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Research Note

Boundedness and Regularity with Nonlinear

Dependence of Hessian and Gradient

B. Mehri'* and M.H. Nojumi'

Sufficient conditions for the boundedness and regularity of a function, whose partial derivatives
satisfy a certain set of equations, are presented. Energy methods are used to establish these
results. The asymptotic behavior of the gradient toward a constant function is also investigated.
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INTRODUCTION

Recently, boundedness, convergence and the asymp-
totic behavior of solutions of partial differential equa-
tions have been considered [1-3]. Therefore, some
special class of PDE’s is considered. The aim of
this paper is to present sufficient conditions for the
boundedness and regularity of a function u : (0, 0)? —
IR whose partial derivatives satisfy:

4 by, y) fr (82) +ra(z, ) fo ( )
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90y T 51(@,9)n (%) + 52(2, 9)92 (%Z)
+s3(z,y)gs(u) = n(z,y)
Tt 4ty (z,y)ha (32) + 1 thz(%
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with:

2
T17T27T37517827537t17t27t3 € C(O7 +OO> ’

f17f27f37g17g27g37h17h27h3 € C<R>7
£,1,0 € C(0,+00)%

Energy methods [4,5] are used to arrive at the bound-
edness and regularity results. It will also be shown,
in regard to the asymptotic behavior, that, under
certain conditions, function satisfying Equations 1
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behaves asymptotically, like a constant-gradient func-
tion. Equations 1 can be considered as a nonlinear
relation between the Hessian and the gradient of w.
The boundedness and regularity behavior is a key
issue in many theoretical and applied areas including
dynamical systems control systems, and mathematical
physics [6-8].

RESULTS ON BOUNDEDNESS

Theorem 1
If the following conditions hold:
(i) 71, 73, 83, to and t3 are nonnegative on (0, +00)?2,

(ii) For every y € [0,00), functions r3(.,y) and
s3(.,y) are increasing on (0, +00),

(iii) For every x € [0, 00), functions s3(z,
are increasing on (O +00),

(iv) Forall A € R, Afi(A) > 0 and Ahao(N) >0,

) and tg( )

(v) There exists a constant K > 0 such that for all

ANER;
|f2(M)] < KA, |hi (V)| < K
G <KW, fori=1,23
(vi) s1, so, 7“2\/%, 514/ %%, 82\/2*3 t1 /32 €
L0, +00)?,
(vii) &, 2=, < € L1 (0, 400",

(viii) Functions f3 and hs are nonnegative on IR,
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(ix) Functions F3 and Hj defined by:

w) :/Ow Fs(VdA
)= /0 " sV

have the property:

lim Fs(w) = 400,

w—to0

lim Hz(w) = 400,

w—+oo

then, for every set, functions a(x), a(z), b(y) and
B(y) are defined on (0,+o0) with the following
properties:

(x) Functions a and b nonnegative and decreasing on
(0, +00),

(xi) Functions a and  nonnegative and decreasing on
(0, +00),

(xi)) /5 V2 (/o 5 € LH0, +00)?,

the functions

u U 1 Ju 1 Ju
u, ’ ) A T a.
a/a Vb/3 r3 0% s3 Ox
1o 1
s3 0y’ ts Oy’
are all bounded on (0, +00)2.
Proof
Introducing:
Ity - o
Uij = W7 fOI"L,]:071727 7/+.7§27
we transform Equations 1 into:
v20 = & — 71f1(v10) — 72f2(v01) — 73 f3(v00)

) — 5393(v00) (2)
) — t3hs3(voo)

vi1 =1 — 5191(v10) — $292(vo1
voz = 0 — t1h1(v10) — t2ha(vos

Defining two “energy functions”:

a o 1,

1
EF —Vpo + — V1o + *’0(2)1 + 2_F3(1)00)7
a 3 53

1 .
—v3; + 2H3(vgo),

B2 2
Epy = —v +—v +
H = P00 T
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we have:
OEp _ (lda  ada 02 1 Ors =
dr  \Nadr a2dx) Z or "’

1 0s 1 1
T2 9r = 51 + 2 Uoovm + 2*0105 + 2—1}0177
53

T1 S2
- 27010](1 (v10) — 2;”0192(”01) — 2001 93(v00)
3 3

T s
- 2*27J1of2(1)01) -2 (v10), (3)
T3 53
8EH_ 1%_@@ U2 _ 1853 2
dy  \bdy b2dy) s3 3y
10t; , B 1 1
- = 2 2— 2—0010
té ay Vo1 T b’l)()o’l)(n + 53 v10M + s Vo1

s
—27U01h2(1101) 25*11)0191(1101) — 2v1093(v00)
3 3

8¢ t
— 22201092 (v01) — 2 v10ha (V1) (4)
83 t3

Assumptions (i), (ii), (iii), (iv), (v), (x) and (xi) yield:

OFr
5, 2. |v00||U10| + 2*|Ulo||€| + 2*|7101||77|
X
- 051 -
+ 2.[& |52 — 4+ 2.[& ’U01||’Uoo|
3
. Te S
+2K <| 2| | 1|> |1)10||U01|7
r3 S3
and:
OF
7i5<2lwwmﬂ+2—WmWﬂ+2|%ﬂW

2
v -
+2K|$1|£ + 2K ’U10||’Uoo|
3

S t
4K (| 2] +|1|) 10| [vo1]-
83 t3

By assumption (viii) and the inequality, 2|AB| < A? +
B2, one obtains:

o [ar
2g|1)00||?110| < 3EF7
Bt
2§|U00||U01| <4/ 3EH7

1
2T7|UIO||€|< |€| 4 |€| lva7
3

Vs Vs
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Vis Vs

2K|1}01||U00| S [(1 / %EF,
b53
2K |viol|voo| < K ?Em

and:

(| S
2K <|2| + |1|> [v10][vo1 |
T3 53

<K (|r2|1 /f}” + 51l /?) Ep,
3 3

YAE t
oK (lzl . |1|) ool |

53 t3
. [t3 83
83 t3
9Er _ &
ox NG

Oy _ Il , 16

So:

+ K

b53 t3 53
2 — . — t — .
[s1] 44/ 5 +|52|\/83+|1| e

Integrating both sides of Relations 5 and 6, and
recalling (vii), by the Gronwall Lemma for differential
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form, we arrive at:

Erle.n) < Coesp ( [ 8000007

for all y € (0,400),

En(z,y) < Cyexp (/Oy \If(yc,/\)d/\)

for all z € (0,400),

for some constants, C, and C,. Noting (vi), (vii) and
(xii), we have:

®, e L'(0,400)2.

So, for every y € (0,+00), the energy function,
Er(.,y), is bounded on (0,+0c0) and, hence, so are
the fuIlC'CiOIlS7 1)00/(\/0//0(), 1)10/\/’/’737 1)01/\/87, F3(U00>
and vgg, by (viil). Similarly, for every z € (0,+0c),
the energy function, Ey(x,.), is bounded on (0, +00)

and, hence, so are the functions voo/(\/0/8),v10/+/53,
vo1/+/t3, H3(voo) and vgg, by (viii). This completes the
proof of Theorem 1.

Remark 1

The proof of Theorem 1 is also valid in the case £ =
n=60=0.

Remark 2

Noting Equations 3 and 4, we can see that the proof of
Theorem 1 remains valid, if we relax the assumptions:

67’3 853 883 at3
—_— > > —_— >
oz 20, Ay 20, Ay 20,

in (ii) and (iii) by the weaker assumptions:

105 10ss 105
r3 Oz’ s3 Oz’ s3 Oy’
10ts R

29 ¢ 1o, .

I 9y (0, +00)

Theorem 2

If assumptions (i), (ii), (iii), (iv) and (vii) in Theorem 1
are replaced by:

(i’) ry and ro are nonpositive on (0,+00)? and 73,
s3 and t, are nonnegative on (0, +00)?2,
(ii’) For every y € (0,+0c0), the function s3(.,y) is
increasing on (0, +00),
(iii’) For every z € (0,+00), the function sz(z,.) is
increasing on (0, 400)
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(iv’) There exists a constant M > 0, such that, for
all A € R:

0<Afi(A) < MA%, 0 < Aha(X) < M2,

and, for all (z,y) € (0, +00):

or

87;($7y) + 2M7’1(.’1§'7y)7‘3($73j) > 07
ot
(vii")

7 &

NES (dr3/0z) + 2Mrirs’

02

Ll 2
(Ot3/0y) + 2M iy i3 € L0, +oo)’,

respectively, then, the assertions of Theorem 1 remain
valid, provided £ # 0 and 6 # 0 (no restriction on 7).

Proof
Similar to the proof of Theorem 1, using the defined

energy functions Ep and Ep, and by similar Gronwall-
type arguments.
RESULTS ON L? REGULARITY

Theorem 3

Under the assumptions of Theorem 2, all functions:

L\ ada\ 143\
adx ' a? dz ’ b dy ’

3 db 1/2
<b2dy> v

are in L?(0, +00)2.

Proof
With the hypotheses, Relations 3 and 4 lead to:

lda  ada) , N (8r3/8x)+2M7’1rgv2
ade a?dx ) ™ 3 10

O
O8p , KL, 1l 5p,, (7)

< 5
=T T Um s
and:

Ldp _ pdb) . (9ts/Iy) +2Mists ,
bdy b2dx)

U
2 01
t3
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By the boundedness of Er and dFEr/0x as functions
of = for every fixed y, and the boundedness of Ey
and OFy /0y as functions of y for every fixed z, by
Relations 7 and 8 we observe that the expressions:

1 do * a(p) da \
/0@%(;0)@00(1%34)@—/0 a2(p)%(p)voo(p,y)dp

1 or
+/7 [3(p7y)+2MT2(p7y)rg(pw)]vfo(p,y)dp,
0

r3(p,y) L 0w
and:
Sadg B
/0 b(q) dy(p) ooz )da o b2(q) dy(Q) 00(,q)dq

o | S 2 s )i ()
Ot§($7q) ay xr,q 2T, q)t3\T, q UOl x,q)aq,

are bounded for every (z,y) € (0,+00)?, and the proof
is complete by the Fubini theorem [9].

RESULTS ON ASYMPTOTIC BEHAVIOR
Theorem 4

If assumptions of Theorem 2 hold together, with:
1,72, 81,82, t1, 12 € L'(0,400)?,

73, 83,13 € L*(0,4+00)? N L*(0, +00)?,

then:
9
Jm Sele) =0 and lim 5l ) =0

for all y € (0,400),

. ou . ou _
ygrfoo %(a;y) =0 and ygrinoo afy(l’,y) =0,

for all z € (0,400).

Proof
From Equation 2 we get:

v
wrollvaol < (") Jralel

NG

|v10] 2 [v10] 3/2
M| ——
+ <\/7§ 71|73+ f3(v00)] NG r3'T,
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forol o] < ('f') Vsl

o () () v

|”10| lvio] \ 32
K K —
+ ( 5 | ||53| + |1)00| > 83",

oot fonal < ('f') Vsl

() ()

Vi) \ Vs
()

v
+ K (l}g) | 2||S3| + K

oot 2] < ('f') V)

() () e

+M (':?i') Ita|ts + |hs(voo)] ('%) t3(/92).

By Theorem 2, all functions inside the parentheses
are bounded and, hence, so are f3(vgo) and hz(vgo)
by the continuity assumptions on f3 and hs. Taking
this into account, by integrating the first and third
inequalities with respect to z, and the second and
fourth inequalities with respect to y, using the Holder
inequality, we obtain:

ool gu &u
for all y € (0, 4+00),
[ || 2@
0 Al dxdy

for all = € (0, +00),

q)’dq<oo7
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[ || 2
o y 2% 913y »y

for all y € (0,400),

oo Oy d%u
[ [5wa|[ge
0 Yy

for all « € (0,400),

)‘dp<oo7

)‘dq<oo

and assertions of the theorem followed by a simple
lemma which, for instance, can be found in [10].
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