Inductive Learning and Fuzziness

B. Bouchon-Meunier!, C. Marsala! and M. Ramdani'?

This paper introduces a framework for inductive learning systems in numerical-symbolic data
realm. Two complementary methods are proposed to deal with such kind of data pertaining
to the used training set. The first method is applicable when some expert knowledge is
available, for instance when experts provide fuzzy partitions of the universes of attributes.
A second method consists in inferring a fuzzy partition for an attribute when no expert
knowledge is available. With these two methods, a fuzzy decision tree is constructed by
means of a fuzzy form of entropy, the entropy-star. Finally, it is shown how such fuzzy trees

are used to classify unknown data.

INTRODUCTION

Acquisition of knowledge pertaining to a spe-
cific domain of expertise is an essential step to
achieve an effective reasoning.

A usual way to acquire knowledge is to
obtain it from experts. Such knowledge is either
simple (e.g. facts, evidence) or complex (e.g.
rules, laws, relationships). Inductive learning
systems infer complex knowledge from simple
knowledge. It is a way of reasoning from many
known facts towards a general law.

However, it is often difficult to deal with
fuzzy or imprecise simple knowledge. The
theory of fuzzy sets introduced by L.A. Zadeh
enables coding and treatment of such knowl-
edge. This leads to the integration of fuzzy set
theory into inductive learning systems, in order
to take into account the fuzziness of simple
knowledge.

An expertise domain with examples of
cases solved by experts is considered here.

Such examples constitute a training set. Each
element of this set is represented by a pair
[description, class] where a description is a set
of pairs [attribute, value].

The purpose is to find general rules which
permit classification of any description. It is the
induction scheme, which is generally achieved
by means of the construction of a decision tree.
Each vertex is associated with an attribute.
The edges coming out of a vertex are associ-
ated with characterizations of the attributes.
The simplest case corresponds to symbolic at-
tributes with a finite number of modalities and,
in this case, each characterization corresponds
to a modality. The choice of the attributes
is based on their efficiency with regard to the
identification of a class.

Various methods fulfill this task, for in-
stance, the Top Down Induction of Decision
Trees (TDIDT) based on methods that use an
evaluation function to arrange the attributes
in the decision tree. For example, the ID3
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algorithm [1,2] uses a measure of entropy and
the CART algorithm [3] is based on Gini’s
test of impurity. These kinds of methods are
connected to the theory of questionnaires [4]
and use various tools from information theory
[5]. Other methods are based on the theory of
data analysis, for example C-means methods or
ascending methods.

However, all these methods do not very
well fit the numerical nature of the data being
dealt with. Furthermore, they do not take into
account the imprecision and the fuzziness of the
data pertaining to the training set. Sometimes,
numerical data are considered as symbolic [6].
These kinds of methods build large trees and
it is difficult to rely on induction from a single
numerical datum.

Most of the above-mentioned systems dis-
cretize the universe of continuous attributes
and construct the characterizations as crisp
intervals. However, in such a case, the con-
tinuous aspect of the attribute is completely
ignored (for example, problems occurring near
the boundaries). To take into account this
continuous aspect, other systems incorporate
fuzzy sets in their methods.

Fuzzy techniques are also interesting in
case of numerical-symbolic attributes. The
training values for such attributes are numerical
but experts on the domain, in their current
language, use fuzzy symbolic values. The chal-
lenge is then to incorporate such data within
the inductive systems.

There exist two kinds of systems that
integrate fuzzy techniques. The first integrates
fuzzy techniques during the learning phase, e.g.
the system SAFI [7,8] or Janikow’s system [9].
The other system uses such techniques during
the classification phase, e.g. Catlett’s and
Jang’s systems [10,11].

In this paper, an algorithm is presented
that improves traditional inductive algorithms.
In the first section, an approach is proposed to
solve the problems of numerical-symbolic data
during the construction of decision trees. In
the second section, the algorithm which builds
the tree is presented. In the third section
the use of decision trees to classify new data
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is briefly discussed. And finally, interesting
new developments that could be added are
suggested.

A WAY OF HANDLING
NUMERICAL-SYMBOLIC DATA

A list of attributes A,... ,Ay and classes
€1,-..,Cx 1s considered which can be regarded
as modalities of a decision attribute C. A train-
ing set contains examples which are associated
with both values of the attributes and a class.
The problem is to find a way of determining the
class, given the values of the attributes. From
the training set, an order of the attributes is
determined leading to the determination of a
class, enabling us to associate a class with any
new example described only by means of the
values of A,,...,Ay. In the case where the
data are not homogeneous, numeric or symbolic
values of the attributes can be used depending
on the case.

There are many difficulties when dealing
with numerical-symbolic training data. New
ways of handling such data are proposed here.
The first way is applicable when expert knowl-
edge regarding the attributes is available. An
expert (or many experts) gives some linguistic
characterizations for the attributes. For in-
stance, he provides a symbolic partition for a
numerical attribute. This kind of expert knowl-
edge is often difficult to obtain or sometimes,
it does not exist. The second proposed way
enables us to infer a fuzzy partition if no expert
knowledge is available.

CASE WHERE EXPERT
KNOWLEDGE IS AVAILABLE

Let E be a training set with numerical-symbolic
attributes. For example, to study the high
Jump specialty in the domain of athletics, deter-
mination of the relation of pertinence between
the height that somebody is able to jump and
his age, size and weight is desirable. The
attributes of a person are his age, size and
weight; the class is the height that he is able
to jump (Table 1).
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Table 1. Typical training set.

Example | Age | Size (m)
El 20 1.85
E2 25 1.60
E3 35 1.70
E4 40 1.75
E5 29 1.65

Weight (kg) | Height (m)
80 1.70
80 1.35
60 1.35
75 1.20
90 1.25

Table 2. Symbolic values.

He is young | He is small | His weight is heavy | He jumps high
He is mature | He is tall His weight is light | He jumps low

Table 3. Training set with degree of satisfiability for each attribute.

Example Age Size (m) | Weight (kg) | Height (m)
Young | Mature | Small | Tall | Light | Heavy Low | High
E1l 1 0 0 1 0.25 |0.75 0 1
E2 1 0 1 0 0.25 | 0.75 0.75 | 0.25
E3 0.5 0.5 1 0 1 0 0.75 | 0.25
E4 0 1 0.5 0.5 | 075 |0.25 1 0
E5 1 0 1 0 0 1 1 0
An expert is supposed to provide a list 4\ Age A Size
L; of symbolic modalities (Table 2) for each N\ e | sman N\ Tl
attribute A;, for instance {young, mature} for X XN
the attribute Age. In order to take into account 0 = 9 4 -
these symbolic values, an interface is used that 80 40 Years Lo 180 m
translates numerical values into symbolic ones.
This is done with the help of fuzzy set theory. * Weight A Height
Symbolic values are represented by fuzzy sets N X P
of the universe corresponding to the numerical Light o Heavy Low / High
attribute (Figure 1). 0 N\ 0 N\
Thus, symbolic values of L; will replace the 55 85 ?g T 10 o

specific values of attribute A; given in Table 1,
with the adjunction of a degree of satisfiability
(Table 3).

Degree of Satisfiability

To determine degrees of satisfiability, let us
consider the value w of attribute A; for a given
example of the training set. Coefficients de-
termining to which extent each symbolic value
v of L; can replace w, or to which extent v

Figure 1. Typical fuzzy partitions.

is satisfiable for w are being sought. The so-
called degree of satisfiability is used, defined as
follows.

Let V and W be two fuzzy sets in a uni-
verse X. fw and fv denote their membership
functions. The degree of satisfiability [12] is
derivated from a fuzzy relation of inclusion
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Young Mature

Years ;

Figure 2. Example for the satisfiability degree.

30 40

introduced by Sanchez [13] and defined as:

Deg(W C V) = f*—}( f;;v;ix
X

=0ifW =g

W #£ o

More particularly,
Deg(W C V) = fy(zo) if W = {z},

and it can be noted that [x fvawdz (resp.
[x fwdz) is the area between fyny (resp. fw)
and the horizontal axis.

For example, in the case of the attribute
Age, the fuzzy value about 32 can be replaced
by the modality Young with a degree of satisfi-
ability computed in this way (see Figure 2).

Fuzzy Entropy as a Selection Criterion

For the sake of simplicity, it is supposed that all
the values of a numerical attribute A are precise
in the training set E. Let X = {x;,z,,...  Zn}
be this set of values. Let v;,...,v,, be the
modalities that define a fuzzy partition on the
universe of the values of A.

The fuzzy probability [14] of modality v, is
defined as:

P'v) = Y fu(z)P(z),

1<i<n

where the probability P(z,) is weighted by the
frequency of z; in F and f,, is the membership
function of the fuzzy set representing v;. In
practice, if n;, is the number of examples in E
with the value z; for A, P(z,) is approximated
with P(x,) = T—I;IL (|E| is denoted to be the total

number of examples in E).
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Let ¥ = {v1,92,...,9,} be the set of
numerical values of the decision attribute C
in E. The fuzzy conditional probability of
modality c; of C, given v;, is defined as:

. P*(c;,v;
P*(c;|v;) = —%2 )
with:

P(cj,v) = Y Y min(f. (y),

1<i<q1<k<n
Joi(@e)) Py, zy)

In practice, P(y,;, x;) is approximated with
Py, zy) = n“%l’&, where n, .., is the number
of examples in E with both the values z, for A
and y,; for C.

Entropy-star (8] is called the fuzzy entropy
of the decision C related to the attribute A. It

1s defined as:
By == P'(v) 3P (¢l log P*(csfuy)
i J

This entropy measures the uncertainty
of the fuzzy decision when the modalities of
the numerical-symbolic attribute A are known.
This entropy is the criterion chosen to order
the attributes during the construction of the
decision tree. ~Moreover, it generalizes the
classical Shannon entropy [15].

Fuzzy Entropy-Based Adjustment of the
Membership Functions

The selection of the parameters for the mem-
bership functions is crucial. A good defini-
tion by an expert is very important for the
whole system. When the expert is not sure
of his definition, these parameters have to be
adjusted. Obviously, it seems convenient to
adjust them with the values pertaining to the
training set. The entropy-star is minimized in
order to realize this adjustment.

However, usually, the best partition min-
imizing the entropy-star is a crisp partition,
which is not of interest to us in this case.
To avoid this kind of limitation, the notion of
minimal spread degree [8] is introduced. This
measure is the lower distance allowed between
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A spread degree
. ,

Minimal spread degree

Figure 3. Minimal spread degree.

the kernels of two neighboring membership
functions in the fuzzy partition of the universe
(Figure 3).

Another way is the adjustment of the
membership functions by means of genetic al-
gorithms [16].

CASE WHERE NO EXPERT
KNOWLEDGE IS AVAILABLE

In some particular cases, there is nz available
knowledge from any expert on the domain
under study. In other cases, the fuzzy partition
of the universe X; of an attribute A; has not
been known.

Some existing methods adapt the ID3 algo-
rithm to take into account the problem of such
training sets of data. The method developed
by Catlett [10] is one of those. The CART
algorithm [3] is a particular example of how
to handle such data. One possible way of
improvement lies in the integration of fuzzy no-
tions in order to smooth the boundaries found
during the discretization stage when classifying
a new example [11,17,18]. However, after some
experiments [17,19], it is realized that this kind
of fuzzification should be enhanced by another
type of discretization. In fact, with such a
fuzzification, the spread degrees between the
modalities of the obtained partition for an
attribute is very small. This fuzzy partition is
too close to a crisp partition and thus, the gain
in good classification is relatively poor.

The use of the notion of fuzzy entropy
in this kind of problem is proposed. To
achieve this purpose, a fuzzy partition on the
universe A; must exist. Techniques derived

from mathematical morphology theory [20,21]
are introduced in order to find such fuzzy par-
titions. These techniques are formalized using
the formal language theory [22,23] in order to
respect the particular structures of our data.
Such kind of work, relating the formal language
theory and pattern recognition techniques can
be found in [24]. Our algorithm allows us to
find a fuzzy partition of X; with respect to the
distribution of the classes ¢;,...,cx on X, in
E. This will make it possible to use the fuzzy
entropy to sort the attributes. In this paper,
concentration is focused on the case of crisp
classes (non-fuzzy classes). In the presence of
fuzzy classes, this method must be adapted, e.g.
by using fuzzy mathematical morphology [25].

In the following section, our method to
transform the universe of values of an attribute
into fuzzy partitions is presented. For more
details refer to [19] where all the algorithms are
described.

The Training Set as a Word

In order to use our fuzzy measure of entropy,
the entropy-star, a fuzzy partition on the uni-
verse of the training data must be available.
To induce such fuzzy partition, the use of some
operators of the mathematical morphology the-
ory is proposed: erosion, dilatation, closure,
opening and filter [20]. In our system, these
operators are formalized with the use of the
formal language theory. Basically, the training
set is considered as a word on the alphabet of
the classes, each class is viewed as a letter of
this alphabet.

For instance, let E be the set {(5,+),
(7’ +)7 (8': ")’ (13’ +)a (147 +)7 (17’ _')v (207 +)’
(217 _)’ (22’ +)v (237 +)7 (257 —)a (297 _)a
(30, -), (35,-), (36,4), (38, -), (40,-)}. The
first element of each pair is the value of an
attribute A, defined on the universe X; C N.
The second element is the class (here, there
are two classes + and —) corresponding to this
value. This set of classes defines the alphabet
{4, -} on which the word {+ + —++ -+ —
+ 4+ — — — — + — —} which is associated with
it is deduced.

The two basic operators (erosion and di-
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latation) are represented as rewriting systems
upon this alphabet, with a particular letter as a
structuring element (for instance the letter + in
the previous example). The erosion eliminates
the very short sequences of letters in a word,
the dilatation enables the system to merge
two sequences of the same letter separated
by a short sequence of different letters. The
operators closure and opening are combinations
of erosion and dilatation. A filter is a set of n
closures followed by n dilatations (n € N).

With these techniques, it is possible to
extract a significative sequence from the data
(Figure 4). Such a sequence is a set of successive
letters in the word induced by the training set.
Each of these sequences is related to an interval
of X;. The lower boundary of this interval is the
value of the attribute corresponding to the first
letter of the sequence and the higher boundary
13 the value corresponding to the last one. For
instance, with the sequences given in Figure
4, the following intervals are obtained: (5,14),
(17,23) and (25,40).

In order to generalize a fuzzy partition
from the data in the training set E to the
whole universe X, of the attribute A;, the
extreme interval is expanded to the limits of
the universe.

In the example, (5,14) becomes (0,14) and
(25,40) becomes (25, +co).

Within such interval, most examples be-
long to the same class ¢; (for instance, in the
example ¢, = + or ¢; = —). It is said that the
class of this sequence is ¢;. Some sequences,
related to an interval where the classes of the
data are highly mixed, are called uncertain.

In the example, the first interval defines a
sequence +, the second one defines an uncertain
sequence and the last one defines a sequence —
(Figure 4).

When a filter is applied upon a training set

Sequence uncertain

Sequence + Sequence—
°

CRETE |CYrY [ SPIRTIFY

5 7 _13,, 1720 22,,25 29 | 35
g 14 21 23 301 36

Figure 4. Sequences upon a trainﬂng set.

e
38 40 X;
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Sequence 1 Sequence

of | ‘ ’ i >
1 1 | 1

1 ma i max ,
smin smax Sppin s3 X;

Figure 5. Induced fuzzy partition.

considered as a word, it is possible to eradicate
uncertain sequences of classes in this word. The
size of the sequences desired determines the
number of applied filters. Therefore, a word
with large sequences is obtained. Let r be
the number of fuzzy modalities required for the
attribute. The r largest sequences containing
one class are selected, for instance [Spin, Smax]
and [SP®, SX| when r = 2. In the case where
such r sequences cannot be found, either the
number of applied filters can be reduced, or
less sequences be selected. A fuzzy partition is
inferred upon the universe of data with these
r sequences: the considered intervals define
the kernel of each fuzzy modality (Figure 5).
For instance, from the previous example, the
partition given by S = 0, SPax = 14, Spin =
25 and S = 400 is inferred.

Once the fuzzy partition is obtained, it is
used as if it was given by an expert and the
algorithms given in the previous section can be
applied.

CONSTRUCTION OF DECISION
TREES

The elements for the use of an extended version
of the ID3 algorithm devoted to the case of
numerical-symbolic data are now available. A
decision tree is built with the entropy-star
measure as a discrimination criterion. This
criterion allows us to find the attribute that
will split the current training set. The chosen
attribute is the one that minimizes the entropy-
star. The current training set is E itself at the
first step of the construction of a decision tree.
After this first step, E is splitted into several
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subsets corresponding to the characteristics of
the attribute used at the root. Each of these
subsets becomes the current training set for the
following step.

The modalities of any chosen attribute
split the current training set into various sub-
sets. Each modality generates a new current
training subset and labels an edge coming
out of the current node of the tree. Each
example with a non-null degree of satisfiability
regarding a modality is conveyed through the
edge associated with this modality. Its degree
of satisfiability is also conveyed with it.

The decision tree is developed in an iter-
ative way, from the root to the leaves. This
development is continued until a particular cri-
terion is fulfilled. For instance, the construction
of the decision tree is stopped when:

e The size of the current training set is lower
than a fixed threshold,

|training set| < threshold e -

e The value of the entropy-star is lower than
a fixed threshold,

E}, < threshold entropy -

e No attributes can further split the training
set.

This algorithm differs, depending on ex-
istence or non-existence of some additional
domain knowledge. If some expert knowledge
is available, the numerical-symbolic attribute is
fuzzified and then the decision tree is built. If
no expert knowledge is available, the attribute
at each step of the algorithm is fuzzified. Our
algorithm based on the rewriting systems given
previously is used at each step of the building
of the decision tree and before the computation
of the entropy-star of an attribute.

For each class associated with a leaf, the
decision is given with the fuzzy conditional
probability computed during the development
of the tree. For example, in the athletics
domain, the decision tree represented in Figure
6 is built.

P*(old)

P*(not-high/mature)

P*(young, tall)

P" (not-high/young,small) P (high/young, tall)

P*(young)

P*(young, small)

Figure 6. A fuzzy decision tree.

FUZZY CLASSIFICATION WITH
DEGREES OF SATISFIABILITY

In this section, the procedure of classifying a
new e.ample by means of a fuzzy decision tree
is presented. .

When a new example should be classified,
various kinds of values for the attributes have
to be considered. Given an attribute, the
example can have either a numerical value or a
symbolic modality. However, numerical values
do not appear in the tree and the symbolic
modality can differ from the modalities used in
the training step. This new modality may be
given by other experts or be a training modality
altered by linguistic modifiers. Therefore, the
degree of satisfiability is used to match this new
modality with those occurring in the tree.

A decision tree can be regarded as a rule-
based system, each rule having the form if
<premises> then <conclusion>. Each path of
the tree provides such a rule 7:

if < Ah =y, > and < A12 =, >

and...and < 4;, = v, >

P

then < C =c¢; > .

A;,..., A, are the attributes associated with
the vertices of the path, chosen from the list
{A,...,An}; wy,..-,v, are the respective
characterizations of A4;,, ..., A, associated with
the edges of the path.

With respect to attributes A, ..., Ay, the
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example e, being classified, is characterized by:
<A1 =W >a,Ild<A2=LU2>
and...and < Ay = wy > .

It is desirable to know the class c. of e.

Bach characterization < 4,, = wy, > of the
example is associated with the premise < A, =
vy, > of rule 7 with the degree of satisfiability
Deg(w,, C v,). This degree values how much
< A, = w;, > matches the premise < 4,, =
v, >. The degrees from all the premises of a
rule are aggregated with the product to obtain
a global degree according to this rule:

iy, » Deg(w, C vy, )

This definition of a global degree is consistant
with the definition of degree of satisfiability
chosen if the intersection and the Cartesian
product of fuzzy sets are defined by means of
the product t-norm. Namely, in this case:

IT;~;., Deg(w, C v,) =
Deg((wh, e ,wlp) C (’ll’[l, . ,’U[P)).

The t-norm product is the only t-norm which
satisfies this egality for the chosen degree of
satisfiability. For another degree of satisfiabil-
ity, corresponding t-norms have to be chosen in
order to satisfy the same kind of constraint.
The example is associated with class ¢,
according to the rule 7, with a final degree of
satisfiability. This final degree is the global
degree weighted by the fuzzy conditional prob-
ability of class ¢, associated with rule r:

F Deg,(ct) = IIi=;.., Deg(w;, C ;)
. P*(ckl(vh’vlga e 7vlp))'

This degree values the fact that “c, could
be the class of the example according to the
rule r”.

A component of an example can have
non-null satisfiability degrees with regard to
several training modalities for the same at-
tribute. Therefore, an example can result in
several rules and provide several non-null final
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degrees to different classes. All these degrees
are aggregated by means of a triangular conorm
L (e.g. maximum) to obtain one degree for each
class. If n, is the number of the rules in the
decision tree, it is concluded that:

FDeg(ck) = —Lr=14..onDegr(ck)'

This represents the degree for the example
to be associated with class ¢y, according to the
decision tree. Therefore, the example e can be
associated with the class c, corresponding to
the higher degree:

F Deg(c,) = kg}?_’%FDeg(ck)'

Let us consider again the athletics domain
example. The age (about 32), the size (1.90 m)
and the weight (80 kg) of a man are known and
it is desirable to estimate the height he is able
to jump.

With the help of the tree (Figure 6) and
after computation of the corresponding degrees
of satisfiability, Deg (about 32 C young) = 0.95
and Deg (about 32 C mature) = 0.33, the two
following rules are found for this example:

RULE 1: if < age = young >
and < size = tall >
then < height = high >,
RULE 2: if < size = mature >
then < height = not-high > .

This corresponds to the following global
degree for the first rule: 0.95 % 1.00. Then,
the class could be < height = high >
with the final degree F Deg(high) = 0.95 x
P~ (high| young, tall) according to the first rule.

Moreover, 0.33 is the global degree for the
second rule and then the class could also be
< height = not-high > with the final degree:

F Deg(not-high)=0.33%P*(not-high|mature)
according to the second rule.

Finally, the chosen class of the example is
the one giving the higher degree:

max(F Deg (high), F Deg (not-high)) .
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CONCLUSION

In this paper, two methods -are presented in
order to take into account numerical-symbolic
data and problems derivated from these kinds
of values in induction learning systems. The
first method works with additive knowledge
from experts that support the usual training
set. This knowledge is given as fuzzy partitions
of the universes of the numerical attributes.
Moreover, it makes it possible to deal with fuzzy
decisions. The second method is usable when
no particular additive knowledge is available
from experts. It is necessary to induce fuzzy
partitions of the universes of the attributes to
use the given algorithm. These methods are
very close. They are based upon the same
algorithm and use a new measure, the entropy-
star, that generalizes the classical Shannon’s
entropy. They handle particular knowledge
in data that appears in a numerical-symbolic
form.

These methods have been tested on data.
Some results are given in [8] for the first kind
and in [17,18] for the second one.

This kind of improvement will be enhanced
with another type of expert knowledge. In
future developments it is desirable to add more
expert knowledge in such systems: knowledge
to help in building such trees and knowledge to
use decision trees to classify objects.
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