RESEARCH NOTE

An Application of Fuzzy Set Representation

M. Mashinchi!

In this note a more general version of fuzzy representation theorem considered by D.A.
Ralescu (1975, 1992) is presented. Then a fuzzy algebraic application of this theorem is

given.

INTRODUCTION

Representation theorem for L-fuzzy sets has
been given by Negoita and Ralescu in [1],
where L is a complete lattice with an extra
condition called L2. They have also stated
many applications of this theorem in diverse
fields [2,3]. This notion has been studied by
other researchers as well [4-6] and is used to
characterize fuzzy algebraic structures in [7].
Recently Ralescu in (8] has given a generalized
version of this representation where L is the
interval [0,1]. Here it is shown that the original
representation theorem in [1] is true for any
complete lattice without any more condition
and other results of [8] are extendible under
some conditions. Then, a generalization of a
result given in [7] for QA-fuzzy subgroups (A-
fuzzy subpolygroup) of a group (polygroup)
is presented . The representation given here
makes it possible to characterize many fuzzy
concepts whose valuations are in a lattice rather
than the interval [0, 1].

FUZZY SET REPRESENTATION

Let L = (L,<,V,A) be a complete lattice with
the least element 0 and the greatest element 1.

By a fuzzy set A the map A: X — L is meant.
For any a € L, the a-level of A is defined as:

A, ={z€X:Alz) > a}.

Definition 1

Let X be a nonempty set, by a closure set
system on X, a set ¥ of subsets of X which
is closed under arbitrary intersection is meant,
ie. NyeyB, € ¥ for all index set M and any
B,eX.

The above definition implies that X € ¥
for any closure system ¥ on X, if for the empty
set @ the usual assumption is imposed:

maeﬂBa = X .

The idea of considering fuzzy sets whose
a-levels belong to a closure system appears in
[1,7].

Definition 2

Let ¥ be a set of subsets of the nonempty set X.
The fuzzy set A is said to be a fuzzy X-subset
of X if and only if,

A, e X, forallae L.
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Note 1

Let {B,}.c be a class of subsets
for any subset M C L,

B\/,,EM = ﬂaEMBa .

From Statement 1, it is the

of X such that

(1)

n obvious that

if b,g € L, the following is obtajned:

ngngng

Also {B,}.cr is a closure

(2)

set system on

X, therefore, there is b € L such that X =

B,. However, from Statement 2
is obtained:

B, CBy, forallae L.

, the following

3)

So, in particular, from Statement 3 X =

B, C B, is obtained. Hence:

B():X.

(4)

Now the following representation theorem

could be proved by the aid of Ng
this theorem will be also used
Theorem 2.4 of [7] as in Corollaz

Theorem 1 (Fuzzy Set Repr

te 1, and later
to generalize

'y 3.

esentation)

Let {B,}ascr be a class of subsets of X. The

necessary and sufficient conditio

n that there is

a fuzzy set A for which A, = B, foralla € L

is that By, ,, = NyemB,, for all

Proof
The necessary part is easy. So

MCL.

pnly the proof

of the other part is given. Now suppose that
Statement 1 holds. Define a fuzzy set 4: X —

L as follows:
A(z) = Veep,a .

Now let b € L be arbitrary. Su

ppose x € A,.

Then, from definitions of A, and A(z), the

following is obtained:

b S vzeBaa .

(5)

Therefore using Statements 2 and 5, the follow-

ing is obtained:

szenaa g Bb .

(6)
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Likewise, using Statements 6 and 1, Statement
7 is obtained:

MNeep, Bo € By . (7)

It is obvious that z ¢ MNzep,B.. Therefore
using Statement 7, x € B,. Hence:

1

Ay C B, forallbe L. (8)

Now suppose that z € B,. Then, Statement
5 holds by definition of V. Moreover, from
definitions of A(z) and Statement 5, it is
concluded that b < A(z). That is = € A,.
Thereby,

Bb g Aba for all b €L. (9)

Therefore, using Statements 8 and 9, the fol-
lowing is obtained:
A, =B, forallac L. (10)
Theorem 1 is a relaxed version of Lemma
1 of [1], in the sense that condition L2 is
not imposed anymore, where L2 is defined by
Statement 12. However, in order to generalize
Theorem 2 of [8] some conditions on the lattice
L need to be imposed, which is stated below.
From now on it is always assumed that L'
is a lattice L, which has the following extra
properties:

L1) If {a;}ien C L' is such that V,cqa; = a €
L’, then there is an increasing subsequence

of {a;}.cq, say a; < a, < ---, such that:

Y (1)

a, = a .

n=1

L2) For all

YCL'a<Vyy y= thereisbe Y
such that a < b. (12)

Now a generalized version of Theorem 1 can be
given as follows:



Mashinchi on Application of Fuzzy Set Representation 343

Theorem 2

Let ¢ : L' — L' be given and let {B,}acr
be a class of subsets of X. The necessary and
sufficient conditions that there is a fuzzy set A
for which Aga) = B,, for all a € L' are that:

1. ¢(a) < ¢(b) = Ay C A,
2. ¢(ay) < ¢(ag) <--- and

Ve, #(an) = ¢la) = Nizy Aa, = Ao
Proof

The necessary part is easy. So only the proof
of the other part is given. Define A(z) as:

A(JL‘) = VzEB,.st(a) .

Now, by using Statements 11 and 12 exactly
the same line of the proof given in [8] will work
here.

Definition 3

A unary operation C :
complement on L [9,10] if,

L — L is called a

1. 2 <y= C(y) <C(z), forallz,y € L,
2. C(C(z)) ==, forallz € L.

It is obvious that one can find that C(0) = 1.

As a special case of Theorem 2, if ¢ is
chosen as the identity function or a comple-
ment, then the following results are obtained
respectively.

Corollary 1

Let {B,}sers be a class of subsets of X. The
necessary and sufficient conditions that there is
a fuzzy set A for which A, = B,, for alla € L
are that:

1. a<b= A, C A,,

2. a; <ay <--- and
Ve, a, =a == o, Aa, = Aa.

n=1"n

Corollary 2

Let {B,}.crs be a class of subsets of X and
assume there is a complement C on L. The
necessary and sufficient conditions that there is
a fuzzy set A for which A, = B,, foralla € L'
are that:

1. b<a=> A, C Ay,

2. "‘Sanf"'ﬁﬂhfal and/\;.o:la/n:
a =N, 4., = A,

The following is a generalization of Theo-
rem 3.4 of [7].

Corollary 3

Let ¥ be a closure set system on X. If {B,}acr
is a subclass of ¥, then the fuzzy set A: X — L
defined by A(z) = V.ep,a is a fuzzy Z-subset.
Conversely every fuzzy Y-subset A of X could
be obtained as above.

Proof

From Theorem 1, it is known that Statement
10 holds. Therefore, A is a fuzzy Y-subset and
from Statement 4 it is obvious that Ay = By =
X € E. The proof of the other part is exactly
the same as Theorem 3.4 of [7].

Remark 1

1. Suppose G is an 2-group as in Definition 7.
Let:

Y ={H : H is an Q-subgroup of G
as in Definition 8 } .

2. Suppose pG is a polygroup (pG,.) as in
Definition 5. Let:

Y ={H : H is a subpolygroup of pG
as in Definition 8 } .

Then, it is easy to see that ¥ and ¥’ are clo-
sure set systems on G and pG, respectively.

APPLICATION

In this section an application of Theorem 1 is
given which generalizes some concepts in Sec-
tion 4 of [7], i.e. characterization of many fuzzy
algebraic structures, such as fuzzy(normal)
groups, fuzzy modules, fuzzy vector spaces etc.

Some definitions required here are stated
from [10-12]. Let G be a group with identity
element e.
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Definition 4

An Lt-norm T is a binary operation T : LxL —

L having the properties:

1. T(z,1)=1=z,

2. T(z,y)=T(y,z),

3. T(z,y) < T(u,y) ifx<u,
4. T(z,T(y,2)) =T(T(x,y),z

Note that A is actually an
can find Lt-norms other tha
examples see [11,13]).

Let H be a nonempty set
p(H)\0, where P(H) denotes t
H.

Definition 5

(H,.) is called a polygroup if|.

—

Lt-norm. One
n A (for such

and P*(H) =
he power set of

c: Hx H —

P*(H) is a map such that the following condi-

tions hold:

1. z.(y.2)=(zy).z forall z,y,2 € H ,

2. There exists ¢+ € H, call

element of H, such that 7.z

forallz € H,

ed the neutral
= z.1 = {z},

3. For all z € H there exists a unique ' € H
such that ¢ € z.2’Nx’.x. =’ is said to be the
opposite of z and is denoted by z,

4. Forallz,y,z€ H ,

z€x.yﬁx€z.y‘1=>

yexlz.

Moreover, let K C H. Then K is called a

subpolygroup of H if i € K an
a polygroup.

Definition 6

Let T be an Lt-norm. A fuzzy
is called a T-fuzzy subgroup of

1. A(zy) 2 T(A(z), A(y)), for

2. A(z™!)=A(z), forallx € G,

3. A(e)=1.

1 (K, .) is itself

set A: X — L

G if:

all z,y € G,
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Definition 7

The order pair (G,*), where x : G x Q — G,
(a,w) — a xw has the property:

ab*w =(a*w)(b*w), forall a,b € G,
forall we Q,

is called an operator group or Q-group.  is
called an operator domain and each w € Q is
called an operator.

Definition 8

Let G be an Q-group and H a subgroup of
G. H is called an Q-subgroup of G if H is Q-
admissible, i.e.,

hxweH, forallhe H, forallwe Q.

Definition 9

Let A be a fuzzy subset of Q-group G. Then A
is called:

1. Q-admissible on G, if:
Az) <A(z *w), forall z € G,

forallwe .

2. QT-fuzzy subgroup or TQ-admissible on
G, if A is both Q-admissible and T-fuzzy
subgroup.

Definition 10

Let (pG,.) be a polygroup and T be an Lt-

norm. A fuzzy subset A : pG — L is called

a T-fuzzy subpolygroup, if

1. A(z) > T(A(z), A(y)), for all z € z.y and
all z,y € pG,

2. A(z™!) = A(z), for all z € pG,

3. A(i) =1, where i is the neutral element of
(G, ).

The following lemma is easy to prove. For
the polygroup case also see Theorem 4.5 of [14].

Lemma 1

The fuzzy set A is an QA-fuzzy subgroup (a
A-fuzzy polygroup) of G(pG) if and only if
all nonempty a-level A, of A are Q-subgroup
(polygroup) of G(pG).
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Theorem 3

Let {B,}.cr be a class of Q-subgroups (poly-
subgroups) of G(pG). The necessary and
sufficient condition that there is a QT-fuzzy
subgroup (T-fuzzy subpolygroup) A of G(pG)
for which A, = B,, for all a € L is that
By.cn = Naem B, for al M C L, where T = A.

Proof

The proof follows from Theorem 1 and
Lemma 1.

A very general version of Theorem 3, the
proof of which follows from Lemma 1 and
Theorem 2, is as follows.

Theorem 4

Let ¢ : L' — L' be given, and {B,}.er: be
a class of Q-subgroups (polygroups) of G(pG).
The necessary and sufficient conditions that
there is QT-fuzzy subgroup (T-fuzzy subpoly-
group) A of G(pG) for which Ayn) = B,, for
all @ € L’ are that:

L. ¢(a) < ¢(b) = A, C A,

2. ¢(ar) < ¢laz) < -+ and Vil g(an) =
¢(a’) = ﬂzo:1 Aan = Am

where T' = A.

More conclusions are drawn from Corol-
lary 3 if the class {B,}.cr are {2-subgroups
(polygroups) of G(pG), and T = A, by the aid
of Remark 1.

This section ends with an open question.

Question 1

Is there any characterization (i.e. any version
of Theorem 3 or Theorem 2) of TQ-fuzzy
subgroup or T-fuzzy subpolygroup, when T is
arbitrary?

Remark 2
The author found, after completing this paper,
that the notion of an Lt-norm and a version

of Theorem 1 are also studied in Lemma 1 of
[12].
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