if I2(M) = I2(N), then
based on the value of index I2, \M" is as preferable as
\N". For two fuzzy numbers, \M" and \N", we also
have [19] the following:

I2(M) + I2(N) = 1;

I3(M) + I3(N) = 1: (16)

Thus, we can say that if \M" and \N" are equivalent,
then:

I2(M) = I2(N) = 0:5;

and:

I3(M) = I3(N) = 0:5:

Based on the index de�nitions, if the left side cross-
point of \M" and \N" is equal to 0.5, then the two
numbers are also equivalent by index I2. A similar
deduction for the right cross-point of \M" with \N" is
true for index I3. Figure 5 shows the MFs of \M" and
\N" for the two situations.

So far, I3 has been selected for the comparison
of fuzzy numbers, the numerical value of I3 has been
computed for a general case, and it was shown that this
index takes the degree of saturation in route choice into
consideration when expected travel times of the routes
are equal. The rest of this section describes how I3
a�ects the PTTs of several parallel paths where both
the degree of saturation and expected travel time of the
routes are di�erent. To accurately identify how index
I3 is used to compare di�erent MFs, an example is
presented. Consider Figure 6, which shows the right

Figure 5a. Two equivalent fuzzy numbers based on index
I2.

Figure 5b. Two equivalent fuzzy numbers based on index
I3.

sides of the MFs for four fuzzy numbers A, B, C,
and D. Despite their di�ering right limits, these fuzzy
numbers are considered equal based on I3, because the
cross point of the right hand sides of these MFs is the
same and equal to 0.5.

However, the expected travel time (MF center)
and the travel time uncertainty (the MF right limit)
increase and decrease, respectively, as one examines the
MFs for \A" to \D" sequentially. It is obvious that I3
simultaneously takes into consideration the expected
travel time and uncertainty in the risk-averse situation
when comparing two fuzzy numbers.

The computational view of two equivalent fuzzy
numbers based on I3 is as follows.

Using Equations 15 and 16, we can compute
I3(N):

Figure 6. Four equivalent fuzzy numbers based on I3.
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I3(N) = 1� I3(M) = 1� nR �m
(mR + nR)� (m+ n)

=
mR � n

(mR + nR)� (m+ n)
: (17)

Two given fuzzy numbers \M" and \N" are equivalent,
if I3(M) = I3(N), therefore, the following holds:

I3(M) = I3(N), nR �m
(mR + nR)� (m+ n)

=
mR � n

(mR+nR)�(m+n)
,nR+n=mR+m:

(18)

Similar to the above reasoning, we can also say, based
on I3, that \N" is less than \M" if and only if nR+n <
mR +m.

FUZZY SHORTEST PATH ALGORITHM
(FSPA)

The proposed FSPA is similar to the Dijkstra algo-
rithm, which uses a labeling procedure [20]. The FSPA
is capable of �nding the shortest path in an urban
transportation network, in which the PTT is a fuzzy
number assigned to each link.

The FSPA uses the I3 index described in the
previous section to compare parallel link PTTs and to
choose the shortest path. First, it is necessary to de�ne
the FSPA parameters:

V = the set of all nodes,
S = the set of labeled nodes,
�S = the set of unlabeled nodes,
~�(zv) = the fuzzy length (fuzzy travel

time) of link (z; v),
~d(v) = the fuzzy length from the origin to

the node v (current node),
l(v) = the node before v in the shortest

path from the origin (previous
node),

i = algorithm step counter,
T = the tree Graph from s,
s = the origin,
zi = (i+ 1)th labeled node,
neighbor(zi) = the set of nodes that connect to

node zi with only one link.

The algorithm is as follows:

Step 1- Initialization:

Set:
~d(s) = (0; 0; 0); S = fsg;
�S = V � fSg; z0 = s; i = 0:

Set:

~d(v) =1; l(v) = s; 8v 6= s:

Step 2- Update S, �S and ~d(v):
2-1- ~d(v) = minf ~d(v); ~d(zi) + ~�(ziv)g

8v 2 �S \ neighbor(zi):

If:

~d(v) = ~d(zi) + ~�(ziv);

then:

l(v) = zi:

2-2- Find zi+1 such that:

min
v2Sf ~d(v)g = ~d(zi+1):

2-3- S = S [ fzi+1g, �S = �S � fzi+1g.
Step 3- If i = n � 1 stop, else i = i + 1 and go to
step 2.

Note: The function min computes the minimum of the
fuzzy numbers according to index I3.

There are two points that need to be made about
this algorithm if we intend to use it to �nd the solution
for a network with fuzzy travel time. First, all links
coming to a labeled node, except for the shortest, will
be ignored in future steps. For example, take the
sample network shown in Figure 7 in which node \A"
is a labeled node, and assume that link \1" travel time
is less than link \2" travel time.

Using the conventional Dijkstra algorithm, which
has a deterministic travel time for each link, we might
claim that link \2" is ignored until the end of the
algorithm because we can easily show that the shortest
path from origin \O" to destination \D" does not
contain link \2". This characteristic should also hold
true for routes with a fuzzy travel time and a triangular
MF to ensure that the labeling algorithm gives the
best path between each origin and destination. Sec-
ond, the proposed FSPA similar to those from other
references [1,17] assumes that users include a shared
link's travel time in the total travel time of a path when

Figure 7. Routes from origin \O" to destination \D".



292 H. Ramazani, Y. Shafahi and S.E. Seyedabrishami

Figure 8. Routes from origin \O" to destination \D"
with a shared link.

comparing all paths between an origin/destination
pair. For example, consider the network shown in
Figure 8.

It seems that in reality users only compare routes
based on the unique links within the routes. In other
words, shared links should not have any e�ect on the
�nal decision. According to the above example, this
means that a driver chooses the shortest path from \O"
to \D" by comparing the travel time of the possible
routes and ignoring link \AB" because it is commonly
shared by all routes from \O" to \D". However, in
Dijkstra's shortest path algorithm, the total travel time
from origin to destination is computed at each step
and includes the time spent in shared links for all
routes. The shortest path obtained by users (when not
considering shared links) and the Dijkstra algorithm
will be the same if the travel time is assumed to be
deterministic, however, in fuzzy circumstances, this
result should be further reviewed.

In order to show that the above two points hold
true under fuzzy circumstances, it is su�cient to prove
that if fuzzy travel time \A" is less than \B", then the
summation of \A" with another fuzzy number, such as
\C", is also less than the sum of \B" and \C". In other
words, the following relationship (Lemma 2) should be
proven:

A � B , A+ C � B + C: (19)

It is possible to prove that this relationship is true when
the I3 index is used to compare fuzzy travel times.
Before presenting the proof for Lemma 2, we need to
�rst prove Lemma 1.

Lemma 1

The alternative \A1" is the best alternative between n
alternatives if, and only if, I3(A1) � 0:5.

Without a loss of generality, assume that the best
alternative corresponds to the shortest path.

Proof
Proof by contradiction:

(a) Suppose that \A1" is the best alternative, but
I3(A1) < 0:5 (contradiction hypothesis). I3(A1)
is equal to:

minfN(A1 � A2); N(A1 � A3); � � � ;
N(A1 � Ai); � � � ; N(A1 � An)g:

According to the contradiction hypothesis, at
least one alternative like \Ai" exists, such that:

I3(A1) = N(A1 � Ai) < 0:5: (20)

Because:

N(A1 � Ai) +N(Ai � A1) = 1;

then:

N(A1 � Ai) = 1�N(Ai � A1) < 0:5

)N(Ai�A1)>0:5>N(A1�Ai): (21)

The above equation shows that there is an al-
ternative named \Ai" that is better than \A1".
This result is in clear contradiction with the �rst
hypothesis, so that the contradiction hypothesis
is invalid.

(b) Conversely, suppose I3(A1) � 0:5 but the alter-
native, \A1", is not the best alternative (contra-
diction hypothesis). Thus there is an alternative
with i 6= 1, such that \Ai" is the best alternative.
Therefore:

N(Ai � A1) > 0:5) N(A1 � Ai) < 0:5: (22)

We know that:

I3(A1) = minfN(A1 � A2); N(A1 � A3);

� � � ; N(A1�Ai); � � � ; N(A1�An)g; (23)

I3(A1) = N(A1 � Ai) < 0:5: (24)

Therefore, I3(A1) < 0:5. This result is in clear
contradiction to the �rst assumption (I3(A1) �
0:5), so it follows that the alternative, \A1", is
the best one.

Figure 9 clari�es Lemma 1. If A2 shifts to
the left on the X-axis, then I3 will decrease and,
when I3(A1) < 0:5, the fuzzy number, A2, will be
smaller than A1.

Figure 9. Illustration of I3(A1) comparing A1 and A2.
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Now, Equation 19 can be proven using the result from
the lemma above.

Lemma 2

If \A", \B" and \C" are three fuzzy numbers with a
triangular MF, then the following relation is true for
index I3:
A � B , A+ C � B + C: (25)

Proof
(a) A � B ) A+ C � B + C

The fuzzy numbers are shown as:

A = (aL; a; aR); B = (bL; b; bR);

C = (cL; c; cR):

It is known that:

N(A � B) =
bR � a

(aR + bR)� (a+ b)
� 0:5: (26)

It should be shown that:
N(A+ C � B + C)

=
(bR + cR)� (a+ c)

(aR+bR+2cR)� (a+b+2c)
�0:5: (27)

Rewriting Equation 26 yields:

N(A � B) =
bR � a

(aR + bR)� (a+ b)
� 0:5

) (bR � a) � 0:5

� [(aR + bR)� (a+ b)]: (28)

If we add the value (cR � c) to both sides of
Equation 28, we obtain:

(bR � a) + (cR � c) � 0:5

� b(aR + bR)� (a+ b)c+ (cR � c)) (29)

) (bR + cR)� (a+ c) � 0:5

� b(aR + bR + 2cR)� (a+ b+ 2c)c )
(30)

) (bR + cR)� (a+ c)
(aR + bR + 2cR)� (a+ b+ 2c)

� 0:5: (31)

(b) A+ C � B + C ) A � B.

Because all of the above relationships are re-
versible, the inverse argument is simply proven.
The proof is illustrated in Figure 10.

Finally, we should prove that the proposed FSPA
truly �nds the shortest path.

Proof of FSPA Truth

To show that the FSPA outcome is correct, we need
to prove that ~d(zi+1) is the shortest path with a fuzzy
travel time from s to zi+1. The induction method and
contradiction are used to prove the algorithm. In the
�rst step of the FSPA, the shortest path between s
and s (which is zero) is obtained. Now, suppose in
a middle step that the length of the shortest path
from s to all nodes, available from V � �S, has been
obtained and that zi+1 is a node labeled at the i + 1
step. The contradiction hypothesis shows that the
minimum perceived travel time is not equal to the
one obtained for the zi+1 node at the i + 1 step. In
other words, in the true shortest path from the origin
to zi+1 there is a node, say v, which has not yet
been labeled. The mathematical translation of the
contradiction hypothesis is below:

Nb ~d(v) + ~�(vzi+1) � ~d(zi+1)c > 0:5: (32)

Because a link travel time cannot be negative, we can
write:

N [(0; 0; 0) � ~�(vzi+1)] � 0:5:

Using the Lemma 2 result, we can write:

Nb ~d(v) � ~d(v) + ~�(vzi+1)c � 0:5: (33)

The contradiction hypothesis and Equation 33 result
in:

Nb ~d(v) � ~d(zi+1)c > 0:5: (34)

On the other hand, because zi+1 has been labeled
before v:

Nb ~d(zi+1) � ~d(v)c > 0:5: (35)

The two last equations (Equations 34 and 35) are in
clear contradiction, so the contradiction hypothesis is
invalid.

FSPA APPLICATION FOR A REAL
NETWORK

The FSPA was applied to tra�c assignment on a real-
world large-scale transportation network in Mashhad,
one of the largest cities in Iran. Mashhad city is divided
into 141 tra�c zones and it has a street network with
935 nodes, 2538 links and 7157 origin-destination pairs
with non-zero observed demand. An origin-destination
survey was conducted through at-home interviewing.
Data were gathered from 4% of the households and
validated through the observation of several screen lines
in the study area. The tra�c volume for 118 links was
recorded as part of the data gathering e�ort [21].
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Figure 10. Illustration of Lemma 2.

The FSPA was implemented in a computer pro-
gram using C++ language and run on a computer
with a Pentium 4, 1.80GHz Central Processing Unit
(CPU) PU and 512 megabytes (MB) of computer RAM
memory. The shortest paths between all nodes in
the Mashhad network were identi�ed in less than one
minute.

The link volumes were computed using an incre-
mental assignment algorithm. For each step of the
incremental assignment, the FSPA was used to �nd the
shortest paths. Then, the results were compared with
the observed volume of the links. Figure 11 illustrates
the accuracy of the assignment results compared to the
observations using an increasing � value.

The average Mean Square Error (MSE), which is
used to compare the assignment results of the FSPA,
using an increasing � value, was computed using the
following equation:

Average MSE =

nP
i=1

(OVi � EVi)2

n
;

where:

OVi= observed volume of link \i",
EVi= estimated volume of link \i",
n= number of links.

In this comparison, the volumes of 118 available ob-
served links of the Mashhad network were compared to

Figure 11. Average Mean Square Error (MSE) for
di�erent � values in FSPA.

the assigned volumes. The assignment algorithm used
the FSPA for di�erent � values ranging from 0 to 2.6.
For � = 0, the assignment algorithm is the same as
the traditional incremental assignment algorithm used
by Dijkstra's shortest path algorithm. As Figure 11
indicates, as the � value increases, the average MSE
decreases. The average MSE continues to decrease until
� = 2:0. To minimize the MSE, � = 2:0 is optimal,
therefore, it is used to de�ne the membership functions
for the Mashhad network link travel times. The travel
time, for example link \a", will be shown using the
following three parameters:

~ta = (tl = t0a; t
c = ta(xa); tr = ta[3� xa]);

where ~ta, t0a, ta(xa) are the PTT, free 
ow travel
time, and travel time function for link \a", respectively.
Because � is greater than 1 and the left boundary
cannot be a negative number, it is assumed that the
free 
ow travel time is equivalent to the minimum lower
bound for the link travel time. The upper bound of the
travel time is equal to the link travel time when the link
volume is three times its observed volume.

To assess the applicability of the FSPA to tra�c
assignment, the results of the assignment using an
incremental method with the FSPA are compared to
the results of the UE assignment, as well as to a
stochastic loading method, called Dial's assignment
algorithm. Three graphs, shown in Figure 12, were
used to compare the three assignment algorithms. The
X-axis of these graphs corresponds to the estimated
assigned volume and the Y -axis corresponds to the ob-
served volumes. A trend line passes through the points,
and the R2 value, as well as the trend line equation,
is included in the �gures. As R2 approaches 1, the
accuracy of the estimated volume compared to the ob-
served volume increases. It is expected that the trend
line coe�cient and constant will approach 1 and 0,
respectively. The trend line equation formed using the
assigned volumes from the FSPA through incremental
assignment algorithm has a better �t to the theoretical
values than the other two trend line equations. As
shown in Figure 12, the volumes assigned using the
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Figure 12. Comparison of the observed volume for links
using (a) assigned volume by UE assignment with usual
shortest path, (b) assigned volume by UE assignment with
FSPA and (c) assigned volume by Dial's algorithm.

incremental assignment algorithm with the FSPA are
the most accurate when compared to the observed
volumes for 118 selected links. Consequently, the use
of perceived travel times instead of de�nite travel times
will increase the accuracy of the assignment model.

The computational platform for the three algo-
rithms is the same. The assignment processing times
were not considerably di�erent between the algorithms.
The results show the applicability of the FSPA for
tra�c assignment in real transportation networks.

CONCLUSION

This paper develops a FSPA for transportation net-
works, in which travelers' perceived travel times are

assigned to links as fuzzy numbers de�ned using mem-
bership functions. Fuzzy theory appropriately takes
into account the uncertainty embedded in travelers'
perceptions of travel times; however, fuzzy logic and
arithmetic are, to some extent, complicated. Because
travelers use their perceived travel times for links in
their route choice process, the chosen FSPA should be
�ne-tuned for traveler route choice modeling.

The aggregation of all travelers' route choices
within a transportation network results in a tra�c
assignment that is traditionally computed using an
assignment method such as a User Equilibrium (UE)
or stochastic loading algorithm like Dial's assignment
algorithm. In order to assess the applicability and per-
formance of the resulting FSPA for tra�c assignments,
the results of the assignment, using an incremental
method that incorporates FSPA, are compared to the
results of an UE assignment, as well as to Dial's as-
signment algorithm for a large-scale real network. The
comparison showed that an incremental assignment
using our FSPA is the most accurate.
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