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Numerical Analysis of Cyclically
Loaded Concrete Under Large Tensile
Strains by the Plastic-Damage Model

O. Omidi1 and V. Lot�1;�

Abstract. Within the framework of plasticity-based constitutive laws, a plastic-damage model is
developed in a complete form for analysis of damaged structures under large tensile strains which is
suitable for concrete subjected to cyclic loadings. This is based on the plastic-damage model proposed
by Lee and Fenves, which utilizes two separate damage variables for tension and compression and also
a scalar degradation simulating damage on sti�ness. Implementation of the model is coded for three-
dimensional space in a special purpose �nite element program to analyze the behavior of concrete subjected
to large tensile cracking, which is inevitable in plain concrete structures. In order to include large crack
opening/closing displacements in the model, the excessive increase in plastic strain causing unrealistic
results in cyclic behaviors is prevented when the tensile plastic-damage variable controlling the evolution
of tensile damage is larger than a critical value. To expedite the convergence rate for the overall equilibrium
iterations, the consistent algorithmic tangent sti�ness tensor is also derived, in detail, for large cracking
states. The paper is completed with some numerical examples demonstrating the capability of the extended
model in reproducing the behavior of cyclically loaded plain concrete subjected to large tensile strains.

Keywords: Plastic-damage; Algorithmic tangent sti�ness; Large cracking; Nonlinear analysis; Sti�ness
degradation.

INTRODUCTION

Constitutive theory of concrete materials has been
one of the main themes of research for some decades.
However, due to its composite nature, the complicated
behavior of concrete cannot be satisfactorily reected
in the usual constitutive theories of materials such as
pure plasticity and pure damage mechanics theories,
especially in cyclic loadings.

Continuum damage mechanics has been utilized
extensively as a constitutive law of concrete [1-3].
Before the establishment of damage theories in the
1970s, the nonlinear response of concrete could only
be captured using the plasticity theory, the nonlinear
elasticity theory or the fracture theory [4-6]. Although
these theories can solely yield adequate results that
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match the corresponding experiments, in some cases,
for example in monotonic loadings, it would be a better
choice to combine these theories to obtain an appropri-
ate constitutive model for concrete. The use of coupling
between damage and plasticity has been found to be
necessary for capturing the observed experimental-
based behavior of concrete. Plastic-damage models
have been developed and used by several researchers
such as Yazdani and Schreyer [7], Lubliner et al. [8],
Wu et al. [9], Jason et al. [10], Salari et al. [11],
Lemaitre [12] and others [13-16].

A coupled damage-plasticity approach is, there-
fore, adopted in this paper with emphasizing modi�ca-
tions to consider large tensile cracking states, which is
vital for capturing appropriate results in plain concrete
subjected to cyclic loadings [17,18]. Damage mechanics
theory can model the strain softening and sti�ness
degradation, while plasticity theory can capture the
residual strains and some other macroscopic features.
The behavior at the microscopic level is characterized
by the damage indicators and plastic strains as the two
representative macroscopic variables.
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The nonlinear behavior of concrete is caused by
three major sources of plasticity, cracking and time de-
pendent e�ects such as creep, shrinkage, temperature,
and load history. The plasticity behavior of concrete
materials at the macroscopic level can be modeled by
the classical plasticity theory [5]. On the other hand,
the sti�ness degradation caused by the microcracking
process, which can be observed in concrete structures
subjected to cyclic loading, is di�cult to be represented
merely with the classical plasticity theory. However, in
continuum damage mechanics, the degradation can be
modeled by de�ning the relationship between stress and
e�ective stress [2].

Therefore, one of the most important macroscopic
features in constitutive modeling of concrete under
cyclic loading is to capture the variations of the unload-
ing sti�ness upon mechanical load reversal. Damage
mechanics has the suitable theoretical background for
this phenomenon but, since the concrete experiences
also some irreversible deformations during loading, it
cannot, alone, be implemented. As illustrated in Fig-
ure 1, although plasticity and damage models are solely
capable of representing the same material response
during monotonic loading, both theories fail in cap-
turing the evolution of unloading sti�ness accurately.
In fact, in a pure damage approach, which is using
secant unloading slope, it would result in an arti�cial
increase of damage due to neglecting plastic strains.
In contrast to this phenomenon in a pure damage
model, a pure plastic model employs an elastic modulus
in unloading behavior because it cannot describe the
damage e�ects during loading. Therefore, the coupled
plastic and damage models are necessary in problems
dealing with concrete structures under cyclic and/or
dynamic loadings. Various coupled models have been
proposed and used for analysis of concrete structures
by many researchers in recent years [7-17].

In 1989, Lubliner et al. proposed a plastic-damage
model which can be successfully applied for concrete
under monotonic loading [8]. This model has a damage
variable to represent both softening in tension and
hardening in compression. It also uses elastic and plas-

tic degradation variables to simulate the degradation of
elastic tangent, which is known to be very signi�cant
in concrete. This model was modi�ed by Lee and
Fenves, in 1998, to include two damage variables; one
in tension and another in compression [17,18]. This
modi�cation on Lubliner's model made it suitable to
simulate the concrete under cyclic loading. Although
Lee and Fenves proposed the model in 3-D and plane
stress formulations, their implementation, examples
and, �nally, applications were limited to a 2-D plane
stress state. In this study, the model implemented in
3-D space [19] is developed to consider large tensile
cracking.

The proposed procedure for the stress update in
large cracking states is implemented in a special �nite
element program, called SNACS [20]. The program
solves the equations of motion incrementally using
either load or displacement control.

The paper is organized as follows. Basic concepts
of the constitutive relations of the plastic-damage
model are presented in the next section for the usual
cracking state. This section introduces the yield surface
and the ow rule employed in the present study as well.
The theoretical issues involved in large cracking states
are discussed in the following section. The numerical
integration aspects of the modi�ed model are also ad-
dressed in that section for large cracking states. After-
wards, the procedure used for the stress update at each
Gauss point, considering a large cracking e�ect, is high-
lighted. The linearization of constitutive relations con-
sistent with the stress computation algorithm in a large
cracking state is derived in the next section. Finally,
several numerical examples are presented to demon-
strate the capability of the modi�ed model, which is
discussed and implemented in the present paper.

PLASTIC-DAMAGE MODEL IN USUAL
CRACKING STATE

The theoretical basics of the plastic-damage model are
fully described in [17,18]. Reference [19] also presents
the details of its numerical implementation in 3-D

Figure 1. Unloading behavior in (a) plastic, (b) damage and (c) plastic-damage models.
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space. Moreover, its main features are summarized in
the following subsection.

Overview

In this subsection, the major components of the plastic-
damage model are summarized. As a plasticity-based
model, it begins with the strain decomposition as:

" = "e + "p; (1)

in which " is the total strain, "e and "p are the elastic
part and the plastic part of the strain, respectively.
Moreover, based on the scalar damage theory in com-
bination with the plasticity theory, the stress-strain
relation is written as:

� = E : "e; (2a)

E = (1�D)E0; (2b)

where � is the stress tensor; E is the damaged
elastic sti�ness tensor; E0 is the undamaged elastic
sti�ness tensor and D is the scalar sti�ness degradation
variable, ranging from zero to one. Substituting the
elastic part of the strain tensor from Equation 1 into
Equation 2a, the stress-strain constitutive relation is
constructed as:

� = (1�D)E0 : ("� "p); (3)

in which the e�ective stress (i.e., �� = �=(1�D)) would
be as:

�� = E0 : ("� "p): (4)

It is noted that the plasticity part of the model is
formulated in terms of the e�ective stress. Moreover,
the evolution law for the plastic strain tensor, using a
non-associative ow rule, is established as:

_"p = _�r���; (5)

where � is the plastic potential function and � is known
as the consistency parameter. The yield function,
which determines the yield state of stress, is written
as:

F (��;�) � 0; (6)

where � is a vector containing hardening variables that
is referred to as normalized plastic-damage variables
in this model. In plasticity-based models, hardening
variables control the evolution of the yield surface.
The damaged states in tension and compression are
characterized independently by these plastic-damage
variables, �t and �c. The plastic-damage vector is
de�ned as follows:

� =
�
�t
�c

�
: (7)

Corresponding to this plastic-damage vector, the
degradation damage vector can be de�ned as:

D =
�
Dt(�t)
Dc(�c)

�
; (8)

in which, Dt and Dc are called tensile and compressive
damage variables, respectively. Each damage variable
is de�ned as a function of its corresponding plastic-
damage variable. The damage evolution equation is
formed as:

_� = _�H(��;�): (9)

The mechanism of microcrack opening and closing
behavior can be modeled as elastic recovery during
elastic unloading from a tensile state to a compressive
state. Since the model captures the two major damage
phenomena, i.e. the uniaxial tensile and compressive
ones, multi-dimensional degradation behavior can be
possibly evaluated by interpolating between these two
main damages, Dt and Dc, such as:

D = 1� (1�Dc)(1� sDt): (10)

The sti�ness recovery parameter denoted as s is con-
sidered to simulate the elastic sti�ness recovery during
the elastic unloading process from tensile state to
compressive state, such that s0 � s � 1, considering
a minimum value of s0 [17]:

s(�̂) = s0 + (1� s0)r(�̂); (11)

in which the scalar quantity, r(�̂), is a weight factor
ranging from zero when all principal stresses are neg-
ative, to one when they are all positive. Symbolizing
hxi as the ramp function (i.e., hxi = (x+ jxj)=2), r(�̂)
is de�ned as:

r(�̂) =

3P
i=1
h�̂ii

3P
i=1
j�̂ij

: (12)

Moreover, r(�̂�) = r(�̂), due to scalar degradation
being applied to the elastic sti�ness tensor in the
constitutive relation.

Plasticity Yield Surface

The constitutive law employs the yield surface of
Lubliner in terms of the e�ective stress (not the stress),
and the plastic-damage variables as:

F (��;�) = f(��;�)� cc(�); (13a)

f(��;�) =
1

1� �
"p

3 �J2 + ��I1

+ �(�)h�̂�maxi � h��̂�maxi
#
; (13b)
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in which � and � have the following de�nitions:

� =
(fb0=fc0)� 1
2(fb0=fc0)� 1

; (14)

� =
cc(�c)
ct(�t)

(1� �)� (1 + �): (15)

Here, fb0=fc0 is the ratio of the initial yield strengths
under equibiaxial and uniaxial compression; ct and
cc are the tensile and compressive cohesions. The
parameter  appears only in triaxial compression with
�̂�max < 0 and, usually, is equal to 3 [8]. It is noted that
the yield surface can be represented equivalently by an
alternative form as F (��;�) = F̂ (�̂�;�) [18]. It is also
illustrated in Figure 2 for the plane stress space.

Plasticity Flow Rule

In the original formulation proposed by Lee and
Fenves [17], the Drucker-Prager linear function was
used and implemented for the plane stress problem.
This function has a singular region near the cone
tip, which causes some numerical challenge during the
return-mapping process when it is being implemented
in 3-D space [19]. In order to treat this singularity, the
Drucker-Prager hyperbolic function is employed here
as the plastic potential similar to the recent work of

Saritas and Flilippou [21]. This function is expressed
in terms of the e�ective stresses, as below, and also
depicted in the meridian plane in Figure 3. Being
continuous and smooth, it causes the ow direction to
be always uniquely de�ned.

�(��) =
q
�2
H + 2 �J2 + �p �I1: (16)

Here, �H would be:

�H = "1�pft0; (17)

and parameter �p should be calibrated to give proper
dilatancy [17].

Stress Integration

The stress integration algorithm consists of an elastic
predictor, plastic and damage correctors. From Equa-
tion 3, at time step n+ 1, the stress is formed as:

�n+1 = (1�Dn+1)��n+1; (18)

and the e�ective stress is written as:

��n+1 = E0 : ("n+1 � "pn+1): (19)

Or, equivalently:

��n+1 = ��trn+1 �E0 : �"p; (20)

Figure 2. Yield surface for the plane stress space.
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Figure 3. Schematic representation of the
Drucker-Prager hyperbolic function.

where ��trn+1 plays the role of the elastic predictor and
is called trial e�ective stress:

��trn+1 = E0 : ("n+1 � "pn): (21)

When the trial e�ective stress state is out of the current
yield surface (i.e., F (��trn+1;�n) > 0), the plastic strain
and also damage variables will change. In the plastic
corrector part, the e�ective stress and plastic-damage
variables are updated using linearization of the damage
evolution equation, whose discrete version is written as
below by the backward-Euler method:

�� = ��H(�̂�n+1;�n+1): (22)

Or, equivalently:

�n+1 = �n + �H(�̂�n+1;�n+1); (23)

in which � is used instead of �� for simplicity. Since
Equation 23 is a nonlinear function of �, a residual
denoted by Q (Equation 24) is de�ned and an iterative
solution scheme for computing �̂�n+1, �n+1 and � needs
to be established.

Q(�̂�n+1;�n+1; �)=��n+1+�n+�H(�̂�n+1;�n+1):
(24)

In fact, this iteration procedure, which is referred to as
the local iteration, imposes the following constraint to
the return-mapping process.

Q(�̂�n+1;�n+1; �) = 0: (25)

Equation 25 is iterated using the Newton-Raphson
scheme as:�

dQ
d�

�(j)

n+1
�� = �Q(j)

n+1; (26)

where dQ=d� is the Jacobian matrix of Q, with respect
to �, and �� is used to update the plastic-damage
variables vector, �n+1:

�(j+1)
n+1 = �(j)

n+1 + ��: (27)

Another constraint to the return-mapping process is
the discrete version of the plastic consistency condi-
tion, Equation 28, which is utilized to compute the
consistency parameter, �:

F̂ (�̂�n+1;�n+1) = 0: (28)

It is noted that the spectral return-mapping algorithm
is employed here, based on spectral decomposition of
the e�ective stress. It is well-known that spectral
return-mapping is more e�cient than general return-
mapping when the yield surface includes principal ef-
fective stress in addition to its invariants. The e�ective
stress, as a symmetric matrix, can be factorized by the
spectral decomposition:

��n+1 = Pn+1 �̂�n+1PT
n+1; (29)

in which Pn+1 and �̂�n+1 are the non-singular matrix,
whose columns are the orthonormal eigenvectors of
��n+1 and the diagonal matrix of eigenvalues of ��n+1,
respectively. As proved in [18], any eigenvector matrix
of ��n+1 is also an eigenvector matrix of ��trn+1, i.e.:

��trn+1 = Pn+1 �̂�trn+1P
T
n+1: (30)

Moreover, since an isotropic material behavior is as-
sumed, there exists a function �̂, such that �̂(�̂�) =
�(��). Thus, the plastic strain increment can also be
written in the spectral decomposition form [22]:

�"p = �Pn+1r�̂��̂PT
n+1: (31)

In fact, the eigenvalue matrix for the plastic strain
increment becomes:

�"̂p = �r�̂��̂: (32)

By using the Drucker-Prager hyperbolic plastic func-
tion introduced in Equation 16, �"̂p yields:

�"̂p = �

0@ �̂sn+1q
�2
H +

�̂sn+1
2

+ �pI

1A ; (33)

where �̂sn+1 is the deviatoric part of the principal
e�ective stresses,�̂�n+1.

PLASTIC-DAMAGE MODEL IN LARGE
CRACKING STATE

The extension of the model for large crack opening and
closing is discussed in this section. It should be noted
that the basic idea for the large cracking modi�cation
has been initially presented in [23]. However, its
formulation and 3-D implementation are emphasized
in a complete manner in this paper, including the
details of the stress update algorithm. Moreover, it is
worthwhile to mention that the consistent algorithmic
tangent sti�ness is also derived for large cracking states
herein, something that is not discussed in the original
studies of Lee and Fenves [23].
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Large Cracking Modi�cation

To simulate a large crack opening, closing and reopen-
ing process in such a continuum model, the evolution
law used for the damage variables needs to be modi�ed.
Actually, after a large amount of microcracking, the
crack opening and closing mechanism becomes similar
to discrete cracking. Here, it is assumed that the
microcracks are joined to construct a discrete large
crack, if �t � �cr, where �cr is a critical value for
the tensile damage. At such a tensile damage level,
evolution of the plastic strain caused by the tensile
damage is stopped and the plastic strain rate is de�ned
as:

_"p = (1� r)_~"p; (34)

_~"p = _�r~��(~�); (35)

in which ~"p is an intermediate plastic strain and r is a
weight function, which could be possibly de�ned as:

r = r(~̂�); (36)

and ~� is an intermediate e�ective stress, which is
de�ned as below:

~� = E0 : ("� ~"p) 2 f~�jF (~�;�) � 0g : (37)

In order to make the e�ective stress based on the
intermediate plastic strain admissible in the stress
space, it is necessary to introduce a new degradation
variable denoted by Dcr, and modify the e�ective stress
as:

��mod = (1�Dcr)E0 : ("� "p): (38)

The new degradation damage variable, Dcr, is de-
termined by the following Kuhn-Tucker type load-
ing/unloading conditions such that:

_Dcr � 0; F ((1�Dcr)��;�) � 0;

_DcrF ((1�Dcr)��;�) = 0; (39)

where F is the yield function. During plastic loading,
the condition of F ((1�Dcr)��;�) = 0 leads to:

Dcr = 1� cc(�)
f(��;�)

: (40)

The sti�ness degradation variable is rede�ned to in-
clude the new large-cracking degradation variable as:

D = 1� (1�Dc)(1� sDt)(1� sDcr): (41)

Numerical Implementation

In order to numerically implement the large cracking
formulation described in the previous section, a three-
step return-mapping algorithm is used here. First,
the trial e�ective stress (as the elastic predictor step)
is computed by Equation 38. Similar to the tensile
damage variable, Dcr

n also needs to be multiplied
by the sti�ness recovery parameter, s, to capture
the correct crack opening/closing behavior during the
elastic unloading process from tension to compression
and vice versa. The trial e�ective stress is modi�ed as
below:

~�trn+1 = (1� strn+1D
cr
n )��trn+1; (42)

where strn+1, is computed based on the trial e�ective
stress:

strn+1 = s(�̂�trn+1): (43)

The trial e�ective stress is admissible as the e�ective
stress at the current time step if:

F (~�trn+1;�n) = f(~�trn+1;�n)� cc(�n) � 0: (44)

Otherwise, the plastic corrector is required to make
the e�ective stress admissible. At the plastic corrector
step, an increment of the intermediate plastic strain is
integrated using the backward-Euler method:

�~"p = �
@�

@~�n+1
: (45)

The return-mapping process is embedded in the local
iteration mentioned above and is presented in Table 1.
It should be noted that the stress which is being
modi�ed and mapped to the yield surface in the local
iteration scheme is the intermediate e�ective stress, ~�,
not the true e�ective stress, which is denoted by ��.

After computing �~"p from the return-mapping
scheme, the plastic strain is updated by:

"pn+1 = "pn + (1� rn+1)�~"p; (46)

Table 1. Return-mapping process (local iteration).

0. j = 0; ~̂�n+1 = ~̂�trn+1; �(0)
n+1 = �n

1. Compute �

2. Evaluate ~̂�n+1

3. Q(j)
n+1 = ��(j)

n+1 + �n + �H(~̂�n+1;�(j)
n+1)

4. IF jjQ(j)
n+1jj � TolL THEN Exit

5. Form (dQ=d�)(j)
n+1

6. Solve
� dQ
d�

�(j)
n+1 �� = �Q(j)

n+1 for ��

7. �(j+1)
n+1 = �(j)

n+1 + ��

8. j = j + 1 and GOTO Step 1.
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where rn+1 is computed if �tn+1 � �cr or otherwise
equals to zero. At the next step, the crack damage
corrector causes the evaluated e�ective stress to return
back onto the yield surface:

Dcr
n+1 = 1� cc(�n+1)

f(��n+1;�n+1)
; (47)

in which ��n+1 is computed by Equation 20. Finally,
for the damage corrector step, the stress is computed
by computing the degradation variable, Dn+1 as the
following:

Dn+1 = 1

�(1�Dc
n+1)(1�sn+1Dt

n+1)(1�sn+1Dcr
n+1); (48)

where:

sn+1 = s(�̂�n+1): (49)

STRESS UPDATE ALGORITHM

The stress computation procedure is summarized in
this section considering the possibility of large crack

opening/closing states. As mentioned above, the
spectral return-mapping, which has some advantages
with respect to general return-mapping, is being uti-
lized here to decouple the return-mapping algorithm.
The procedure begins with the spectral decomposition
of the trial e�ective stress. In this approach, the
principal stresses which play an important role in the
model are computed in an e�cient and explicit way.
Moreover, its decoupled nature signi�cantly simpli�es
the stress updating formulation. Table 2 summarizes
the employed algorithm directly connected to the
implementation of the model in a special �nite element
code [20]. At each step, the total strain is prescribed
to each Gauss point and then the corresponding stress
and other needed variables are updated by using the
governing constitutive equations and loading-unloading
conditions.

ALGORITHMIC TANGENT STIFFNESS IN
LARGE CRACKING STATE

The iterative solution procedure in Newton's method
requires the tangent sti�ness as a numerical technique
for solving the nonlinear equilibrium equations. Uti-

Table 2. Stress update algorithm considering large tensile cracking.

0. "n+1, "pn, ~"pn, �n, Dn, Dcr
n

1. ��trn+1 = E0 : ("n+1 � "pn)
2. ��trn+1 = Pn+1 �̂�trn+1PT

n+1

3. strn+1 = s(�̂�trn+1)
4. ~̂�trn+1 = (1� strn+1Dcr

n )�̂�trn+1

5. IF F̂ (~̂�trn+1;�n) � 0 THEN (Elastic loading/unloading state)
5.1. �̂�n+1 = �̂�trn+1; sn+1 = strn+1; "pn+1 = "pn; ~"pn+1 = ~"pn; �n+1 = �n; Dn+1 = Dn; Dcr

n+1 = Dcr
n

6. ELSE (Platic loading state)
6.1. Return-mapping process (local iteration to compute ~̂�n+1, �n+1, �)
6.2. Evaluate �~̂"p

6.3. ~"pn+1 = ~"pn + Pn+1�~̂"pPT
n+1

6.4. Dn+1 = D(�n+1)
6.5. IF �tn+1 < �cr THEN (Usual crack opening/closing state)

6.5.1. �̂�n+1 = ~̂�n+1; "pn+1 = ~"pn+1; Dcr
n+1 = 0

6.6 ELSE (Large crack opening/closing state)
6.6.1. rn+1 = r(~̂�n+1)
6.6.2. �"̂p = (1� rn+1)�~̂"p

6.6.3. "pn+1 = "pn + Pn+1�"̂pPT
n+1

6.6.4. �̂�n+1 = �̂�trn+1 �E0 : �"̂p

6.6.5. Dcr
n+1 = 1� cc(�n+1)

f̂(�̂�n+1;�n+1)
� Dcr

n

6.7. sn+1 = s(�̂�n+1)
7. Dn+1 = 1� (1�Dc

n+1)(1� sn+1Dt
n+1)(1� sn+1Dcr

n+1)
8. ��n+1 = Pn+1 �̂�n+1PT

n+1

9. �n+1 = (1�Dn+1)��n+1
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lizing the algorithmic tangent sti�ness in the global
iteration algorithm accelerates the convergence rate
in comparison with employing the continuum tangent
sti�ness [18], and it is consistent with the local iteration
being used as the return-mapping process. After
the converged e�ective stresses, damage variables and
plastic strains are computed for the given strain; all the
residual equations are assumed to be satis�ed. In the
following, the algorithmic tangent sti�ness is derived in
the large cracking state (i.e., �tn+1 � �cr). This begins
by taking the total di�erential of computed stress at
the current time step:

d� = ���n+1dD + (1�Dn+1)d��; (50)

in which dD and d�� are derived as follows. From
Equation 19:

d�� = E0 : (d"� d"p): (51)

Substituting d"p = (1 � rn+1)d~"p from Equation 46
into the di�erential of the e�ective stress, Equation 51,
results in:

d�� = E0 : [d"� (1� rn+1)d~"p]: (52)

One can rearrange Equation 52 such that the di�eren-
tial intermediate e�ective stress appears in the relation
as the following:

d�� = rn+1E0 : d"+ (1� rn+1)E0 : (d"� d~"p): (53)

Furthermore, the di�erential of the intermediate e�ec-
tive stress becomes:

d~� = E0 : (d"� d~"p): (54)

Utilizing Equation 54 causes Equation 53 to be rewrit-
ten as:

d�� = rn+1E0 : d"+ (1� rn+1)d~�: (55)

The total di�erential of the degradation (i.e.,
Dn+1(Dn+1; Dcr

n+1 �̂�n+1), which is computed in terms
of Dn+1(�n+1), Dcr

n+1(�n+1; �̂�n+1) and �̂�n+1, may be
written as:

dD =
@D
@D

:
@D
@�

:d�+
@D
@Dcr

@Dcr

@�
:d�

+
@D
@Dcr

@Dcr

@ �̂�
:
@ �̂�
@ ��

: d�� +
@D
@ �̂�

:
@ �̂�
@ ��

: d��: (56)

Or, in a rearranged form as:

dD =
�
@D
@D

:
@D
@�

+
@D
@Dcr

@Dcr

@�

�
:d�

+
�
@D
@ �̂�

+
@D
@Dcr

@Dcr

@ �̂�

�
:
@ �̂�
@ ��

: d��; (57)

where the tensor @ �̂�=@ ��, which is a function of the
general stress, is called the Jacobian tensor of the
principal e�ective stress.

During the local iteration for obtaining the up-
dated vector of the plastic-damage variables, the
change of the residual vector is expected to be zero,
i.e. dQ = 0:

@Q
@�

:d�+
@Q
@ ~̂�

: d~̂� +
@Q
@�

d� = 0: (58)

By rearranging the above equation, the di�erential of
the plastic-damage vector becomes:

d� = T�~� : d~� + T��d�; (59)

in which T�~� and T�� are de�ned as below:

T�~� = �
�
@Q
@�

��1

:
@Q
@ ~̂�

:
@ ~̂�
@ ~�

; (60)

T�� = �
�
@Q
@�

��1

:
@Q
@�

: (61)

Substituting Equation 59 into Equation 57, dD would
be:

dD = TI
D~� : d~� + TII

D�� : d�� + TD�d�; (62)

where TI
D~�, TII

D�� and TD� will have the following
de�nitions:

TI
D~� =

�
@D
@D

:
@D
@�

+
@D
@Dcr

@Dcr

@�

�
:T�~�; (63)

TII
D�� =

�
@D
@ �̂�

+
@D
@Dcr

@Dcr

@ �̂�

�
:
@ �̂�
@ ��

; (64)

TD� =
�
@D
@D

:
@D
@�

+
@D
@Dcr

@Dcr

@�

�
:T��: (65)

Substitution of Equation 55 into Equation 62 leads to:

dD = TI
D~� : d~�

+ TII
D�� : [rn+1E0 : d"+ (1� rn+1)d~�]

+ TD�d�: (66)

Similarly, the total di�erential of the yield function
gives:

r~̂�F̂ : d~̂� +r�F̂ :d� = 0: (67)

By substituting Equation 59 into Equation 67, it is
reformulated as:

TF̂ ~� : d~� + TF̂�d� = 0; (68)
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where TF̂ ~� and TF̂� represent the following parts:

TF̂ ~� = r~̂�F̂ :
@ ~̂�
@ ~�

+r�F̂ :T�~�; (69)

TF̂� = r�F̂ :T��; (70)

in which the total di�erential of the intermediate
plastic strain increment is:

d~"p = r~��d�+ �
@2�
@~�2 : d~�: (71)

By de�ning a pseudo-elastic sti�ness tensor as:

S =
�

E�1
0 + �

@2�
@~�2

��1

: (72)

Equation 54 is rewritten as the following form:

d~� = S : d"� S : r~��d�: (73)

Substituting Equation 73 into Equation 68, d� be-
comes:

d� =
�

TF̂ �� : S
TF̂ ~� : S : r~��� TF̂�

�
: d": (74)

Finally, substitution of Equation 55 and Equation 66
into Equation 50 leads to the consistent algorithmic
tangent sti�ness for large cracking states:�
@�
@"

�
n+1

=rn+1
�
(1�Dn+1)I� ��n+1
TII

D��
�

: E0

+
�
(1�Dn+1)(1� rn+1)I

� ��n+1 
 �TI
D~� + (1� rn+1)TII

D��
��

:
@ ~�
@"

� TD� ��n+1 
 @�
@"
; (75)

in which, from Equation 73 and Equation 74 the
following equations are obtained:

@ ~�
@"

= S� S : r~��
TF̂ ~� : S
TF̂ ~� : S : r~��� TF̂� ; (76)

@�
@"

=
TF̂ ~� : S

TF̂ ~� : S : r~��� TF̂� : (77)

In the usual cracking state (i.e., �tn+1 < �cr), one can
set rn+1 = 0 and, therefore, ��n+1 = ~�n+1, which
leads to TD�� = TI

D�� + TII
D��. In such a condition,

the consistent algorithmic tangent sti�ness in the usual
cracking state could be concluded from Equation 75 as:�

@�
@"

�
n+1

= [(1�Dn+1)I� ��n+1 
TD��] :
@ ��
@"

� TD� ��n+1 
 @�
@"
: (78)

It should be noted that due to employing a non-
associative ow rule and the existence of the degra-
dation component, the algorithmic tangent sti�ness
derived for both usual and large cracking states (i.e.,
Equations 75 and 78) is not symmetric [18].

NUMERICAL EXPERIMENTATION

The developed plastic-damage model implemented
based on the algorithm discussed above is examined
in this section. This is performed by means of several
validations carried out by a displacement control ap-
proach. Moreover, 8-node isoparametric solid elements
with a 2�2�2 Gauss integration scheme are used in all
examples. As is common [8,17,24], exponential forms
are used here for softening parts of both tension and
compression curves.

One-Element Tests

A single-element mesh is subjected to monotonic and
cyclic loading, both in tension and compression. The
responses are compared with the experimental results
available in the literature. Table 3 shows the material
properties utilized for all cases, unless otherwise speci-
�ed.

In this table, f 0t and f 0c are the maximum uni-
axial tensile and compressive strengths, respectively.
Furthermore, the fracture energy in tension and the
counterpart of fracture energy in compression are
denoted by Gt and Gc, respectively.

The �rst two tests discussed here con�rm the
basic capabilities of the model in the simulation of
concrete under monotonic tensile and compressive load-
ings. The responses to these fundamental loadings
are evaluated and compared with the corresponding
experiments and results from Lee and Fenves. It needs
to be mentioned that in the uniaxial compressive case,
elastic modulus, E0 of 31.7 GPa is utilized instead
of 31.0 GPa. Figure 4 depicts the simulated tensile
and compressive stress-strain curves, respectively. As
compared, the numerical results agree well with the
experimental data [25,26] and also with the solutions
of Lee and Fenves [17].

Subsequently, cyclic loading is applied to examine
the capability of the model in capturing sti�ness degra-
dation in both tensile and compressive loadings. The
material properties are the same as those of Table 3,
except E0 = 31:7 GPa. Figures 5a and 5b illustrate
the numerical results from two uniaxial cyclic loading
cases compared with the experiments.

In another single-element test, cyclic loading un-
der large tensile strains is imposed as the tension-
compression-tension load. The results are compared
in Figure 6 for both cases of with and without the
possibility of a large crack opening/closing. As ob-
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Figure 4. Monotonic uniaxial loadings compared with experiments [25,26] and also with Lee and Fenves's results [17].

Figure 5. Cyclic loading results in comparison with experiments [25,26].

Figure 6. Tension-compression-tension tests.
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Table 3. Material properties for the tests carried out.

E0

(GPa)
�
{

f 0t
(MPa)

f 0c
(MPa)

Gt
(N/m)

Gc
(N/m)

�
{

�p
{

lch
(mm)

s0

{

31.0 0.18 3.48 27.6 12.3 1750.0 0.12 0.2 25.4 0.0

served, after a certain point, a continuum discrete crack
is formed and the crack is closed afterwards during
unloading from tension to compression. This example
well con�rms the necessity of considering the possibility
of large crack opening/closing states in plain concrete
under high tensile strains.

In the last case, the single element is subjected to
full cyclic loading (Figure 7). This perfectly illustrates
the ability of the model to simulate sti�ness recovery
when the status changes from tension to compression
and vice versa. This case also shows that if a large
cracking option is not included in the stress update
algorithm, it could lead to unrealistic results, as illus-
trated in Figure 7 for the case in which �cr is equal
to 1.0.

Structural Applications

Mesh Sensitivity Test
The sensitivity to mesh size has been analyzed to
check the mesh-objectivity, which is expected to be
obtained by using the mesh-dependent characteristic
length [8,17]. The geometry of the specimen, its
boundary conditions and the meshes employed are
illustrated in Figure 8. The utilized material properties
are: E0 = 30 GPa, � = 0:2, f 0t = 3:3 MPa, Gt =
1000 N/m, �p = 0:2. In each case, the characteristic
length equals the mesh size in the horizontal direction.

Figure 7. Full cyclic loading results in di�erent critical
damage levels.

Figure 8. Mesh sensitivity analysis: (a) Geometry and
boundary conditions of the specimen; (b, c and d) 3-D
8-node �nite element meshes.

To make the strain localization occur at the left-end
element consistently, the perturbation using less tensile
strength was imposed on that element.

The resulting load-displacement curves are shown
in Figure 9 for the di�erent meshes including unloading
and reloading. As observed, it is clear that since
the ratio of the softening bandwidth to the length of
the elastic unloading zone is di�erent in each case,
one cannot expect to have identical load-displacement
responses, for either the loading or unloading parts.
Nevertheless, the global loading or unloading responses
become similar to each other (i.e., mesh objectivity
is preserved), as the softening bandwidth becomes

Figure 9. Load-deection curves with unloading in
di�erent meshes.
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smaller. Obviously, one expects a better match with
experimental data as �ner meshes are utilized.

In the following, the mesh MST3 is subjected to
a large tensile strain and it is unloaded subsequently
to check the algorithm in a large cracking state. The
response considering large cracking is compared with
the case of usual cracking in Figure 10a. As discussed
before, at a speci�c tensile damage level, �cr, the
evolution of plastic strain caused by the tensile damage
is stopped and the microcracks are joined to form a
discrete crack, if �t � �cr (Figure 10b).

Four-Point Bending Test Under Cyclic
Loading
Experimental results of notched beams have been
widely employed to validate the corresponding
numerical simulations captured by a proposed
model [8,16,18,27]. In order to examine the plastic-
damage model under cyclic loadings in a real applica-
tion, the analysis of a notched concrete beam under
four-point bending is investigated here. This example,
which was experimentally performed by Horidijk in
1991 [28], is simulated using 3-D modeling. The
speci�cation of the specimen and the three-dimensional

Figure 10. (a) Comparison of load-deection curves for
usual and large cracking (b) plastic strain ("px) vs
intermediate plastic strain (~"px) in the case of �cr = 0:95.

8-node �nite element mesh of a half-beam model are
depicted in Figure 11.

The material properties used in this application
are as listed in Table 4. In this test, �cr of 0.75 is
used to include the large cracking phenomenon. Fig-
ure 12 shows the load P versus the mid-span deection
for the numerical simulation and the corresponding
experimental test. The results closely agree with
the experiment, indicating the good accuracy of the
solution during unloading and reloading.

The state of tensile damage along with the dis-
placed shape at the end of the analysis is also illustrated
in Figure 13 for each case. Comparison of the damage
patterns for the two cases shows that the modi�cation
needed for considering large cracking slightly a�ects the
damage evolution process.

CONCLUSIONS

Development of a plastic-damage model to capture
the proper cyclic behavior of concrete under large
tensile strains is presented in a complete manner. The
algorithmic tangent sti�ness, which is consistent with
the stress update algorithm, is derived in detail for the
large cracking state. The plastic-damage model, which
is implemented for 3-D space in this study, was initially
proposed by Lee and Fenves, in 1998. Although

Figure 11. Four-point bending test.

Table 4. Material properties for the four-point bending test.

E0

(GPa)
�
{

f 0t
(MPa)

f 0c
(MPa)

Gt
(N/m)

Gc
(N/m)

�
{

�p
{

s0

{

38.0 0.2 2.9 30.0 65.0 6500.0 0.12 0.2 0.0
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Figure 12. Four-point bending test, load-deection curve
compared with the experiment [28].

the damage part of the model is isotropic, it utilizes
two damage variables, one in tension and another
for compression, which makes it suitable for cyclic
responses. Moreover, the return-mapping process
e�ciently employs the spectral decomposition form of
the stress matrix.

Although damage and plasticity theories sepa-
rately are capable of capturing the same material
response upon monotonic loading, neither model sim-
ulates the evolution of unloading sti�ness accurately.
Neglecting plastic strains in a pure damage approach
would result in an arti�cial increase of damage as the
secant unloading slope. Hence, a coupled damage-
plasticity model could be a solution, but it also fails
to properly model the cyclic-loaded concrete under
large tensile strains, because, after joining microc-
racks, a discrete crack is formed and, subsequently,

Figure 13. Tensile damage pattern along with the
displaced shape at the end of the analysis.

usual cracking no longer works. In large crack-
ing states, evolution of the tensile plastic strain is
stopped. In this condition, the evolution law used
for the damage variables needs to be modi�ed. In
fact, after a large amount of microcracking, if the
tensile damage is more than a critical value, the crack
opening/closing mechanism becomes similar to discrete
cracking.

Through single-element tests, the implemented
algorithm is shown to give numerical simulations that
work appropriately. It is also con�rmed that the
modi�cations discussed should be applied to the model
in the problems experiencing large tensile strains under
cyclic loading. At the end, a single-notched beam under
four-point bending is investigated numerically. It is
also compared with the corresponding experimental
results. Comparison of the cases analyzed demon-
strates that including the large crack opening/closing
prevents excessive tensile plastic strains causing unre-
alistic results. Furthermore, the necessity of such a
modi�cation is emphasized to properly simulate the
cyclic behavior of plain concrete under large tensile
strains.
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