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Using Binary Particle Swarm
Optimization for Minimization Analysis
of Large-Scale Network Attack Graphs

M. Abadi1 and S. Jalili1;�

The aim of the minimization analysis of network attack graphs (NAGs) is to �nd a minimum
critical set of exploits so that by preventing them an intruder cannot reach his goal using
any attack scenario. This problem is, in fact, a constrained optimization problem. In this
paper, a binary particle swarm optimization algorithm, called SwarmNAG, is presented for the
minimization analysis of large-scale network attack graphs. A penalty function method with a
time-varying penalty coe�cient is used to convert the constrained optimization problem into
an unconstrained problem. Also, a time-varying velocity clamping, a greedy mutation operator
and a local search heuristic are used to improve the overall performance of the algorithm. The
performance of the SwarmNAG is compared with that of an approximation algorithm for the
minimization analysis of several large-scale network attack graphs. The results of the experiments
show that the SwarmNAG outperforms the approximation algorithm and �nds a critical set of
exploits with less cardinality.

Keywords: Particle swarm optimization; Constrained optimization; Penalty function method;
Local search; Network attack graph.

INTRODUCTION

When evaluating the security of a network, it is rarely
enough to consider the presence or absence of isolated
vulnerabilities. This is because intruders often combine
exploits against multiple vulnerabilities in order to
reach their goals [1]. For example, an intruder might
exploit the vulnerability of a particular version of FTP
to overwrite the .rhosts �le on a victim host. Next,
the intruder could remotely login to the victim and,
subsequently, the intruder could use the victim host as
a base from which to launch another exploit on a new
victim and so on.

Phillips and Swiler [2] proposed the concept of
attack graphs, where each node represents a possible
attack state. Edges represent a change of state caused
by a single action taken by the intruder.
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Sheyner et al. [3] and Jha et al. [4,5] used a
modi�ed version of the model checker NuSMV [6] to
produce attack graphs. Ammann et al. [7] introduced
a monotonicity assumption and applied it to develop
a polynomial algorithm to encode all of the edges in
an attack graph without actually computing the graph
itself. These attack graphs are essentially similar to [2],
where any path in the graph, from an initial node to a
goal node, shows a sequence of exploits that an intruder
can launch in order to reach his goal.

Noel et al. [8] presented a number of techniques
for managing attack graph complexity through visual-
ization.

Mehta et al. [9] presented a ranking scheme for the
nodes of an attack graph. The rank of a node shows its
importance, based on factors like the probability of an
intruder reaching that node. Given a ranked attack
graph, the system administrator can concentrate on
relevant subgraphs to �gure out how to start deploying
security measures.

The aim of the minimization analysis of attack
graphs is to �nd a minimum critical set of exploits
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that completely disconnect the initial nodes and the
goal nodes of the graph. Sheyner et al. [3] and Jha
et al. [4,5] showed that this problem is, in fact, NP -
hard. They proposed an approximation algorithm that
can �nd an approximately-optimal set of exploits that
must be prevented to thwart an intruder. While it is
currently possible to generate very large and complex
network attack graphs, relatively little work has been
done regarding their analysis.

Particle swarm optimization (PSO) is a swarm
intelligence method that models social behaviour to
guide swarms of particles towards the most promising
regions of the search space [10,11] and has proved to
be e�cient at solving engineering problems [12-15].

The problem of the minimization analysis of
network attack graphs is, in fact, a constrained opti-
mization problem, in which the objective is to �nd a
solution with minimum cardinality, and the constraint
is that the solution must be critical (i.e., it must hit
all attack scenarios). The most common approach in
solving constrained optimization problems is the use of
a penalty function method, which adds a penalty to
the objective function in order to discourage infeasible
areas of the search space being searched [16].

In this paper, a binary PSO algorithm, called
SwarmNAG, is presented for the minimization analysis
of large-scale network attack graphs (NAGs). The per-
formance of the SwarmNAG is also compared with that
of the approximation algorithm proposed by Sheyner et
al. [3] and Jha et al. [4,5], in order to analyze several
large-scale network attack graphs.

The remainder of this paper is organized as
follows: First, an overview of PSO is provided, then,
the network security model is introduced followed
by a description of network attack graphs. There
is a presentation of the SwarmNAG followed by a
description of the di�erent measures used to evaluate
its performance. Finally, the experimental results are
reported, followed by some conclusions.

PARTICLE SWARM OPTIMIZATION

Particle swarm optimization (PSO) is a population
based stochastic optimization algorithm developed by
Kennedy and Eberhart [10]. It was inspired by the
social behavior of ocks of birds when searching for
food. In PSO, the potential solutions, called parti-
cles, y through the problem space looking for better
regions. The position of a particle is inuenced by
its best visited position and the position of the best
particle in its neighborhood. When the neighborhood
of a particle is the entire swarm, the best position
in the neighborhood is referred to as the global best
particle and the resulting algorithm is referred to as a
gbest PSO. When smaller neighborhoods are used, the
algorithm is generally referred to as a lbest PSO.

The performance of each particle is measured by
a prede�ned �tness function, which is related to the
problem to be solved. Each particle in the swarm
has a current position, xi, a velocity (rate of position
change), vi, and a personal best position, yi. The
personal best position of particle i shows the best
�tness reached by that particle at a given time. Let
f be the objective function to be maximized, then, the
personal best position of a particle at iteration or time
step t is updated as follows:

yi(t) =

(
yi(t� 1) if f(xi(t)) � f(yi(t� 1))
xi(t) if f(xi(t)) > f(yi(t� 1))

(1)

For the gbest model, the global best position is de-
termined from the entire swarm by selecting the best
personal best position. This position is denoted by ŷ.

The equation that manipulates the velocity is
called the velocity update equation and is stated as
follows:

vij(t+ 1) = vij(t) + c1r1j(t)(yij(t)� xij(t))
+ c2r2j(t)(ŷj(t)� xij(t)); (2)

where vij(t+ 1) is the velocity updated for the jth di-
mension, j = 1; 2; � � � ; d. c1 and c2 are the acceleration
constants, where the �rst moderates the maximum step
size towards the personal best position of the particle,
while the second moderates the maximum step size
towards the global best position in just one iteration.
r1j(t) and r2j(t) are two random values in the range
[0; 1] which give the PSO algorithm a stochastic search
property.

The velocity update equation consists of the
following three components:

� The inertia component, which serves as a memory of
the previous ight direction, i.e. movement in the
immediate past;

� The cognitive component, which quanti�es the per-
formance of particle i relative to past performances.
In a sense, the cognitive component resembles indi-
vidual memory of the position that was best for the
particle;

� The social component, which quanti�es the perfor-
mance of particle i relative to a group of particles.
The e�ect of the social component is that each
particle is also drawn towards the best position
found by the particle's neighbourhood.

Velocity updates on each dimension can be
clamped with a user de�ned maximum velocity, Vmax,
which would prevent them from exploding, thereby
causing premature convergence [17,18].
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Each particle updates its position using the fol-
lowing equation:
xi(t+ 1) = xi(t) + vi(t+ 1): (3)

In swarm terminology, particle i is ying to its new
position, xi(t+ 1). After the new position is calculated
for each particle, the iteration counter increases and
the new particle positions are evaluated. This process
is repeated until some convergence criteria are satis�ed.

Binary Particle Swarm Optimization

Kennedy and Eberhart [19] have adapted the PSO
to search in binary spaces. For the binary PSO, the
elements of xi, yi and ŷ can only take the values 0
and 1. The velocity, vi, is interpreted as a probability
to change a bit from 0 to 1, or from 1 to 0, when
updating the position of particles. Therefore, the
velocity vector remains continuous-valued. Since each
vij is a real value, a mapping needs to be de�ned from
vij to a probability in the range [0; 1]. This is done
using a sigmoid function to squash velocities into the
[0; 1] range. The sigmoid function is de�ned as follows:

sig(v) =
1

1 + e�v : (4)

The equation for updating positions is then replaced
by the following probabilistic update equation:

xij(t+ 1) =

(
0 if r3j(t) � sig(vij(t+ 1))
1 if r3j(t) < sig(vij(t+ 1))

(5)

where r3j(t) is a random value in the range [0; 1].
In binary PSO, the meaning and behavior of

velocity clamping di�er substantially from the real-
valued PSO [16]. With the velocity interpreted as
a probability of change, velocity clamping sets the
minimal probability for a bit to change its value from
0 to 1, or from 1 to 0. For example, if Vmax = 4
and vij is clamped with Vmax, then sig(vij) = 0:982
is the probability of xij to change to 1, and 0.018
the probability to change to 0. Velocity clamping,
therefore, has a meaning very similar to the mutation
rate in genetic algorithms [16].

In this paper, the gbest model of binary PSO is
used for the minimization analysis of network attack
graphs.

NETWORK SECURITY MODEL

The network security model is a tuple (S, H, C, T , E,
R, IDS), where S is a set of services, H is a set of hosts
connected to the network, C is a relation expressing
connectivities among hosts, T is a relation expressing
trust between hosts, E is a set of individual known
exploits that an intruder can use to construct attack
scenarios, R is a model of an intruder and IDS is a
model of the intrusion detection system.

Services

Each service s 2 S is a pair, (svn; p), where svn is the
service name and p is the port on which the service is
listening.

Hosts

Each host h 2 H is a tuple, (id; svcs; plvl; vuls), where
id is a unique host identi�er, svcs is a set of services
running on the host, plvl is the level of privilege that
the intruder has on the host and vuls is a set of host-
speci�c vulnerable components. For simplicity, only
three privilege levels are considered: None, user and
root.

Network Connectivities

Network connectivities are expressed as a relation,
C � H � H � P , where P is a set of port numbers.
Each network connectivity c 2 C is a triple, (hs,ht,p),
where hs is the source host, ht is the target host and p
is the target port number. Note that the connectivity
relation incorporates the network elements, such as
�rewalls, that restrict the ability of one host to connect
to another.

Trust Relationships

Trust relationships are modeled as a relation T � H �
H, where T (ht; hs) indicates that a user may log in
from host hs to host ht without authentication.

Exploits

Each exploit e 2 E is a tuple, (pre, hs, ht, post),
where pre is a list of conditions that must hold before
launching the exploit, hs is the host from which the
exploit is launched, ht is the host targeted by the
exploit and post speci�es the e�ects of the exploit on
the network.

An exploit e 2 E is inevitable if its prevention is
not feasible or incurs high cost. The set of inevitable
exploits is denoted by I.

Intruder

The intruder has some information about the target
network, such as known vulnerabilities, user passwords
and information gathered with port scans, etc.

Intrusion Detection System

Exploits are classi�ed as being detectable or unde-
tectable, with respect to the intrusion detection system
(IDS). If an exploit is detectable, it will trigger an alarm
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when executed on a host or network segment monitored
by the IDS.

NETWORK ATTACK GRAPHS

Let E be the set of exploits. A network attack graph
is a tuple, G = (V;A; V0; Vf ; L), where V is the set of
nodes, A is the set of directed edges, V0 � V is the
set of initial nodes, Vf � V is the set of goal nodes
and L : A! E is a labelling function, where L(a) = e
if, and only if, an edge a = (v; v0) corresponds to an
exploit, e. A path, �, in G is a sequence of nodes,
v1; v2; � � � ; vm, such that vi 2 V and (vi; vi+1) 2 A,
where 1 � i < m. The label of path � is a subset of the
set of exploits E. Each attack scenario corresponds to
a complete path that starts from an initial node and
ends in a goal node.

A typical process for generating a network attack
graph is shown in Figure 1. First, vulnerability
scanning tools, such as Nessus [20], determine the vul-
nerabilities of individual hosts. Using this vulnerability
information, along with exploit templates, intruder
goals and other information about the network, such as
connectivity between hosts, a network attack graph is
generated. In this directed graph, each complete path,
from an initial node to a goal node, corresponds to an
attack scenario.

Let E = fe1; e2; � � � ; eng be the set of ex-
ploits, I be the set of inevitable exploits and S =
fS1; S2; � � � ; Slg be the set of attack scenarios, repre-
sented by the network attack graph, G. The attack
scenario, Sk 2 S, is hit by the exploit, ej 2 E, if
ej 2 Sk.

For each exploit, ej 2 E, the total hit value,
hvt(ej), is de�ned as being the number of attack
scenarios that are hit by ej .

hvt(ej) = jfSk 2 Sjej 2 Skgj : (6)

Let U � E be a subset of exploits and hs(U) be the

Figure 1. The process of generating a network attack
graph.

set of attack scenarios hit by the exploits in U .

hs(U) = fSk 2 Sjej 2 Sk for some ej 2 Ug: (7)

An exploit, ej , is redundant, with respect to U , if
hs(Unfejg) = hs(U).

For each exploit, ej =2 U , the partial hit value,
hvp(ej ; U), is de�ned as being the number of attack
scenarios that are hit by ej , but that are not hit by
any exploit in U .

hvp(ej ; U) = jfSk 2 Sjej 2 Sk ^ Sk =2 hs(U)gj : (8)

A subset of exploits, CR � EnI, is critical if, and only
if, the intruder cannot reach his goal when the exploits
in CR are removed from his arsenal. Equivalently, CR
is critical if, and only if, every complete path from an
initial node to a goal node of the network attack graph
has at least one edge labeled with an exploit, ej 2 CR.
A critical set of exploits is minimal if it contains no
redundant exploit.

A critical set of exploits, CR, is minimum if there
is no critical set of exploits, CR0, such that jCR0j <
jCRj.

The aim of the minimization analysis of a network
attack graph is to �nd a minimum critical set of exploits
that must be prevented to guarantee no possible attack
scenario. To prevent an exploit, the security analyst
may change the �rewall con�guration or patch the
vulnerabilities that made this exploit possible.

SWARMNAG

In this section, SwarmNAG, a binary PSO algorithm
for the minimization analysis of large-scale network at-
tack graphs, is presented. The aim of the minimization
analysis of a network attack graph is to �nd a minimum
critical set of exploits. Any solution must be a critical
set and its cardinality must be minimal.

Figure 2 shows the pseudo-code of the Swarm-
NAG algorithm. The �rst step is to initialize the swarm
and control parameters, then, repeated iterations of
the algorithm are executed until some termination
condition is met (e.g., a maximum number of iterations
is reached). Within each iteration, if each particle's
current position, xi, does not represent a critical set
of exploits, a greedy mutation operator is applied to
it with probability Pg. Then, redundant exploits of
xi are eliminated. After that, with probability Pl,
a local search heuristic is applied to xi, in order to
improve it. Then, the particle's personal best position,
yi, is updated. The global best position, ŷ, is then
determined from the entire swarm by selecting the best
personal best position. Finally, the velocity and the
position of each particle are updated, using Equations 2
and 5.

It should be mentioned that, in Figure 2, U(0; 1)
is a uniform random number between 0 and 1.
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Figure 2. The SwarmNAG algorithm.

Problem Representation

Let E = fe1; e2; � � � ; eng be the set of preventable
exploits. Each particle position, xi, corresponds to an
n-bit vector, (xi1; xi2; � � � ; xin), and represents a subset
of exploits, Ei � E, in which the exploit ej 2 Ei if, and
only if, the element xij = 1.

Ei = fej 2 Ejxij = 1g: (9)

Let S = fS1; S2; � � � ; Slg be the set of attack
scenarios represented by the network attack graph.
The attack scenario Sk 2 S is hit by the particle
position xi, if Sk \Ei 6= ;. The set of attack scenarios
hit by xi is denoted by Ai.

Ai = fSk 2 SjSk \ Ei 6= ;g: (10)

The particle position xi represents a critical set of
exploits if all attack scenarios are hit by it.

The aim of the minimization analysis of a network
attack graph is to �nd a minimum critical set of
exploits. This problem is a constrained optimization
problem, in which the objective is to �nd a solution
with minimum cardinality, and the constraint is that
the solution must be critical (i.e., it must hit all
attack scenarios). Hence, the SwarmNAG uses the
following objective function to evaluate the �tness of
each particle position xi:

f(xi) = z(xi) + �:h(xi); (11)

where z(xi) is the number of elements, xij , in particle
position xi, which are zero. The higher the value of

z(xi), the smaller the cardinality of the set of exploits
represented by xi:

z(xi) = jEj � jEij : (12)

h(xi) is the number of attack scenarios hit by particle
position xi:

h(xi) = jAij ; (13)

and � is the penalty coe�cient. If � is too small, not
enough emphasis is placed on preventing violation of
the constraint. Hence, non-critical solutions may then
be found. On the other hand, if � is too large, the
algorithm may get trapped in local optima.

Accordingly, a time-varying penalty coe�cient is
used, where an initially small penalty coe�cient is
linearly increased to a large value:

�(t) = �(0) + (�(tmax)� �(0))
t

tmax
; (14)

where tmax is the maximum number of iterations for
which the algorithm is executed, �(0) is the initial
penalty coe�cient, �(tmax) is the �nal penalty coef-
�cient and �(t) is the penalty coe�cient at iteration
t. Note that �(0) < �(tmax). Typically, the penalty
coe�cient is set to 0:1 � � � 1:9.

Time-Varying Velocity Clamping (TVVC)

In binary PSO, the velocity is interpreted as a proba-
bility of change. Hence, the velocity clamping sets the
minimal probability for a bit to change its value [16].

If Vmax is a small value, it provides a bigger
chance for a bit to change its value (i.e., exploring the
search space), while, if Vmax is large, it allows particles
to converge on a solution (i.e., exploiting the search
space). Accordingly, a time-varying velocity clamping
is used:

Vmax(t)=Vmax(0)+(Vmax(tmax)�Vmax(0))
t

tmax
;

(15)

where tmax is the maximum number of iterations,
Vmax(0) is the initial velocity clamping, Vmax(tmax) is
the �nal velocity clamping and Vmax(t) is the velocity
clamping at iteration t.

In following sections, the e�ect of time-varying ve-
locity clamping on the performance of the SwarmNAG
will be shown.

Greedy Mutation

At each iteration, if each particle's current position, xi,
does not represent a critical set of exploits, a greedy
mutation operator is applied to it with probability Pg.
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Figure 3. The greedy mutation operator.

As shown in Figure 3, the greedy mutation �rst
chooses an exploit, ek =2 Ei, that has the maximum
partial hit value, hvp(ek; Ei), then adds it to Ei and
changes the value of its corresponding element, xik of
xi, to 1.

The greedy mutation uses heuristic information
and helps the algorithm to choose exploits that have
more hits with attack scenarios.

Elimination of Redundant Exploits

The set of exploits represented by particle position
xi may contain redundant exploits, which must be
eliminated.

Let Ei be the set of exploits represented by xi
and Ai be the set of attack scenarios hit by xi. For
each exploit, ej , the exclusive hit value, hvx(ej ; Ei; Ai),
is de�ned as being the number of attack scenarios,
Sk 2 Ai, that are hit by ej , but that are not hit by any
exploit in Einfejg. The exploit, ej , is called candidate
redundant, with respect to Ei, if hvx(ej ; Ei; Ai) =
0. The set of candidate redundant exploits of Ei is
denoted by Ri.

Ri = fej 2 Eijhvx(ej ; Ei; Ai) = 0g : (16)

The exclusive hit value is used to de�ne the
selection value, sv(ej ; Ei), of a candidate redundant
exploit, ej 2 Ri.
sv(ej ; Ei) =

X
ek2Einfejg

hvx(ek; Einfejg; Ai): (17)

The selection value is used to evaluate the candi-
date redundant exploits of a set of exploits, in order to
choose a candidate redundant exploit for removal from
it.

In Figure 4, an algorithm is presented, which
can be used to eliminate redundant exploits of xi.
The algorithm is based on the idea that it is good to
remove an exploit, ek, from Ei, if ek is a candidate
redundant exploit and hits attack scenarios that are hit
by too many other exploits in Ei. Hence, the algorithm
removes at each step a candidate redundant exploit

Figure 4. The procedure of eliminating redundant
exploits.

that has the minimum selection value. This is repeated
until a set of exploits without redundant exploits is
obtained.

Local Search Heuristic

It has been shown in many empirical studies that global
optimization algorithms lack exploitation abilities in
later stages of the optimization process. This is also
true for the basic PSO, as shown in [21-23]. How-
ever, it provides mechanisms to balance exploration
and exploitation through proper setting of the inertia
weight, acceleration coe�cients and velocity clamping.
Many variations of the basic PSO have been proposed
to address this problem [16]. Most of them �rst allow
the algorithm to explore new regions and, when a good
region is located, allow the algorithm to exploit the
search space to re�ne solutions. This is a sequential
approach to balancing exploration and exploitation.

Another approach is to embed a local optimizer
in between iterations of the global search heuristics.
By doing this, exploration and exploitation occur in
parallel [16]. Such hybrids of local and global search
heuristics have been studied extensively in the evolu-
tionary computation paradigm [24] and are generally
referred to as memetic algorithms [25].

Al-Kazemi and Mohan [26] implemented a basic
hill-climbing heuristic in their multi-phase PSO. Parti-
cle positions are only updated if the new position im-
proves on the �tness of the previous position. Yin [27]
used a basic hill-climbing heuristic within a discrete
PSO to �nd the optimal set of polygons to approximate
digital curves. In this approach, each vertex of the
polygons is adjusted sequentially to see if a better
�tness is obtained.

In the SwarmNAG, a local search heuristic is
probabilistically applied to the current position of each
particle to improve them, before their personal best
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Figure 5. The local search heuristic procedure.

positions are updated. The probability of a local search
heuristic is denoted by Pl.

The local search heuristic is based on the following
idea: Given a particle position, xi, and its correspond-
ing subset of exploits, Ei, suppose there is an exploit,
ek =2 Ei, such that Ei [ fekg contains at least two
exploits other than ek, say ej1 ; � � � ; ejl , with l � 2 that
are redundant. Then, (Einfej1 ; � � � ; ejlg) [ fekg is a
better subset of exploits than Ei. The gain of exploit
ek, with respect to Ei, is g(ek) = l� 1. In this case, ek
is called a candidate dominant exploit.

As shown in Figure 5, the local search heuristic
�rst chooses a candidate dominant exploit ek and
changes its corresponding element, xik, to 1. It then
eliminates the redundant exploits of the new position,
using the algorithm already presented for eliminating
redundant exploits. This process is repeated until no
further improvement is possible.

PERFORMANCE MEASURES

This section presents two di�erent measures used to
evaluate the performance of the SwarmNAG.

Accuracy

Accuracy refers to the quality of the solution obtained,
which is represented by the global best solution. The
accuracy of the swarm at iteration t is simply the �tness
of the global best position,

accuracy(t) = f(ŷ(t)); (18)

where ŷ(t) is the global best position at iteration t.

Diversity

Diversity is an important measure that may be used to
describe the amount of exploration a PSO algorithm
still performs and to detect stagnation situations.
Large diversity implies that a large area of the search
space can be explored. In simple terms, diversity can

be de�ned as the degree of dispersion of particles. A
diversity measure is de�ned based on the Hamming
distance between particle positions in the swarm,

diversity(t) =
2

ns(ns�1)

nsX
i=1

nsX
j=i+1

H(xi(t); xj(t));
(19)

where ns is the swarm size and H(xi(t); xj(t)) is the
number of di�erent bits between the particle positions,
xi and xj , at iteration t.

EXPERIMENTS

In order to evaluate the performance of the Swarm-
NAG, the experiments were performed over a sample
network attack graph and several randomly generated
large-scale network attack graphs.

Sample Network Attack Graph

Consider the network shown in Figure 6. There
are three target hosts, called RedHat, Windows and
Fedora, on an internal network and a host, called
PublicServer, on an isolated demilitarized zone (DMZ)
network. One �rewall separates the internal network
from the DMZ and another �rewall separates the DMZ
from the rest of the Internet.

A number of services are running on each of
the hosts of RedHat, Windows, Fedora and Public-
Server. Also, each of the above hosts has a number
of vulnerabilities. Vulnerability scanning tools, such as
Nessus [20], can be used to �nd the vulnerabilities of
each host.

In Table A1 of Appendix A, di�erent types of
services and vulnerabilities available on the network
hosts are introduced.

The RedHat host on the internal network is
running FTP and SSH services. The Fedora host is
running several services: LICQ chat software, Squid
web proxy, FTP and a database. The LICQ client
lets Linux users exchange text messages over the
Internet and the Squid web proxy is a full-featured

Figure 6. An example network.
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web proxy cache that stores requested Internet objects
on a system closer to the requesting site than to the
source. Web browsers can then use the local Squid
cache as a proxy server, reducing access time, as well
as bandwidth consumption. The PublicServer host on
the DMZ network is running IIS and Exchange services.

The connectivity information among the network
hosts is shown in Table 1. In this table, each entry
corresponds to a pair of (hs, ht), in which hs is the
source host and ht is the target host. Every entry has
�ve Boolean values. These values are `T', if host hs can
connect to host ht on the ports of http, licq, ftp, ssh
and smtp, respectively.

The intruder launches his attack starting from a
single host, Intruder, which lies on the outside network.
His goal is to disrupt the database service on the host
Fedora and, to achieve this goal, the intruder should
gain the root privilege on this host.

There are wdir, fshell and sshd bof vulnerabilities
on the RedHat host, scripting vulnerability on the
Windows host, wdir, fshell, squid conf and licq ivv
vulnerabilities on the Fedora host and iis bof and
exchange ivv on the PublicServer host. Also, at and
xterm programs on the RedHat and Fedora are vulner-
able to bu�er overow.

The intruder can use ten generic exploits. In
Appendix B, the description of each generic exploit is
given in Table B1, and in Table B2 each generic exploit
is represented by its preconditions and postconditions.
More information about each of the exploits is available
in [28]. Before an exploit can be used, its preconditions
must be met. Each exploit will increase the network
vulnerability if it is successful.

Among the ten generic exploits shown in Ta-
ble B2, the �rst eight generic exploits require a pair of
hosts and the last two generic exploits require only one
host. Therefore, there are 8�5�4+2�4 = 168 exploits in
total, which the intruder can try. Each attack scenario
for the above network consists of a subset of these 168
exploits. For example, consider the following attack
scenario:

1. iis r2r(Intruder, PublicServer);
2. squid ps(PublicServer, Fedora);
3. licq r2u(PublicServer, Fedora);
4. xterm u2r(Fedora, Fedora).

The intruder �rst launches the iis r2r exploit to
gain root privilege on the PublicServer host. Then, he
uses the PublicServer host to launch a port scan via
the vulnerable Squid web proxy running on the Fedora
host. The scan discovers that it is possible to gain user
privilege on the Fedora host by launching the licq r2u
exploit. After that, a simple local bu�er overow gives
the intruder root privilege on the Fedora host.

The attack graph for the above network consists
of 164 attack scenarios. Each attack scenario consists
of between 4 to 9 exploits.

Experimental Results

The SwarmNAG was applied for the minimization anal-
ysis of the above network attack graph. To evaluate the
performance of the algorithm, several experiments were
performed. In the �rst experiment, it was assumed
that all exploits are preventable. Therefore, the aim
was to �nd a minimum critical set of exploits among
168 exploits. Using the SwarmNAG, the following
minimum critical set of exploits was found:

CR = fiis r2r(Intruder,PublicServer),

exchange r2u(Intruder, PublicServer)g:
In the second experiment, it was assumed that the
generic exploits, iis r2r, exchange r2u and xterm u2r,
are inevitable, i.e., the prevention of them is not feasi-
ble or incurs high cost. Therefore, the aim was to �nd
a minimum critical set of exploits among 124 exploits.
Using the SwarmNAG, the following minimum critical
set of exploits was found:

CR = flicq r2u(PublicServer, Fedora),

licq r2u(RedHat, Fedora),

script r2u(PublicServer, Windows),

ftp rhosts(PublicServer, Fedora),

ftp rhosts(RedHat, Fedora)g:
It should be mentioned that the exact cardinality of
the minimum critical set of exploits for this network

Table 1. Network connectivity information.

Host Intruder PublicServer RedHat Windows Fedora
Intruder F,F,F,F,F T,F,F,F,T F,F,F,F,F F,F,F,F,F F,F,F,F,F

PublicServer F,F,F,F,F T,F,F,F,T F,F,T,T,F F,F,F,F,F T,T,T,F,F
RedHat F,F,F,F,F T,F,F,F,T F,F,T,T,F F,F,F,F,F T,T,T,F,F

Windows F,F,F,F,F T,F,F,F,T F,F,T,T,F F,F,F,F,F T,T,T,F,F
Fedora F,F,F,F,F T,F,F,F,T F,F,T,T,F F,F,F,F,F T,T,T,F,F
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attack graph is 5, so, the above critical set of exploits
found by the SwarmNAG is minimum. While using the
approximation algorithm proposed by Sheyner et al. [3]
and Jha et al. [4,5], the following minimum critical set
of exploits was found:

CR = fscript r2u(PublicServer, Windows);

at u2r(Fedora, Fedora);

sshd r2u(PublicServer, RedHat);

ftp rhosts(PublicServer, RedHat);

squid ps(PublicServer, Fedora);

ftp rhosts(PublicServer, Fedora)g:
The second experiment shows that SwarmNAG can
�nd a critical set of exploits with less cardinality.

In the experiments, the parameters were set to
c1 = 2 and c2 = 2, which are values commonly used in
the binary PSO literature. The swarm size was set to
m = 15 and the maximum number of iterations was set
to 150. The penalty coe�cient was set to 0:1 � � � 1:9
and the velocity clamping was set to 2 � Vmax � 4:5.
The probability of greedy mutation and the probability
of local search were set to Pg = 0:90 and Pl = 0:90,
respectively.

Large-Scale Network Attack Graphs

A large computer network builds upon multiple plat-
forms, runs di�erent software packages and supports
several modes of connectivity. Despite the best e�orts
of software architects and developers, each network
host inevitably contains a number of vulnerabilities.

Several factors can make network attack graphs
larger, so that �nding a minimum critical set of
exploits becomes more di�cult. An obvious factor is
the size of the network under analysis. Society has
become increasingly dependent on computer networks
and the trend towards larger networks will continue.
For example, there are enterprises today consisting of
tens of thousands of network hosts. Also, less secure
networks clearly have larger network attack graphs.
Each network host might have several exploitable vul-
nerabilities. When considered across a large enterprise,
network attack graphs become potentially large [29].

In order to further evaluate the performance of
the SwarmNAG, 12 large-scale network attack graphs,
denoted by NAG1;NAG2; � � � ;NAG12, were generated.
For each network attack graph, di�erent values for
the cardinalities of E and S were considered, where
E is the set of known exploits and S is the set of
attack scenarios represented by the network attack
graph. In NAG1; � � � ;NAG6, attack scenarios consist
of between 3 to 9 exploits, while in NAG7; � � � ;NAG12,
attack scenarios consist of between 3 to 12 exploits.
Table 2 shows the cardinality of the set of known
exploits, the cardinality of the set of attack scenarios
and the average cardinality of attack scenarios for each
generated large-scale network attack graph.

Experimental Results

The SwarmNAG was applied for the minimization anal-
ysis of the above large-scale network attack graphs. 10
runs of each algorithm were performed, with di�erent
random seeds, and the best cardinality and the average
cardinality of the critical sets of exploits obtained
from these 10 runs were reported. The approximation
algorithm proposed by Sheyner et al. [3] and Jha et

Table 2. Large-scale network attack graphs.

Network
Attack
Graph

Cardinality
of the Set of

Exploits (jEj)

Cardinality of
the Set of Attack

Scenarios (jSj)

Average
Cardinality of

Attack Scenarios
NAG1 100 1000 5.93
NAG2 200 2000 6.01
NAG3 400 4000 5.99
NAG4 400 6000 5.99
NAG5 600 6000 6.03
NAG6 600 8000 5.95
NAG7 100 1000 7.56
NAG8 200 2000 7.55
NAG9 400 4000 7.52
NAG10 400 6000 7.48
NAG11 600 6000 7.53
NAG12 600 8000 7.55
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Table 3. The cardinality of critical set of exploits.

Network SwarmNAG SwarmNAG Approximation
Attack Without LS Algorithm
Graph Best Average Best Average [3-5]

NAG1 44 45.1 45 46.3 50

NAG2 88 89.3 90 90.9 98

NAG3 177 180.2 181 185.1 197

NAG4 198 202.1 206 208 221

NAG5 269 273 282 283.6 296

NAG6 294 297.2 306 309.7 317

NAG7 39 39.8 39 40.5 45

NAG8 81 82.3 81 83.8 91

NAG9 159 162.4 165 168.3 182

NAG10 181 183.8 185 189.4 200

NAG11 243 246.1 252 255.3 267

NAG12 264 266.3 273 277.2 293

al. [4,5] was also applied to analyze the above network
attack graphs. Table 3 shows the results.

As shown in Table 3, the SwarmNAG outperforms
the approximation algorithm and �nds a critical set of
exploits with less cardinality. Also, the SwarmNAG
performs better than the SwarmNAG without the local
search heuristic.

In the experiments, the parameters were set to
c1 = 2 and c2 = 2, which are values commonly
used in binary PSO literature. The swarm size was
set to m = 15, the penalty coe�cient was set to
0:1 � � � 1:9 and the velocity clamping was set to
2 � Vmax � 4:5. The probability of greedy mutation
and the probability of local search were set to Pg = 0:90
and Pl = 0:90, respectively. Also, the maximum
number of iterations was set to 150 for the minimization
analysis of NAG1 and NAG7, 300 for the minimization
analysis of NAG2 and NAG8, 600 for the minimizatoin
analysis of NAG3, NAG4, NAG9 and NAG10, and 900
for the minimizatoin analysis of NAG5, NAG6, NAG11
and NAG12.

Figures 7 and 8 show the progress of the number
of attack scenarios hit by the global best position of the
best run and the number of exploits corresponding to
that position in the experiments for the minimizatoin
analysis of NAG4 and NAG11, respectively. The
number of attack scenarios hit by the global best
position is expected to be as large as possible, while
the number of exploits corresponding to that position
is expected to be as small as possible.

As mentioned before, diversity is an important
measure that may be used to describe the amount of
exploration a PSO algorithm performs. Large diversity
implies that a large area of the search space can be
explored.

Figures 9 to 11 show the average diversity of
the SwarmNAG and the SwarmNAG without TVVC,
obtained from 10 runs of the SwarmNAG and 10 runs of
the SwarmNAG without TVVC in the experiments for
the minimizatoin analysis of NAG3, NAG8 and NAG11,
respectively. For the SwarmNAG without TVVC, the
velocity clamping was �xed to Vmax = 4.

As Figures 9 to 11 show, the SwarmNAG explores
the search space better than the SwarmNAG without
TVVC.

Figure 12 shows the progress of the average num-
ber of attack scenarios hit by the global best position
and the average number of exploits corresponding to
that position, obtained from 10 runs of the SwarmNAG
and 10 runs of the SwarmNAG without TVVC in the
experiment for the minimizatoin analysis of NAG11.

As the above �gures show, the SwarmNAG per-
forms better than the SwarmNAG without TVVC and
�nds a critical set of exploits with less cardinality.

CONCLUSIONS

Each attack scenario is a sequence of exploits launched
by an intruder towards a particular goal. The collection
of possible attack scenarios in a computer network can
be represented by a directed graph, called a network
attack graph (NAG). In this directed graph, each path,
from an initial node to a goal node, corresponds to an
attack scenario. The aim of the minimization analysis
of a network attack graph is to �nd a minimum critical
set of exploits that completely disconnect the initial
nodes and the goal nodes of the graph. This problem
is, in fact, a constrained optimization problem, the
objective of which is to �nd a solution with minimum
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Figure 7. Comparison of the performance of the
SwarmNAG and the SwarmNAG without local search
heuristic for the minimizatoin analysis of NAG4.

cardinality and the constraint is that the solution must
be critical.

In this paper, a binary PSO algorithm, called
SwarmNAG, was presented, for the minimizatoin anal-
ysis of large-scale network attack graphs. A penalty
function method with a time-varying penalty coe�-
cient was used to convert the constrained optimization
problem into an unconstrained one. Also, a time-
varying velocity clamping, a greedy mutation operator
and a local search heuristic were used to improve the
overall performance of the algorithm. The results of
applying the above algorithms were reported, in order
to analyze several large-scale network attack graphs.
The approximation algorithm proposed by Sheyner

Figure 8. Comparison of the performance of the
SwarmNAG and the SwarmNAG without local search
heuristic for the minimization analysis of NAG11.

et al. [3] and Jha et al. [4,5] was also applied, to
analyze the above large-scale network attack graphs.
On average, the cardinality of critical sets of exploits
found by the SwarmNAG was 8.89% less than the
cardinality of critical sets of exploits found by the
approximation algorithm.

The results of the experiments show that the
SwarmNAG can be successfully used for the minimiza-
tion analysis of network attack graphs.
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Figure 9. Comparison of the average diversity of the
SwarmNAG and the SwarmNAG without TVCC in the
experiments for the minimization analysis of NAG3.

Figure 10. Comparison of the average diversity of the
SwarmNAG and the SwarmNAG without TVCC in the
experiments for the minimization analysis of NAG8.

Figure 11. Comparison of the average diversity of the
SwarmNAG and the SwarmNAG without TVCC in the
experiments for the minimization analysis of NAG11.

Figure 12. Comparison of the performance of the
SwarmNAG and the SwarmNAG without TVVC for the
minimization analysis of NAG11.
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Table A1. Types of services and vulnerabilities running on the network hosts.

iis bof(h) IIS web server has bu�er overow vulnerability on host h

exchange ivv(h) Exchange mail server has input validation vulnerability on host h

squid conf(h) Squid web proxy is miscon�gured on host h

licq ivv(h) LICQ client has input validation vulnerability on host h

sshd bof(h) SSH server has bu�er overow vulnerability on host h

scripting(h) HTML scripting is enabled on host h

ftp(h) FTP service is running on host h

wdir(h) FTP home directory is writable on host h

fshell(h) FTP user has executable shell on host h

xterm bof(h) xterm program has bu�er overow vulnerability on host h

at bof(h) at program has bu�er overow vulnerability on host h

database(h) database service is running on host h

Table B1. Description of generic exploits.

Exploit Description

iis r2r Bu�er overow vulnerability in the IIS web server allows remote intruders to gain root shell on the

target network host

exchange r2u The OLE component in the Microsoft Exchange mail server does not properly validate the lengths

of messages for certain OLE data, which allows remote intruders to execute arbitrary code

squid ps The intruder can use a miscon�gured Squid web proxy to conduct unauthorized activities such as

port scanning

licq r2u The intruder can send a specially crafted URL to the LICQ client to execute arbitrary commands

on the target network host

script r2u Microsoft Internet Explorer allows remote intruders to execute arbitrary code via malformed

Content-Type and Content-Disposition header �elds that cause the application for the spoofed �le

type to pass the �le back to the operating system for handling rather than raise an error message

sshd r2r Bu�er overow vulnerability in the ssh server allows remote intruders to gain root shell on the

target network host

ftp rhosts Using FTP vulnerability, the intruder creates a rhosts �le in the FTP home directory, creating

a remote login trust relationship between his network host and the target network host

rsh r2u Using an existing remote login trust relationship between two hosts, the intruder logs in from one

machine to another, getting a user shell without supplying a password

xterm u2r Bu�er overow vulnerability in the xterm program allows local users to gain root shell on the

target network host

at u2r Bu�er overow vulnerability in the at program allows local users to gain root shell on the target

network host
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Table B2. Exploit templates.

Exploit Preconditions Postconditions

iis bof(ht)
iis r2r(hs, ht) C(hs, ht, http) : iis(ht)

plvl(hs) � user plvl(ht) := root
plvl(ht) < root

exchange ivv(ht)
exchange r2u(hs, ht) C(hs, ht, smtp) plvl(ht) := user

plvl(hs) � user
plvl(ht) = none

squid conf(ht)
squid ps(hs, ht) : scan scan

C(hs, ht, http)
plvl(hs) � user

licq ivv(ht)
scan

licq r2u(hs, ht) C(hs, ht, licq) plvl(ht) := user
plvl(hs) � user
plvl(ht) = none

scripting(ht)
script r2u(hs, ht) C(ht, hs, http) plvl(ht) := user

plvl(hs) � user
plvl(ht) = none

sshd bof(ht)
sshd r2r(hs, ht) C(hs, ht, ssh) :ssh(ht)

plvl(hs) � user plvl(ht) := root
plvl(ht) < root

ftp(ht)
wdir(ht)

ftp rhosts(hs, ht) fshell(ht) T (ht, hs)
:T(ht, hs)
C(hs, ht, ftp)
plvl(hs) � user

T(ht, hs)
rsh r2u(hs, ht) plvl(hs) � user plvl(ht) := user

plvl(ht) = none

xterm u2r(ht, ht) xterm bof(ht) plvl(ht) := root
plvl(ht) = user

at u2r(ht, ht) at bof(ht) plvl(ht) := root
plvl(ht) = user


