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A Plate on Winkler Foundation
with Variable Coe�cient

M. Mo�d1;� and M. Noroozi2

Abstract. Plates on elastic foundations have attracted the attention of many researchers. Some
elementary models have been introduced to consider interactions between the plate and its foundation.
Other improved models have been proposed to develop basic models. In this work, a model based on the
Winkler-foundation theory is proposed, while the constant parameter of Winkler is assumed to be variable;
such as non-uniform springs with the functionality of the domain position, along with the plate and beam
span in order to consider the non-uniform behavior of the foundation. The governing equation on the
system is solved by using the Galerkin method and e�ects such as the presence of rigid points in the
foundation are considered.
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INTRODUCTION

Studies on plate structures and the consideration of
e�ects such as elastic foundations on their behavior
is among one of the most important research �elds
in applied mechanics, having attracted the attention
of many researchers. Considering the e�ect of the
foundation on the de
ection, stability, response to
static and dynamic loading, vibration and so on, plus
presenting di�erent models to describe the behavior of
the plate, are some aspects of the numerous attempts
in this area [1-4]. Various analytical and numerical
methods have been employed to �nd e�ective factors
regarding foundation-plate behavior for practical appli-
cations in civil/structural, mechanical, aerospace and
marine engineering.

In the past, the model of a thin plate on an
elastic foundation was mainly used in structural ap-
plications. Currently, thin �lms of metal, ceramic
or synthetic materials deposited on the surface of
the structural parts of electronic devices are used
to improve their mechanical, thermal, electrical and
tribological properties. These thin �lms of material
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are considered as thin plates and, in these applications,
the substrate of thin �lm can be simulated as an elastic
foundation [5,6].

The static response and dynamic behavior of the
plates are considered commonly by researchers. Luura
and Gutierrez [7] studied the vibration of rectangular
plates by a non-homogenous elastic foundation using
the Rayleigh-Ritz method. Biswas [8] considered the
vibration of irregular shaped orthotropic plates resting
on an elastic foundation subjected to in-plane forces.
The vibration of rectangular plates resting on a non-
uniform elastic Winkler foundation is considered by
Lee and Lin [9], where the Levy solution method and
the Green's function were employed in their study.
Malekzadeh and Farid [10] considered a composite
plate on a two parameter non-linear foundation using
the di�erential quadrature method. Dutta and Roy [11]
studied the interaction between the soil foundation and
the structure in their article review.

In this work, an elastic thin plate on a modi�ed
Winkler foundation is considered. The Kirchho� the-
ory is assumed for the plate and the Winkler coe�cient
is assumed to have variations versus position with the
functionality of the domain, along with the plate span.
This type of foundation is also used to analyze a strip
similar to an Euler-Bernoulli beam. The de
ection
of the beam and plate is considered using the static
analysis by the Galerkin method and the e�ect of the
non-uniform foundation has been considered.
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REVIEW OF THE MODEL

In this section, a brief review regarding the models of
the plate and elastic foundation is presented.

Plate

Di�erent theories are used for the modeling of plates,
wherein each theory tries to convert the 3-D problem of
the elasticity of the plate to a lower degree. Reduction
to a lower degree will reduce the number of attempts
needed to obtain an approximated solution for the
system. Two main types of plate modeling theory,
for either thin or thick plates, can be classi�ed as
small and large deformations. A Kirchho� plate is the
simplest theory that represents a governing equation
for a thin plate. However, other improved models such
as the large deformation theory of the Von-Karman or
Mindlin shear deformation plate, have been presented.

Elastic Foundation

The e�ect of a foundation can be modeled by various
approaches to the plate [12]. The best realistic model
is to represent the foundation as a continuum model,
where the elasticity solution represents the behavior
of the foundation. On the other hand, the elastic
foundation can be modeled as a set of springs. The
spring system can be multilayered where each layer
has its special sti�ness. Springs can be linear or
nonlinear and the foundation can be divided into
multi segments [13]. For a viscoelastic foundation, a
system of springs and dampers can be used to consider
damping e�ects [14-16].

The simplest model presented for the elastic
foundation is the Winkler model, which assumes that
the shear resistance of the foundation is ignorable
compared to the shear capacity of the foundation, and
models the foundation as a set of independent springs.
Therefore, there is no lateral interaction between the
springs. The governing equation for the system is;

Dr4w = q �Nx @
2w
@x2 +Ny

@2w
@y2 � kw: (1a)

In whichr4 = r2:r2 andr2 is the Laplacian operator
as (in the Cartesian coordinate):

r2 =
@2

@x2 +
@2

@y2 : (1b)

Also, q is the lateral external force, N is the in-plane
force (in x and y directions), k is the Winkler coe�cient
of the foundation, w is the de
ection and D is the

exural rigidity of the plate.

To account for more realistic interaction between
the springs, various models of the two-parameter elastic

foundation have been presented [17]. The Filonenko-
Borodich model [18], Pasternak [19] and Vlasor [20] can
be mentioned as examples. The Pasternak foundation
assumes a degree of shear interaction between adjacent
springs by using the layers of tension and shear springs.

In this work, a Kirchho� plate on an improved
elastic foundation will be considered. In contrast with
works in which the Winkler coe�cient is assumed to
be constant, in this work this parameter is assumed to
be a function of the location. Therefore, k = k(x; y)
in Equation 1 is not constant and varies under the
plate. This assumption allows for the consideration of
interesting properties for the foundation. For example,
to make a rigid location under the plate, it is su�cient
to set k very large for the desirable location. Therefore,
the de
ection of the plate in this location gets very
small because of the resistance of the foundation, and
the problem changes to a plate on the locally rigid
foundation. This approach can be used to solve many
complicated problems for a plate on a multi rigid-point
foundation.

On the other hand, if the deformation of the
plate is assumed to be cylindrical and the variation
in one direction is neglected, the plate changes to a
strip and the governing equation reduces from PDE
to ODE. In this manner, the strip acts as a beam
with a similar equation. The combination of an elastic
foundation with a variable coe�cient with the beam
theory leads to the solution of problems such as multi-
segment beams.

SOLUTION FOR A STRIP

For a strip, derivation with respect to one variable
vanishes in Equation 1 and the solution of the ODE can
be represented directly. In the absence of the in-plane
forces, Nx and Ny, and by the assumption of the linear-
step variations of the Winkler coe�cient (Figure 1):

d4w(x)

dx4 +
k(x)

D
w(x) =

q(x)

D
; (2)

Figure 1. Variation of the Winkler coe�cient of the
foundation vs. position.
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k = k0 + �k
�

1� x
R

�
[1� u(x�R)]; (3)

in which k0 is the �xed-average of the Winkler coe�-
cient at points far away from x = 0. Also, �k is the
linear variation of the Winkler coe�cient and u(x) is
the step function. By using the Galerkin method, the
de
ection, w, could be represented as:

w = c0 +
NX
i=1

ci�i(x): (4)

And the error, due to substitution of this proposed
answer in Equation 1, is:

Error =
k
D
c0 � q(x)

D
+

NX
i=1

ci
�
d4�i(x)

dx4 +
k
D
�i(x)

�
:
(5)

While unknown ci's will be obtained by applying
Equation 5 in Equation 6:Z L

0
Error �j(x)dx = 0; j = 1; � � � ; N; (6)

Z L

0

k
D
c0�j(x)dx�

Z L

0

q(x)

D
�j(x)dx+

NX
i=1

ciMij = 0;

j = 1; � � � ; N; (7)

where:

Mij =
Z L

0

�
d4�i(x)

dx4 +
k
D
�i(x)

�
�j(x)dx; (8)

in which �i and �j are perpendicular functions that
satisfy the B.C.'s. If �i's are chosen so that:Z L

0
�i(x)�j(x)dx = k�ik2 �ij ;

d4�i(x)

dx4 = �4
i�i(x);

d2�i(x)

dx2 = ��2
i�i(x); (9)

�ij =

(
1 i = j
0 i 6= j

(10)

Then, Equation 8 can be simpli�ed by introducing the
following new variables, �I

ij(x) and �II
ij(x):

�I
ij(x) =

Z t

0
�i(t)�j(t)dt;

�II
ij(x) =

Z x

0
�I
ij(t)dt: (11)

Using Equations 3, 7, 8, 9 and 11 and integrating by
parts:

Mij =
Z L

0

�
d4�i(x)

dx4 +
k
D
�i(x)

�
�j(x)dx; (12a)

Mij =
�
�4
i +

k0

D

�
k�ik2 �ij

+
�k
D

Z R

0
(1� x

R
)�i(x)�j(X)dx; (12b)

Mij =
�
�4
i +

k0

D

�
k�ik2 �ij +

�k
RD

�II
ij(R): (12c)

Introducing �i(x) leads to the calculation of Mij and
unknown ci's from Equation 7, and the de
ection of
the strip at any location can be obtained by using
Equation 4.

EXAMPLE 1: STRIP UNDER UNIFORM
LATERAL LOADING ON THE SIMPLY
SUPPORTED EDGES

For a strip under uniform loading with simply support
B.C.'s, symmetrical assumption can be used to simplify
the solution procedure (Figure 2). The plate rests on
a Winkler foundation, but at the middle, there is a
line of rigidity under the plate (or a rigid point under
the beam). It can be shown easily that Equation 13
satis�es B.C.'s evidently:

�i = cos(�ix); �i =
2i� 1

2
�
L
: (13)

On the other hand, we can conclude from B.C.'s at
x = L that:

c0 = 0: (14)

Figure 2. Strip and its B.C.'s.



252 M. Mo�d and M. Noroozi

Therefore, from Equation 13:

k�k2 =
Z L

�
�2
i(x)dx =

L
2
; (15)

and:

�Iij(x) =
1
2

�
sin(�i + �j)x

(�i + �j)2 +
sin(�i � �j)x

(�i � �j)2

�
;

if i 6=j;

�Iij(x) =
1
2

�
sin(2�ix)

2�i
+ x
�
;

if i = j; (16)

Mii =
�
�4
i +

k0

D

�
L
2

+
�k
4D

R
�

1� cos(2�iR)
2(�iR)2 + 1

�
;

Mij=
�k
2D

R
�

1�cos(�i+�j)R
(�i+�j)2R2 +

1�cos(�i��j)R
(�i � �j)2R2

�
;

i 6= j: (17)

On the other hand, for uniform distribution of loading
q(x) = q0:

qi =
Z L

0

q(x)

D
�i(x)dx =

q0L
D

sin�iR
�iR

; i = 1; � � � ; N:
(18)

Solution [M ]fcig = fqig leads to calculating fcig i =
1; � � � ; N . De
ection at any point of the strip can be
obtained by using w =

P
ci�i(x).

SOLUTION FOR A GENERAL PLATE

The solution for a strip in the previous section can
be generalized to obtain a solution for a general plate.
The governing equation for a general plate resting on
a foundation is as follows:

@4w
@x4 + 2

@4w
@x2@y2 +

@4w
@y4 +

k
D
w =

q
D
; (19)

where w = w(x;y) is the de
ection of the plate with
dimensions a and b, q(x;y) is the distribution of lateral
force, and k = k(x;y) is the coe�cient of the elastic
foundation assumed to vary linearly such as the step
function as in Figure 3.

k(x;y) =k0 + �k
�

1� x
ra

��
1� y

rb

�
[1� u(x�ra)][1� u(y�rb)]: (20)

Obviously, increasing the value of �k in Equation 20
leads to an increase in the rigidity of the foundation

Figure 3. Variation of the coe�cient of the foundation
vs. position.

on domains ra and rb, which are the e�ective ranges of
the variation of k in x and y directions, respectively. If
these values are chosen very small, the foundation acts
like a rigid point under the plate and k0 is the average
constant value of k far from the center. Because of
the symmetrical conditions on the model, one fourth
of the plate has been considered. In a general case,
without symmetrical conditions, the model can be
entirely considered with a similar method.

If the de
ection of the plate is assumed to be as
follows:

w = c0 +
NX
i=1

NX
j=1

cij�ij(x;y)

= c0 +
NX
i=1

NX
j=1

cij�i(x)�j(y); (21)

then using the Galerkin method with weight functions
 m(x) and  n(x), the procedure can be followed as:

Error =
k
D
c0 � q

D

+
NX
i=1

NX
j=1

cij
�
r4�ij(x;y) +

k
D
�ij(x;y)

�
; (22)

ZZ
A

Error  m(x) n(y)dA = 0; (23)

ZZ
A

k
D
c0 m(x) n(y)dA�

ZZ
A

q(x;y)

D
 m(x) n(y)dA

+
NX
i=1

NX
j=1

cijMijmn = 0; (24)

in which Mijmn is represented as:
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Mijmn=
ZZ
A

�
r4�ij(x;y)+

k
D
�ij(x;y)

�
 m(x) n(y)dxdy:

(25)

Also, � and  are perpendicular functions that satisfy
B.C.'s.Z a

0
�i(x) m(x)dx = k�ik2 �im;Z a

0
�j(y) n(y)dx = k�jk2 �jn: (26)

On the other hand, these functions are chosen so that
they satisfy the following conditions:

d4�i(x)

dx4 = �4
i�i(x);

d2�i(x)

dx2 = ��2
i�i(x): (27)

Equations 27 also hold for  . By using Equations 20,
21, 26 and 27 and substituting them in Equation 25, it
can be shown that:

Mijmn =
ZZ
A

�
(�2
i + �2

j )
2 +

k
D

�
�i(x)�j(y) m(x) n(y)dxdy; (28)

which is equal to:

Mijmn =
�
(�2
i + �2

j )
2 +

k0

D

�
k�ik2 k�jk2 �im�jn

+ � � �+ �k
D

Z ra

0

Z rb

0

�
1� x

ra

��
1� y

rb

�
� �i(x)�j(y) m(x) n(y)dxdy: (29)

The integral in Equation 29 can be split as two parts
from x and y separately. By introducing new variables
�I
ij(x) and �II

ij(x) so that:

�I
im(x) =

Z x

0
�i(t) m(t)dt;

�I
jn(y) =

Z y

0
�j(t) n(t)dt;

�II
im(x) =

Z x

0
�I
im(t)dt;

�II
jn(y) =

Z y

0
�I
jn(t)dt; (30)

and integrating them by parts in Equation 28, it can
be concluded that:

Mijmn =
�
(�2
i + �2

j )
2 +

k0

D

�
k�ik2 k�jk2 �im�jn

+
�k
D

�II
im(ra)�

II
jn(rb): (31)

EXAMPLE 2: RECTANGULAR PLATE
UNDER UNIFORM LATERAL LOADING
WITH SIMPLY SUPPORTED EDGES

By considering one fourth of the plate under uniform
loading and symmetrical B.C.'s represented in Rela-
tions 32 and Figure 4, and by choosing � and  
functions, as given by Relations 33, the corresponding
values of �II and Mijmn can be calculated.

The B.C.'s of the plate due to symmetrical con-
ditions are presented as:

@w
@x
jx=0 =

@w
@y
jy=0 = 0 ;

@3w
@x3 jx=0 =

@3w
@y3 jy=0 = 0 ;

w(a; y) = w(x; b) = 0;

@2w
@x2 jx=a =

@2w
@y2 jy=b = 0 ; (32)

�i(x) = cos(�ix); �j(y) = cos(�jy);

 m(x) = cos(�mx);  n(y) = cos(�ny);

�p =
2p� 1

2
�

(a or b)
: (33)

Therefore:

k�ik2 =
a
2
; k�jk2 =

b
2
: (34)

And by using Equation 29:

�II
im(ra) =

r2
a
2

�
1� cos(�i + �m)ra

(�i + �m)2r2
a

+
1� cos(�i � �m)ra

(�i � �m)2r2
a

�
; if i 6= m;

�II
im(ra) =

r2
a
2

�
1�cos(2�ira)

2(�ira)2 +1
�
; if i=m: (35)

Figure 4. Plate and its B.C.'s.
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Relations 35 hold similarly for �II
jn(x). Therefore,

Mijmn can be obtained from Equation 31. Also, for
the uniform distribution of lateral force q(x;y) = q0,

qmn =
ZZ
A

q(x;y)

D
 m(x) n(y);

dA =
abq0

D
sin�mra
�mra

sin�nrb
�nrb

: (36)

Solving [Mijmn]fcijg = fqmng leads to �nd unknown
constants fcijg and a de
ection from Equation 21.

RESULTS AND DISCUSSION

The equation was solved using the described Galerkin
method for a numerical case and the results were
compared with answers from MATLAB 7.1 software,
while the answers agree with each other. Figure 5
shows a good approximation of the Galerkin solution in
comparison with the MATLAB 7.1 numerical solution,
for Example 1; while only 5 terms are used in the series
for driving the Galerkin solution. The de
ection of
the strip (or equivalent beam) is depicted versus the
position for the small rigidity, �k, of the foundation at
a small range, R

L = 1
1000 . The conditions at the center

do not a�ect the response due to small values of range
R and sti�ness �k. Furthermore, when the range,
R, of the foundation sti�ness increases (Figure 6),
the de
ection of the plate decreases as expected for
Example 1. Also, Figure 7 illustrates the e�ect of the
rigidity at a point. When the sti�ness greatly increases
at a point, that particular point will act as a rigid-point
foundation and the de
ection approaches zero at that
point (as expected).

Similar results are also found for the general plate
in Example 2. Figure 8 illustrates the plate behavior

Figure 5. Comparison between Galerkin's solution and
MATLAB answer of the strip in Example 1 for
R=L = 1=1000.

Figure 6. E�ects of the various ranges on the de
ection
of the strip in Example 1.

Figure 7. E�ects of the various coe�cients on the
de
ection for the strip in Example 1.

and has been non-scaled for clarity. The de
ection is
zero at the supported edges, x = a and y = b, and has
a small value at the rigid point, x = y = 0. Increasing
the rigidity at this point leads to a lessening of the
prescribed de
ection toward zero.

CONCLUSION

An improved version of the Winkler elastic foundation
theory is proposed with the variable coe�cients. Based
on this proposed model, the foundation is assumed
to be non-uniform (as in the Winkler foundation
theory with a variable coe�cient) as a function of the
position. This model enables the foundation to act
more interestingly by having rigid points in its domain
or as multi-segmented with multiple sti�ness constants
to consider the non-uniform behavior of the foundation.
Various functionalities of foundation sti�ness versus
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Figure 8. De
ection of a plate in Example 2 under
uniform loading with a rigid-point foundation at the
center for k0 = 10e6, �k = 1e14 and ra = rb = a=1000.

domain seem to be a very interesting aspect within the
�eld of foundation-plate consideration.

NOMENCLATURE

E = 70 (GPa) Young's modulus
� = 0:3 Poisson ratio
h = 5e� 3 (m) Plate thickness
L = 1 (m) half length of the strip
a = 1 (m) half length of the plate in x span
b = 1 (m) half length of the plate in y span
ra = a=1000 e�ective range of the variation of k in

x span
rb = b=1000 e�ective range of the variation of k in

y span
k0 (N/m3) average Winkler coe�cient at

in�nity
�k (N/m3) variations of Winkler

coe�cient
q = 1000 (N/m2) distributed lateral load
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