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Self-Organization in a Particle Swarm
Optimized Fuzzy Logic Congestion

Detection Mechanism for IP Networks

C.N. Nyirenda1 and D.S. Dawoud1;�

The Fuzzy Logic Congestion Detection (FLCD) algorithm is a recent proposal for congestion
detection in IP networks which combines the good characteristics of both traditional Active
Queue Management (AQM) algorithms and fuzzy logic based AQM algorithms. The
Membership Functions (MFs) of the FLCD algorithm are designed using a Multi-Objective
Particle Swarm Optimization (MOPSO) algorithm, in order to achieve optimal performance
on all the major performance metrics of IP congestion control. The FLCD algorithm achieves
better performance when compared to the basic Fuzzy Logic AQM and Random Explicit
Marking (REM) algorithms. Since the optimization process is undertaken o�ine and is based
on a single optimization script, the performance of the FLCD algorithm may not be optimal
under di�erent network conditions, due to the fact that the IP environment is characterized
by dynamic tra�c patterns. This paper proposes two online self-learning and organization
structures that enable the FLCD algorithm to learn the system conditions and adjust the
fuzzy rule base in accordance with prevailing conditions. The self-organized FLCD algorithm
is compared with the unorganized FLCD, the basic Fuzzy Logic AQM and the Adaptive
Random Early Detection (RED) algorithms using simulations with dynamic tra�c patterns.
Performance results show that the self-organized FLCD algorithm is more robust than the
other algorithms. Compared to the unorganized FLCD, the new scheme improves the UDP
tra�c delay for short round trip times and also reduces packet loss rates. In terms of jitter,
fairness and link utilization, it exhibits a similar performance to the unorganized FLCD algorithm.

Keywords: Active queue management; Congestion control; Fuzzy logic; Multi-objective
particle swarm optimization; Pareto set.

INTRODUCTION

The internet has experienced tremendous growth over
the past two decades and, due to that growth, has
some congestion problems. The resulting e�ects are
long delays in data delivery, jitter (delay variations),
wasted resources, due to lost or dropped packets and
even possible congestion collapse [1], where all commu-
nication in the entire network ceases. Long delays in
data delivery and jitter reduce the quality of interactive
applications, such as telephony, video conferencing and
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interactive games, since these applications require to be
delivered quickly and within certain delay constraints.
For these reasons, congestion control mechanisms have
been introduced in the Internet. These mechanisms
can broadly be classi�ed into three groups:

1. End-to-end algorithms, which control the 
ow of
tra�c between the end hosts [2,3];

2. Router based congestion detection, also known as
Active Queue Management (AQM) [4-6];

3. The generation and transmission of congestion no-
ti�cation signals to tra�c sources [7,8].

Since the focus of this paper is on router based
congestion detection (AQM), the remainder of this
section will give an overview of the research trends
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in AQM and present the motivating factors for work
presented in later sections.

Active Queue Management (AQM) denotes a
class of algorithm designed to alleviate the problems
of congestion, while, at the same time, ensuring high
link utilization and fairness. Research in this area was
inspired by the original RED proposal [4]. In 1998, the
Internet Engineering Task Force (IETF) recommended
the deployment of RED for congestion prevention.
Since this IETF recommendation, a plethora of AQM
algorithms have been proposed [5,6,9-11]. These algo-
rithms have been classi�ed [6] as heuristic, optimization
based and control theoretic. In spite of all these
developments, there has been a slow deployment of
AQM algorithms in commercial circles. The slow pace
of AQM deployment can partly be attributed to the
fact that these algorithms perform well only for speci�c
objectives and under speci�c scenarios [6]. Therefore,
there is a need to design AQM schemes that will
achieve a reasonably high performance for all key AQM
objectives.

It has been shown that as capacity or delay
increases, the traditional AQM schemes [6] eventu-
ally become oscillatory and prone to instability [12].
It is further pointed out [13] that these schemes
demonstrate instability with the introduction of high
bandwidth-delay links, because they still require a
careful con�guration of non-intuitive control param-
eters. As a result, they are non-robust to dynamic
network changes. They exhibit greater delays than the
target mean queuing delay with a large delay variation,
plus large bu�er 
uctuations and, consequently, cannot
control the router queue. It has also been stressed
that in practical queuing systems, the mean arrival
rate and the mean service rate are frequently fuzzy, i.e.
they cannot be expressed in exact terms [14,15]. The
European Network for Intelligent Technologies (EU-
NITE) Roadmap [16] points out that the application of
fuzzy control techniques to the problem of congestion
in IP-based networks is suitable, due to di�culties in
obtaining a precise mathematical model using conven-
tional analytical methods. Fuzzy Logic AQM algo-
rithms, presented in [13,17], use instantaneous queue
length and the variation of the queue (tra�c incoming
rate) as inputs. Three membership functions, for the
two inputs and the output, are used. The system
output is a probability with which packets are either
dropped or marked if Explicit Congestion Noti�cation
(ECN) [18] is enabled. ECN is a means of explicitly
notifying end-hosts of network congestion by marking,
instead of dropping, packets. The performance of these
fuzzy AQM algorithms is generally better than that
of traditional approaches, such as PI and Adaptive
RED. However, their major shortcoming lies in the
fact that their control rules and membership functions
are obtained through a manual tuning process, which

is based on designer insight. The human factor
involved in this operation makes it di�cult for these
algorithms to achieve optimal performance for all the
key AQM objectives. The other problem is that these
algorithms are generally designed with an assumption
that the Internet is predominantly composed of TCP
tra�c, whose sources respond to congestion noti�cation
signals from routers by reducing their sending rates.
Actually, this is not the situation because, apart from
the non-responsive UDP tra�c, which accounts for
(22 � 11)% of Internet tra�c [19], the Internet is
nowadays facing a growing list of non-responsive 
ows
and anomalies, such as Denial of Service (DoS) attacks
and routing loops [20]. These 
ows do not reduce
their sending rates during times of congestion, as
responsive TCP 
ow reduces their rates. Therefore,
fairness diminishes exponentially as the number of
non-responsive 
ows increase. In [10], Wan et al.
propose an Adaptive Fuzzy RED (AFRED) algorithm
that employs an online adaptation mechanism. This
algorithm uses the instantaneous queue length as the
only input variable to determine the packet marking
or dropping probability. A novel principle exhibited
by AFRED is that the real packet drop ratio (pdr)
can at least show the congestion degree coarsely, since
heavy (or light) congestion will trigger lots of (or few)
packet drops. This proposal falls short in two areas.
Firstly, it uses the instantaneous queue length as a
sole input variable. As explained in [21], queue size
is not a good indicator of the severity of congestion
and the level of congestion noti�cations issued may be
too great and bursty, leading to excessive packet loss.
Secondly, it uses only packet loss in the adjust process.
Other important performance metrics, such as link
utilization, fairness, delay and jitter are not considered.
In [22], Che et al. propose a prediction-based Fuzzy
Approximate Fair Dropping (FAFD) scheme to address
the fairness problems of the Approximate Fair Drop-
ping (AFD) [23]. Based on the current queue length
and predicted tra�c intensity, the control parameters
are adjusted by a fuzzy inference system, which is
optimized by a Genetic Algorithm (GA). This algo-
rithm yields higher bandwidth utilization and reduces
queuing delay jitter while achieving better fairness than
the original AFD scheme. It must also be pointed
out that, to the authors' knowledge, this is the �rst
fuzzy logic AQM approach in using an optimization
algorithm to tune its parameters. However, it is easy
to see that the major objective of this algorithm is
the issue of fairness in relation to the AFD approach.
A fully 
edged AQM algorithm must incorporate a
wide range of performance metrics, such as loss rate,
link utilization, delay and jitter in its design. A Fast
Adaptive Fuzzy Controller (FAFC), proposed in [24],
uses Lyapunov's Direct Method for stability analysis,
based on the mathematical model for the internet [25],



Internet Congestion Detection Using Fuzzy Logic 591

which supports multiple TCP sessions. A classical
Proportional Integral Derivative (PID) controller is
used for online adaptation. The FAFC algorithm
exhibits better queue stability and lower packet loss
rates compared to RED and the Proportional Integral
Derivative (PID) AQM algorithm [26]. However, the
internet mathematical model [25] used in this algorithm
is based on the principle that the Internet is predom-
inantly TCP. It neglects the e�ect of non-responsive

ows (such as UDP) and network anomalies, such
as Denial of Service attacks and rooting loops [20].
Therefore, the issue of fairness is not addressed in the
design.

In order to address some of the aforementioned
shortcomings, the Fuzzy Logic Congestion Detection
(FLCD) [27] algorithm was recently proposed. The
novelty of the FLCD algorithm consists of the fact
that it attempts to address the �ve major perfor-
mance metrics of internet congestion control, i.e. loss
rate, link utilization, delay, jitter and fairness. The
FLCD algorithm ensures fairness by employing a
Fuzzy CHOKe (CHOose and Keep for responsive 
ows,
CHOose and Kill for unresponsive 
ows) [28]. CHOKe
is a simple stateless algorithm, proposed by Pan et al.,
that attempts to ensure a fair bandwidth allocation to
all 
ows that share the FIFO based outgoing link of
a congested router. It accomplishes this by dropping
more packets from high-bandwidth unresponsive 
ows.
The essence of this algorithm is that, when a packet
arrives, a random packet is picked from the queue. If
the randomly chosen packet is from the same source
as the newly arrived packet, both packets are dropped.
In the FLCD implementation, the CHOKe algorithm
is activated only when congestion is severe. This helps
to ensure that packets are not dropped unnecessarily
during times of less congestion. The ultimate e�ect
of this implementation is that both link utilization
and fairness are maximized at the same time. The
other four metrics are used in modeling the internet
congestion problem as a multi-objective problem. The
parameters of the FLCD algorithm are optimized by
using the Adaptive Multi-Objective Particle Swarm
Optimization (AMOPSO) algorithm [29], in order to
achieve optimal performance of all major objectives of
IP congestion control. In [28], the AMOPSO algorithm
has been observed to achieve better results when com-
pared to several multi-objective versions of the Genetic
Algorithm. The performance of the FLCD algorithm
was compared with that of the basic REM [5] and
the Fuzzy Logic AQM [17] algorithms. Performance
results in [27] show that the FLCD algorithm provides
high link utilization whilst maintaining lower jitter and
packet loss. It also exhibits higher fairness compared
to its basic variant and REM.

Although the FLCD algorithm exhibits good
performance, it is prone to poor performance under

certain network conditions, because its optimization
process is implemented o�ine, based on a single
optimization script, whose topology and tra�c mix
can obviously not manage to capture all the tra�c
dynamics, pattern variations and network topologies.
Therefore, this paper enhances the performance of
the FLCD algorithm by proposing two online self-
learning and organization structures that would enable
the FLCD algorithm to learn system conditions and
adjust itself accordingly, thereby achieving optimal
performance in dynamic tra�c environments and a
wide range of topologies. The �rst structure adjusts
the update interval, in line with the prevailing link
propagation delay. This would help to improve the
FLCD algorithm's performance, with respect to TCP
tra�c transmissions, which depend on the value of
the Round Trip Time (RTT). The second structure
implements a self-learning and adaptation mechanism,
based on concepts learnt from the self-organized fuzzy
controllers in [30-33]. This mechanism learns the link
conditions and periodically proposes adjustments to
the fuzzy rule base.

The rest of the paper is organized as follows.
First, a brief overview of the Fuzzy Logic Control
Theory and a brief overview of the Particle Swarm
Optimized FLCD algorithm are given. Then, the online
self-learning and organization structures are discussed,
and simulation results and a comparative analysis are
presented. Finally, the conclusion of this paper is
presented.

OVERVIEW OF THE FLCD ALGORITHM

Overview of the Fuzzy Logic Theory and the
Mamdani Inference Mechanism

Fuzzy logic is a generalization of classical logic, in
which there is a smooth transition between true and
false. The basics of fuzzy logic are derived from the
fuzzy set theory [34]. In conventional (crisp) sets,
members are always fully categorized and there is no
ambiguity about membership while in fuzzy sets, the
transition from membership to non-membership being
gradual rather than abrupt. A fuzzy set, A 2 X, is
characterized by a membership function, �A(x), which
associates each element in X with a real number in
the interval [0, 1.0]. �A(x) is known as the grade of
membership. Hence, the fuzzy set on the universe of
discourse X is de�ned as:

A = f(x; �A(X))jx 2 Xg: (1)

Fuzzy rules are the backbone of a fuzzy logic system.
A simple fuzzy rule can be written as follows:

if x is HIGH then y is POSITIVE; (2)
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where HIGH and POSITIVE are linguistic values
de�ned by fuzzy sets on the universe of discourse, X
and Y , respectively. The if-part, if x is HIGH, is known
as the antecedent and the then-part, y is POSITIVE, is
known as the consequent. A set of linguistic rules used
to map fuzzy inputs to outputs is known as the rule
base. The functional components of a fuzzy controller
are shown in Figure 1.

The fuzzi�er calculates suitable sets of degree of
membership, called fuzzy sets, for the crisp (discrete)
inputs. The inference engine evaluates output fuzzy
sets from input sets using the prede�ned fuzzy rules
contained in the rule base. The defuzzi�er transforms
the output fuzzy set into a crisp number to be useful
in the real world. The inference engine calculates the
degree of activation for every rule in the rule base.
Fuzzy systems employ two types of inference mech-
anism: The Mamdani approach [35] and the Takagi-
Sugeno approach [36]. The FLCD algorithm employs
the Mamdami approach. Therefore, an overview of
this inference mechanism will now be presented. If
the antecedent for rule j contains one variable, the
rule's degree of activation is equal to the degree of
membership of that single variable. If �1

j (x1) denotes
the degree of membership of input x1 for rule j, then,
�j , the degree of activation of rule j, is expressed as
follows:

�j = �1
j (x1): (3)

If the antecedent for rule j contains more than one
variable in the following form:

Rule j: if A1
j and A2

j and� � � and Anj then bj ; (4)

where Akj is a fuzzy set with membership function,
�kj : R ! [0; 1], j = 1; � � � ;m, k = 1; � � � ; n, bj 2 R,
then, in this case, the degree of activation for rule j is
determined using the minimum t-norm as follows:

�j = �1
j (x1)
 �2

j (x2)
 � � � 
 �nj (xk); (5)

where �nj (xk) is the degree of membership of input xk.
The degree of activation is inferred as the degree

of membership of the output variable upon its fuzzy
set, which is de�ned in the corresponding consequence.

Figure 1. Fuzzy logic controller scheme.

The output of inferring m rules is the aggregation of
the individual rule outputs. The implied output sets
are combined to formulate a crisp output through a
routine known as defuzzi�cation. The widely applied
defuzzi�cation method is the Centre Of Gravity (COG)
technique, which computes the weighted-average of the
centre of gravity of each membership function. The
COG of the system with m rules is as follows:

y(x) =

mP
j=1

bj�j

mP
j=1

�j
; (6)

where bj is the centre of the membership function
recommended by the consequent of rule j. The mem-
bership functions for the fuzzy controller are initialized
by the user, based on a priori knowledge.

FLCD Architecture

The FLCD algorithm is composed of the Fuzzy Logic
Control Unit (FLCU), the Probability Adjuster (PA)
and the CHOKe Activator (CA). Figure 2 shows the
FLCD architecture. A single FIFO bu�er, in which
all packets are treated equally, is assumed. The queue
status is sampled at a period, � , of 0.002 seconds, just
as in [5], in order to obtain the queue-occupation size
(backlog), q(t), and the tra�c arrival rate, r(t). The
backlog, q(t), is translated into the backlog factor, �,
which is the ratio of backlog with respect to the Bu�er
Size, BS, as follows:

� = q(t)=BS: (7)

In contrast to the proposal in [17], which uses the
change in queue length to determine the packet arrival
rate, the FLCD algorithm determines the packet arrival
rate by counting the actual number of packets that
arrive at the bu�er (both those that are queued and
those that are dropped) during sampling period, � .
When the bu�er is prevalently full, the variation of the
queue is very small, such that it fails to capture the
packet arrival rate, as most packets are dropped before
they get queued. Let n denote the number of packets
that arrive at the bu�er during period, � , and Let !1
denote the measuring weight. The weighted average
packet arrival rate, r(t), is determined as follows:

r(t) = !�1r(t� �) + (1� !1)�n: (8)

Figure 2. The FLCD architecture.
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Also, let rm denote the upper bound on the weighted
packet arrival rate, r(t). Therefore, the packet arrival
factor, �, is determined as follows:

� =

(
r(t)=rm r(t) < rm
1:0 r(t) � rm (9)

The FLCU determines the change in packet mark-
ing/dropping probability �pb, by using the fuzzi�ed
values of parameters � and �. The set of linguistic rules
that governs the inference process [35] in the FLCU is
shown in Table 1. These rules are derived, based on
expert designer knowledge.

The PA computes the new packet marking prob-
ability, pb, as follows:

pb = pb(t� �) + �pb(t): (10)

Packets are either marked (if ECN is enabled) or
dropped with probability pb. Responsive 
ows react to
these events by reducing their sending rates, thereby,
reducing congestion at the bottleneck link. In order to
address the issue of fairness, in light of non-responsive

ows and network anomalies, such as Denial of Service
(DoS) attacks and routing loops [20], which may
dramatically 
ood the network as the responsive 
ows
back o�, the CHOKe Activator (CA) was incorporated,
which uses pb(t) to generate fuzzy parameter � 2 [0; 1].
Let pthresh denote the CHOKe threshold, then, the
fuzzy parameter, �, is derived as follows:

� =

8<:0 pthresh > pb�
pb�pthresh
1�pthresh

�2
pthresh � pb (11)

When pthresh > pb (low congestion), � is 0.0. During
this period there is no CHOKe activity. When pthresh �
pb (high congestion), the value of � increases rapidly.
As a result, more packets from non-responsive and TCP
unfriendly 
ows are dropped at the bottleneck link. An
arriving packet is picked probabilistically, based on the
value of �. This packet is compared with a randomly
chosen packet from the bu�er. If they have the same

Table 1. The FLCU rule base.

if � is low and � is low then �pb is Negative Big.

if � is low and � is medium then �pb is Negative Small.

if � is low and � is high then �pb is Zero.

if � is normal and � is low then �pb is Negative Small.

if � is normal and � is medium then �pb is Zero.

if � is normal and � is high then �pb is Positive Small.

if � is high and � is low then �pb is Positive Small.

if � is high and � is medium then �pb is Positive Big.

if � is high and � is high then �pb is Positive Big.


ow ID, they are both dropped. The randomly chosen
packet is kept in the bu�er (in the same position as
before) and the arriving packet is queued if the bu�er
is not full; otherwise it is dropped.

Figures 3 and 4 show the membership functions
(MF1 and MF2) for fuzzifying input parameters � and
�, respectively. Figure 5 shows the membership func-

Figure 3. Membership function (MF1) for backlog factor.

Figure 4. Membership function (MF2) for packet arrival
factor.

Figure 5. Membership function (MF3) for change in
packet marking probability.
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tion (MF3) used in the defuzzi�cation process, in order
to generate the change in packet marking/dropping
probability �pb.

The 18-dimensional parameter vector, P , which
determines membership functions, is expressed as fol-
lows:

P = [x0; x1; x2; x3; x4; x5; x6; x7; x8; x9; x10; x11;

x12; x13; x14; x15; x16; x17]: (12)

The de�nition of these elements is presented as follows:

1. x0; x1; x2; x3; x4 are parameters for the backlog
factor (�) membership function (MF1), as shown
in Figure 2;

2. x5; x6; x7; x8; x9 are parameters for the packet ar-
rival (�) rate membership function (MF2), similar
to Figure 2;

3. x10; x11; x12; x13; x14; x15 are parameters for the
change in packet marking probability (�pb) mem-
bership function (MF3), as depicted in Figure 3;

4. x16; x17 denote the maximum negative and positive
variations (�Pneg and �Ppos) of the change in
packet marking probability. The output from the
defuzzi�cation process, which falls in the range
[0; 1:0], is scaled to [�Pneg;�Ppos].

Parameters for individual membership functions
must always be sorted in ascending order. For instance,
for MF1, the following;

x0 < x1 < x2 < x3 < x4; (13)

must always be true. The same applies to MF2 and
MF3.

Parameter Optimization Using MOPSO

The parameters in Equation 12 are modeled as a single
18-dimensional particle, based on which a number of
similar particles are randomly created and initialized
within a decision variable space whose parameters are
prede�ned. The Adaptive MOPSO (AMOPSO) algo-
rithm [29], which is a special case of the Particle Swarm
Optimization (PSO) algorithm [37], is then used to
optimize these particles. This algorithm was validated
by using three standard test functions. Its performance
was compared with the Pareto Archived Evolution
Strategy (PAES) [38], the Nondominated Sorting Ge-
netic Algorithm II (NSGAII) [39] and the MOPSO al-
gorithm proposed in [40]. Results in [29] show that the
AMOPSO algorithm generates signi�cantly improved
Pareto fronts when compared to the other algorithms.
The AMOPSO algorithm uses a clustering technique to
divide the population of particles into several swarms,
in order to have a better distribution of solutions in

the decision variable space. Each particle is viewed as
a potential solution. The concept of PSO is that each
particle randomly searches the decision variable space
by updating itself with its own memory and the social
information gathered from other particles. This is done
over a number of generations/iterations. Unlike basic
PSO, which optimizes the particles based on a single
objective function, MOPSO is tailored for multiple
objective functions, which are usually competing and
non-commensurable. In this case, the optimization
process generates a pool of non-dominated solutions
called the Pareto Optimal Set. The optimization of the
FLCD algorithm is based on four objective functions:

1. Maximizing link utilization;
2. Minimizing packet loss rates;
3. Minimizing link delay;
4. Minimization jitter.

The upper bound on packet arrival rate, rm, is set
to 5 packets per sampling period � of 0.002 seconds.
Parameter !1 is set to 0.9, in order to avoid drastic
changes in the weighted average arrival rate of packets.
These settings are done, based on the premise that
the other parameters of the algorithm will be realized
by the optimization process. For more details on the
optimization process, the interested reader is referred
to [27].

After the optimization process, a fuzzy inference
algorithm is used to draw the best compromise solution
from the Pareto optimal set as follows:

P = [0:01; 0:02; 0:03; 0:04; 0:29; 0:95; 0:96; 0:97; 0:98;

0:99; 0:01; 0:02; 0:03; 0:34; 0:61; 0:64;

� 0:0005; 0:0005]: (14)

These parameters are used in con�guring the member-
ship functions of the practical FLCD algorithm.

SELF-LEARNING AND ORGANIZATION

Self-learning and organization enable the FLCD al-
gorithm to �ne tune itself, in light of tra�c varia-
tions, unmodelled system dynamics and other external
disturbances, without disrupting the structure of the
optimized membership functions. In order to achieve
this, two concepts are introduced: An RTT based
sampling rate and a self-learning and adaptation mech-
anism.

RTT Based Sampling Rate

The motivation to implement an RTT based sampling
rate stems from the fact that the rate at which TCP
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injects packets into the network is largely dependent
on the Round Trip Time (RTT), because TCP is an
acknowledgement based end-to-end algorithm. The
FLCD algorithm [27] is optimized at sampling rate �
of 0.002 s at link propagation delay D of 0.04 s. If this
sampling rate is used on links with shorter propagation
delays, the incoming queue would be undersampled.
This situation would lead to higher loss rates, due to
bu�er over
ow, because the tra�c arrival rate is high.
On the other hand, if this sampling rate is used on links
with longer propagation delays, the incoming queues
would be oversampled, such that the packet arrival rate
would always be very low. The e�ect of this scenario
is that the change in packet marking probability will
always be low, because the contribution of the packet
arrival factor to the fuzzy output value is always low.
The system will not be able to increase the packet
marking probability in times of congestion, so that it
will easily degenerate into a drop-tail mechanism with
large losses and underutilization. Assuming that the
FLCD router is implemented on the link which o�ers
the largest contribution to the end-to-end propagation
delay, such that the other link delays are negligible,
the sampling rate can be modi�ed, based on the
link propagation delay, by using the following linear
relationship:

� 0 =
��D
0:04

; (15)

where � 0 and D denote the sampling rate and the
propagation delay for the new link. In this paper, it
is assumed that the FLCD algorithm is implanted at
the interface which contributes t.

The modi�cation of the sampling rate necessitates
the adjustment of the upper bound on packet arrival
rate rm in Equation 9. The MOPSO optimization
process uses a static value of 5 packets at sampling
period � of 0.002 seconds for this parameter. In order
to cater for dynamic situations, while, at the same time,
preserving all the performance characteristics yielded
by the optimization process, 5.0 is used as a startup
value for rm. If the weighted average packet arrival
rate, r(t), is greater than rm, rm is adjusted by a
weighting procedure, otherwise it remains unchanged.
This process is illustrated in the following:

rm(t) =8><>:5:0 t = 0
!�1rm(t�� 0)+(1�!1)�r(t) r(t) > rm(t� � 0)
rm(t� � 0) r(t) < rm(t� � 0) (16)

where !1 = 0:9 is the measuring weight, just as in
Equation 8.

The Self-Learning and Adaptation Mechanism

This mechanism adjusts the FLCD algorithm in line
with prevailing system conditions. The implementation
of online adaptation and self-learning fuzzy systems
is an active research area [30-33]. The general trend
in these systems is that the rule consequents and
membership functions de�ned in the premises of fuzzy
rules are tuned using various algorithms, based on the
prevailing plant conditions. For instance, the approach
in [33] uses two control blocks: The Adaptation
Block (A-Block), which is responsible for adapting the
consequents of the main controller's rules to minimize
the error arising from the plant output and the Global
Learning-Block (GL-Block), which compiles real input-
output data obtained from the plant. The A-Block
is responsible for the coarse tuning of fuzzy rules at
the initial stages. As the process advances, the A-
Block gives way to the GL-Block, which �ne-tunes both
membership functions (premises) and consequents.

The approach in this proposal �ne-tunes the rule
consequents for only two reasons:

� The membership functions and parameters of the
FLCD algorithm have already been optimized of-

ine. With these membership functions and pa-
rameters, optimal performance on all the major
AQM objectives is guaranteed. Further tuning of
membership functions would disrupt their optimal
parameter settings, thereby, defeating the whole
purpose of the optimization process in [17]. This is
not the case with the proposal in [23], in which there
is no model of the plant, such that the controller's
rules and parameters de�ning it are optimized from
a \void" fuzzy controller.

� It has been reported in [18] that the modi�cation
of membership functions uses a lot of memory
resources. This process would also take up more
of the router's processing time. Therefore, the
performance of Internet routers could be adversely
a�ected.

The approach in this paper is built on the prin-
ciple of monotonicity, which is evident in [30-33]. It
evaluates the current state of the plant and proposes
correction of the rules responsible for the existence of
such a state, either as a reward or a penalty. In [32]
and [33], this modi�cation is proportional to the degree
with which the rule was activated in achieving the
control output, u(t�d), now being evaluated at instant
t. The system has to wait d iterations, in order to
evaluate u(t � d). This calls for the de�nition of
a queue, with the depth given by the delay of the
plant, where the degrees of activation of the rules are
stored. While such an arrangement works well in [32]
and [33], it is not suitable for the FLCD algorithm.
There are two reasons for this assertion. Firstly, the
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implementation of a dynamic queue would not only
consume the precious memory resources of the router,
but would also increase the processing overhead on
Internet routers. As mentioned before, this must be
minimized at all costs, because the router's primary
function is to route packets. Secondly, the evaluation
of plant delay in real time is quite a complex process,
due to the dynamics of Internet tra�c. In light of
these observations, the weighted average degrees of
activation are used in the adaptation mechanism. If
FAB(t) denotes the adjustment parameter and �j(t)
denotes the weighted average degree of activation for
rule j at instant t, then, the proposed change in the
output scalar (bj(t)) for rule j would be expressed as
follows:

�bj(t) = �j(t):FAB(t): (17)

The weighted average degree of activation for rule j is
realized as follows:

�j(t) = !�1�j(t� � 0) + (1� !1)��j(t): (18)

In real time, the system must be stable under di�erent
tra�c patterns and network topologies. Therefore, as
proposed in [18], the variation of queue length must
play a role in the adjustment mechanism. The system
must also be capable of adjusting itself, based on the
observed packet losses. It has been pointed out in [41]
that packet loss can show the degree of congestion
coarsely at least. Therefore, in this proposal, FAB(t)
is implemented as a sum of the queue error factor
Qf (t) and the packet loss factor Pf (t) i.e. FAB(t) =
Qf (t) + Pf (t). These factors contribute equally to
FAB(t), such that:

Qf (t) = Pf (t) =
FAB(t)

2
: (19)

The two parameters, Qf (t) and Pf (t), de�ning FAB(t),
are discussed in the next subsections.

Evaluation of Queue Error Factor Qf(t)
Let Q(t) denote queue length at instant t. The queue
variation at instant t, with respect to Qref, is expressed
as follows:

�Q(t) = Q(k)�Qref: (20)

When dQ(t)
dt > 0, it is known that the level of congestion

is increasing, hence, the need to increase the packet
marking/dropping probability by adjusting the rule
consequents in the positive direction. As a result, TCP
sources will reduce their sending rates while more UDP
packets will be dropped. When dQ(t)

dt < 0, it is known
that the level of congestion is abating, hence, the need
to reduce the packet marking/dropping probability by
adjusting the rule consequents in the positive direction.

As a result, TCP sources will increase their sending
rates, while less UDP packets will be dropped, thereby,
increasing the overall utilization of the link. Based
on these concepts, queue error factor Qf (t) can be
expressed as follows:

Qf (t) =

8><>:C1:�Q(t)
BS �Q(t) < 0

C2:�Q(t)
BS �Q(t) > 0

(21)

where BS is the Bu�er Size, just as in Equation 7,
while C1 and C2 are constants for negative and positive
adjustment, respectively. Constants, C1 and C2, are
directly proportional to the maximum negative and
positive variations, (�Pneg and �Ppos), of the change
in packet marking probability. These relationships are
presented mathematically, as follows:

C1 = S1:j�Pnegj; (22)

C2 = S2:�Ppos; (23)

where S1 and S2 denote the negative and positive error
scaling factors, respectively.

If S1 and S2 are too small, the resulting Qf (t)
is also very small, such that the contribution of the
adaptation mechanism is negligible. If S1 and S2
are too big, the resulting Qf (t) would be too big,
thereby, driving the system into instability. By def-
inition, both �j(t) and bj(t) vary within the range
[0:0; 1:0]. When �j(t) = 1:0, �bj(t) in Equation 17
becomes equal to FAB(T ). For stable operation of the
system, the range of variation for �bj(t) is limited to
8% of the maximum value of bj(t). Therefore, the
range of variation for Qf (t) can be limited to 4%,
because Qf (t) = FAB(t)=2, as given by Equation 19.
This implies that Qf (t) would fall within the range
[�0:02; 0:02] and Qref would be between 0:25BS and
0:75BS. To cater for extreme cases, Qref is �xed within
the interval (0:0; BS). If Qref ! BS, �Q(t) would
fall in the interval (�BS; 0:0), while Qf (t) is in the
range [�0:02; 0:02]. Therefore, for an extreme negative
variation, let �Qf (t) = �BS and Qf (t) = �0:02 in
the negative component of Equation 21. This yields
C1 as follows:

C1 = 0:02: (24)

The optimization process in [27] de�nes �0:0005 as a
value for �Pneg. Substituting C1 = 0:02 and j�Pnegj =
0:0005 into Equation 22 yields the negative variation
scaling factor as follows:

S1 = 40:0: (25)

If Qref ! 0, �Q(t) would fall in the interval (0:0; BS),
while Qf (t) is in the range [0:0; 0:02]. Therefore, for an
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extreme positive variation, �Qf (t) = BS and Qf (t) =
0:02 in the positive component of Equation 21. This
yields C2 as follows:

C2 = 0:02: (26)

The optimization process in [17] de�nes 0.0005 as a
value for �Ppos. Substituting C1 = 0:02 and �Ppos =
0:0005 into Equation 23 yields:

S2 = 40:0: (27)

The values for S1 and S2 are the same in this case,
because �Ppos = j�Pnegj, but cases would easily
arise from the optimization process whereby �Ppos 6=j�Pnegj. In such cases, the values of S1 and S2 would
be di�erent.

Evaluation of the Packet Loss Factor Pf(t)
In contrast to the queue error factor, which is proactive,
this factor is a reactive one. It is based on the notion
that an increasing number of lost packets entails that
congestion is increasing, hence, the need to increase the
packet marking probability. The evaluation of Pf (t) is
based on the weighted packet loss rate, pdr(t), which
is evaluated after every � 0 seconds, in keeping with the
RTT based sampling rate proposed earlier. This can
be expressed as follows:

pdr(t) =
ndp(t)
n(t)

;

pdr(t) = !�2pdr(t� � 0) + (1� !2)�pdr(t); (28)

where ndp(t) and n(t) denote the number of dropped
packets and the number of arrival packets in the
interval [(t � � 0); t], respectively. pdr(t) denotes the
actual packet drop ratio in the interval [(t�� 0); t], while
!2 is the weight which assumes the same value as in the
earlier sections.

Let pdrmax and pdrmin denote the maximum and
minimum packet drop rate. When pdr(t) = pdrmin, the
rule consequents must remain static, because the con-
gestion level is deemed to be within the proper limits.
When pdr(t) ! pdrmax, it is known that congestion
is becoming more severe, hence, there is a need to
adjust the rule consequents in a positive direction. This
will increase the packet marking/dropping probability
and, as a result, the amount of tra�c injected into the
network will decrease. Based on these concepts, the
packet loss factor, Pf (t), can be expressed as follows:

Pf (t) = C3:
pdr(t)� pdrmin

pdrmax � pdrmin
: (29)

Constant C3 is directly proportional to the maximum
positive variations (�Ppos) of the change in packet

marking probability. This relationship is presented
mathematically as follows:

C3 = S3:�Ppos; (30)

where S3 denotes the loss positive loss scaling factor.
In Equation 29, Pf (t) falls within the range

[0; C3], because pdr(t) is restricted to [pdrmin; pdrmax].
The range of variation for �bj(t) and, resultantly, for
FAB(t) is limited to 8% of the maximum value of
bj(t). Therefore, the range of variation for Pf (t) can
be limited to 4%, because Pf (t) = FAB(t)=2, as given
by Equation 19. This implies that Pf (t)n would fall
within the range [0:0; 0:04]. Therefore:

C3 = 0:04: (31)

Substituting C3 = 0:04 and �Ppos = 0:0005 into
Equation 30 yields:

S3 = 80: (32)

The self-learning and adaptation architecture and al-
gorithm are shown in Figures 6 and 7, respectively.

SIMULATION RESULTS AND
COMPARATIVE EVALUATION

Two experiments were conducted on the NS-2.8 simula-
tion platform, in order to compare the Self-Organized
FLCD (Self-Org FLCD) algorithm with basic Fuzzy
AQM [17], the unorganized FLCD [27] and the Adap-
tive RED (ARED) [42] algorithms. ARED is an
adaptive version of the basic RED [4] algorithm upon
whose proposals in [24,41] are benchmarked. ARED
is more stable than the basic RED algorithm. It has
been pointed out in [42] that ARED is capable of
restoring the average queue back to the target range
within 10 seconds when tra�c rate increases by ten
times. The basic RED algorithm does not manage to
recover the average queue with such a sharp increase
in tra�c.

The following metrics are used: Packet loss rate,
link utilization, jitter, delay and link fairness. These
metrics are presented in the Appendix. The reference
queue length is set to 40% of the full bu�er size
in all three algorithms. All simulations use NS-
2.28's NewReno TCP variant with an initial congestion
window cwnd of 3 segments (per [43]), a Maximum
Segment Size (MSS) of 1500 bytes and the receiver
acknowledging each segment. The full bu�er size is set
to 90 packets and ECN marking is used. The standard
web tra�c generator included with NS-2.28 is used for
the simulations, with the following parameter settings:
An average of 30 web pages per session, an inter-page
parameter of 0.8, an average page size of 10 objects,
an average object size of 400 packets and a Pareto
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Figure 6. Self-learning and adaptation mechanism for the FLCD architecture.

Figure 7. Self-learning and adaptation algorithm.

II shape parameter of 1.002. Thirty web servers are
connected to Router 1, with a corresponding number
of web clients connected to Router 2. Fifteen web
clients are also attached to Router 1 and �fteen web
servers to Router 2 to provide background tra�c on
the return path. Simulations for these experiments are
implemented on the network topology in Figure 8.

Experiment 1: Queue Evolution in Dynamic
Tra�c Environments

In this experiment, the sensitivity of the four schemes
is compared when 
ows are introduced and dropped
dynamically during a simulation period of 500 seconds.
50 FTP 
ows from Router 1 to Router 2 are simulated.



Internet Congestion Detection Using Fuzzy Logic 599

Figure 8. Network topology.

These 
ows start randomly within the �rst 5 seconds
and remain active throughout the simulation period.
At time = 120 seconds, the number of FTP 
ows from
Router 1 to Router 2 is 50. This number is increased
by 50 at each 1 second interval until the simulation
time reaches 144 seconds. Between 144 seconds and
220 seconds, the number of FTP 
ow remains constant.
When time reaches 220 seconds, the number of FTP

ows is reduced by 50 at each 1 second interval until
time = 244 seconds, after which the number of FTP

ows remains constant. 10 UDP 
ows from Router 1
to Router 2 are activated at the intervals [120 seconds-
130 seconds] and [350 seconds-370 seconds]. UDP traf-
�c rate is set at 0.5 Mbps. 10 web sessions are activated
on each client-server connection. Table 2 shows the
queue evolution statistics for the four schemes and
Figure 9 shows the queue length evolution dynamics
for the four schemes.

Table 2 and Figure 10 show that the self-organized
FLCD algorithm is more FD robust than the other

Figure 9. Loss rate with varying round trip link delay.

Figure 10. Queue evolution for the four schemes.

approaches. The length of the queue sticks to 36
packets (40% of full bu�er size). The unorganized
FLCD algorithm ranks second, while the basic Fuzzy
algorithm and the ARED algorithm rank third and
fourth, respectively. Right from the onset, even
without the introduction of dynamic tra�c, the ARED
queue stabilizes at a much higher value. The TCP
tra�c in
ow during slow-start completely overwhelms
it, such that it fails to recover the queue length to
the desired target. The three other approaches also
register high queue length immediately after startup,
but they manage to recover and maintain the queue
within the precincts of the target. Of the three

Table 2. Queue length evolution statistical results.

Metric ARED Fuzzy (Basic) FLCD Sel-Org FLCD

Average queue length (packets) 61.6 40.915 38.814 36.74934

Queue variance (packets) 363.348 596.7366 425.872 319.50838
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well performing approaches, the self-organized FLCD
approach registers the shortest queue length during
the startup phase (approximately 60 packets), while
the unorganized FLCD algorithm (approximately 82
packets) and the basic Fuzzy algorithm (approximately
85 packets) rank second and third, respectively. In
terms of recovery time during the startup phase, the
self-organized FLCD algorithm still ranks �rst with a
recovery time of approximately 5 seconds, while the
unorganized FLCD algorithm (approximately 10 sec-
onds) and the basic Fuzzy algorithm (approximately
15 seconds) rank second and third, respectively. When
UDP tra�c is introduced at the intervals [120 seconds-
130 seconds] and [350 seconds-370 seconds], the queue's
high period is smallest in the self-organized FLCD
algorithm compared to the other approaches. With
the introduction of dynamic TCP tra�c, all the algo-
rithms, except ARED, which just shifts the queue even
higher close to the bu�er limit, become unstable as they
try to limit the queue length to the set target. Once
again, the self-organized FLCD algorithm performs
better than the unorganized FLCD algorithm and the
basic Fuzzy algorithm in that attempts to bring the
queue down to 36 packets right from the time dynamic
TCP tra�c starts entering the link. The self-organized
FLCD algorithm also exhibits good recovery perfor-
mance when the dynamic TCP tra�c stops 
owing.
The basic fuzzy algorithm su�ers severe underutiliza-
tion when dynamic TCP tra�c stops 
owing. After
approximately 390 seconds up to 500 seconds, all the
four schemes limit the queue length to approximately
36 packets. It is worthy pointing out that ARED is
more stable during this period, but that advantage
is o�set by its very high average queue length. The
e�ect of long queues is twofold. Besides enhancing the
need for larger bu�ers, long queues have an e�ect of
increasing packet delays.

Experiment 2: Performance in Dynamic Tra�c
Environments with Varying Propagation
Delays

In this experiment, the performances of the four
schemes are compared when the round trip delay of
the bottleneck link is varied. The network topology
shown in Figure 8 is used. The round trip link delay
is varied by using 20 ms, 40 ms, 60 s up to 180
ms. The simulations run for 200 seconds. Fifty FTP

ows are simulated, competing for bottleneck link from
Router 1 to Router 2. These 
ows start within the
�rst 5 seconds. Four web sessions are activated on each
client-server connection. Ten UDP 
ows are introduced
at the intervals [50 s-60 s] and [150 s-160 s], while the
FTP 
ows start randomly within the �rst 5 seconds
and run up to the end of the simulation. At time
60 s, 200 new FTP 
ows start, with 40 starting every

7.5 seconds. When time reaches 140 seconds, the new
FTP 
ows are removed from the tra�c mix in steps
of 40 
ows every 7.5 seconds. Figures 10-14 show the
results.

Figure 10 shows that the self-organized FLCD
algorithm has the lowest packet loss rate, ranging from
0.28% to 1.181%. The organized FLCD algorithm
comes second, with a loss rate ranging from 0.532%
to 1.324%. The basic fuzzy algorithm comes third,
with a loss rate ranging from 0.972% to 1.647%. The
ARED algorithm comes fourth, with a loss rate ranging
from 1.995% to 3.533%. The self-organized FLCD
algorithm's low packet loss is due to the role played by
the packet loss factor, which is embedded into the self-
learning and adaptation mechanism. This factor helps
to increase the packet marking probability when packet
losses have been detected. This helps to reduce further
packet loss. ARED's poor packet loss performance is
due to the fact that the ARED control law fails to keep
the queue within the desired precincts. When dynamic

Figure 11. Link utilization with varying round trip link
delay.

Figure 12. Fairness with varying round trip link delay.
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Figure 13. UDP packet delay with varying round trip
link delay.

Figure 14. UDP tra�c jitter with varying round trip link
delay.

tra�c sets in, bu�er over
ows are inevitable, as seen in
Figure 9.

Figure 11 shows that ARED and both FLCD
approaches achieve high link utilization throughout the
simulation run. The average link utilization values are
as follows: 99.34% for self-organized FLCD, 99.36%
for unorganized FLCD, 99.57% for ARED and 98.58%
for basic fuzzy. The basic fuzzy algorithm exhibits
lower link utilization, because it su�ers from severe
underutilization soon after the dynamic TCP tra�c
stops 
owing. It fails to recover the queue to the target
after such a sharp decrease in tra�c (see Figure 9).

Figure 12 shows that both FLCD approaches
achieve the highest average link fairness (77.6% for
FLCD and 77.5% for self-organized FLCD). The basic
fuzzy algorithm follows them closely with an average
of 76.98%, while ARED comes last with an average
of 75.2%. From this, it is observed that the self-
organized FLCD algorithm does not jeopardize the
fairness element of the FLCD algorithm.

Figure 13 shows that the self-organized FLCD

algorithm achieves the lowest UDP packet delay
(76.8 ms) for round trip link delays shorter than
100 ms. The FLCD algorithm (86 ms) comes second.
The ARED (98 ms) algorithm and the basic fuzzy
algorithm delays (98.93 ms on average) exhibit similar
UDP tra�c delays. However, when the round trip
delay exceeds 100 seconds, the FLCD algorithms and
ARED exhibit a similar UDP tra�c delay performance,
while the basic fuzzy algorithm exhibits slightly longer
delay. The self-organized FLCD algorithm exhibits
better UDP delay performance for shorter round trip
time because of the RTT based update mechanism,
which forms part of the self-learning and organiza-
tion structure. This mechanism enables the FLCD
algorithm to frequently update the packet marking
probability for links with shorter RTTs. The e�ect of
this is that bu�er over
ows are minimized. It becomes
easier for the FLCD algorithm to keep the queue close
to its target, thereby, improving the end-to-end delay.

Figure 14 shows that the basic fuzzy algorithm
exhibits the lowest jitter (with an average of 1.78 ms).
The FLCD schemes rank second, with averages of
1.854 ms for FLCD and 1.847 seconds for the self-
organized FLCD algorithm. The ARED algorithm
comes last, with an average jitter of 2.19 ms.

CONCLUSION

This paper has proposed online self-organization
structures for the Fuzzy Logic Congestion Detection
(FLCD) algorithm. These structures include an RTT
based sampling mechanism and a self-learning and
adaptation mechanism. The latter modi�es the al-
gorithm's update interval in line with the prevailing
outgoing link propagation delay, while the former �ne-
tunes the algorithm according to the prevailing system
conditions. The e�ectiveness of the proposed approach
is proved by comparing the performance of the self-
organized FLCD algorithm with that of the unorga-
nized FLCD, the Adaptive RED and the basic fuzzy
algorithms under dynamic tra�c patterns. Perfor-
mance results show that the proposed approach shows
a more robust performance compared to the other
approaches. Apart from enhancing the robustness of
the FLCD algorithm, these structures also reduce UDP
tra�c delay for short round trip propagation delays.
They also help to reduce the FLCD algorithm's loss
rate. It is also worth mentioning that the addition of
the self-organization structures to the FLCD algorithm
does not jeopardize other performance metrics, such as
utilization, jitter and fairness.

As part of future research work, the authors plan
to work on the �ne tuning of some of the parameters
of the FLCD algorithm, e.g. proposed change in the
output scalar (bj(t)).
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APPENDIX

METRICS FOR PERFORMANCE
EVALUATION

The �ve general network performance metrics are:
Utilization, fairness, packet loss (drop), jitter and
delay. The �rst three metrics, which cater for all
tra�c 
ows, have been adopted from [44], while the
last two (jitter and delay) have been de�ned based on
the condition that they only cater for real-time 
ows,
whose performance is heavily dependent on delay and
jitter.

Utilization, Drop and Fairness Metrics

The total simulation time is denoted by T and the
network capacity by C. Let F denote the total (both
UDP and TCP) 
ows indexed by i 2 [1; F ] traversing
the bottleneck link at time T . For 
ow i, the following
variables are de�ned:

� Si, the total size of the data received,
� S0i, the total size of the data sent.

Therefore, the �rst three metrics are as follows:

1. Utilization metric:PF
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Delay and Jitter Metrics

Let N denote the number of UDP (real-time) 
ows
indexed by j 2 [1; N ] traversing the bottleneck link at
time T . For each UDP 
ow, j, the following variables
are de�ned:

� Rj , the total size of the UDP data received,
� Dj , the average delay,
� Jj , the average jitter,
� Pj , the total number of packets.

In UDP 
ow j, for each packet indexed by k 2
[1; Pj ], the following variables are de�ned:

� Jk, jitter between packet k and packet k + 1,
� Dk, delay for packet k,
� sk, the time packet k was sent from the sender,
� rk, the time packet k was received at the receiver.

Delay Metric
For packet k in UDP 
ow j, the delay is given by:

Dk = rk � sk: (A4)

Average delay is then computed as:

Dj =

PjP
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Therefore, the weighted average delay, which takes
into account the amount of UDP tra�c that has been
transferred successfully, becomes:PN
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: (A6)

Jitter Metric

The jitter metric is derived based on the de�nition of
jitter for real-time 
ows [45]. The jitter of a packet
stream is de�ned as the mean deviation of the di�erence
in packet spacing at the receiver compared to the
sender, for a pair of packets. Jitter between packet
k and packet k + 1 is expressed as:

Jk = j(rk+1 � rk)� (sk+1 � sk)j
= j(rk+1 � sk+1)� (rk � sk)j: (A7)

Average delay is then computed as:

Jj =

Pj�1P
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: (A8)

Therefore, the weighted average jitter, which takes
into account the amount of UDP tra�c that has been
transferred successfully, becomes:PN

j=1RjJjPN
j=1Rj

: (A9)


