Command and Control for Congestion Pricing
of General Multimodal Transportation
Networks

A. Nagurney' and P. Ramanujam’

Congestion on transportation networks is becoming a problem of increasing importance
due not only to losses in productivity, but also to increased pollution. In this paper, a
model is developed that allows the government policy maker, or “command”, to impose
“controls” on the links of the network in the form of desired levels of link loads for each
mode of transportation. Deviations over and above the imposed controls are then subject
to taxes that are functions of the size of the deviations. The behavior of the users of
the transportation network remains that of user-optimization. The governing equilibrium
conditions in the presence of such policies are shown to satisfy a variational inequality
problem. A decomposition algorithm is then proposed to resolve the problem into series
of traffic network equilibrium problems and a simpler subproblem. Convergence results are
also given.

Finally, the algorithm is applied to several numerical examples. This work may be

viewed as a contribution to transportation policy modelling.

INTRODUCTION

Congestion on transportation networks is a
problem of growing concern in both developed
and developing countries, leading to losses in
productivity as well as environmental damage
due to increased pollution. Social concerns
related to such issues are motivating the de-
velopment of rigorous theoretical frameworks
for transportation policy modelling that can
capture the effects of alternative regulations.
In this paper a “command and control”
mechanism for alleviating congestion on trans-
portation networks through the economics of
congestion pricing is proposed. In particular, a

model is developed that allows the governmen-
tal decision and policy maker, or “command”,
to impose controls on each of the links of the
network, which may be distinct for each mode
of transportation. Associated with the links are
penalties for failure to satisfy the controls. The
penalties are functions of the deviations above
the imposed controls. Users of those links that
have transportation loads below the controls
are not subject to any penalties.

The basis for the model developed in the
subsequent section is the well-known traffic
network equilibrium model with fixed demands,
introduced by Dafermos [1], which assumes that
users of the transportation network behave in
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nying convergence results is given. The notable
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which numerous effective algorjithms exist like
projection and relaxation methods (cf. [5,6]),
along with a simple subproblem, The algorithm
handles the complicating constraints, those of
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the link controls for each mode, in a novel way,
to make possible such a decomposition that
enables one to exploit the network structure.

Finally, the algorithm for several numeri-
cal examples is applied.

THE TRANSPORTATION POLICY
MODEL

In this section the transportation policy model
on a general network is introduced. The policy
model is one of command and control in that
the government or policy decision maker, the
“command”, imposes the “controls” on the
links of the network in the form of link load
levels that represent the maximum desired level
for each mode of transportation. Deviations
from these transportation controls in terms of
overflow are then penalized according to the
imposed penalty functions, which are assumed
to be functions of the deviations.

The notation is first introduced and sub-
sequently, the equilibrium conditions are stated
and the variational inequality formulation is
derived.

A transportation network with a, b, ¢, etc.,
denoting the links and with p, ¢, etc., denoting
the paths is considered. It is assumed that there
are W origin/destination (O/D) pairs in the
network, with a typical O/D pair denoted by w;
and that there are J modes of transportation,
with a typical mode denoted by 1.

The flow on link a by mode 7 is denoted by
fe, and the user cost associated with traveling
on link a by mode ¢ is denoted by ¢:. The
link loads are grouped into a column vector
f € R’ and the link user travel costs into
a row vector ¢ € R7Y where L is the number
of links in the network. It is assumed that, in
general, the user travel cost on a link on each
mode may depend upon the entire link load
pattern, that is,

c=c(f), (1)

where ¢ is a known smooth function.
A user of mode i traveling on path p incurs
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a personal travel cost C, where:

Co(f) =Y calf)ap » (2)

a

with 8,, = 1, if link a is contained in path p,
and 0, otherwise.

The travel demand for mode ¢ between
each O/D pair w is assumed fixed and denoted
by d,.

The flow on path p of mode i, in turn, is
denoted by x;, with the path flows grouped into
a column vector z € R’?, where @ denotes
the number of paths in the network. The
flows in the network must satisfy the following
conservation of flow equations:

d,= > =z, YiVw, (3)

pE Py

where P, denotes the set of paths connecting
O/D pair w, and:

fi=> aibap, Vi,Va. (4)
P

Now the imposed controls are discussed.
The column vector of transportation controls is
denoted by f# = [f;#], whereas the column
vectors of nonnegative levels of overflow and
underflow are denoted, respectively, by 67 =
[(5?] and 6~ = [63_]. The following equation
must be satisfied:

fi-olwo =1

a ?

Vi, Va , (5)

which, by way of definition, states that the
load on link a for mode ¢ minus the possible
overflow on link a of mode 7 plus the possible
underflow on link a for mode i is equal to the
control imposed on the load on the link and that
mode. Let K denote the feasible set consisting
of (f,6%,67) such that there exists a vector of
path flows z compatible with Equations 3 and
4.

In the absence of targets on the user flows
and associated penalties levied on deviations
from the targets, the well-known traffic network
equilibrium conditions (cf. [2,7,8]) are stated
as: for all modes i, for all paths p € P, and
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all O/D pairs w, a link load pattern f* induced
by a path flow pattern z* and compatible with
Equations 3 and 4 is an equilibrium pattern if,
and only if it satisfies the conditions:

CH) =X, ifz} >0 6

o > \i, ifzh =0, (6)
where A}, denotes the travel disutility or min-
imal travel cost associated with traveling be-
tween O/D pair w by mode 7. The minimal
travel costs associated with the O/D pairs are
grouped into a column vector A € R7™.

If the command now intervenes in this
user-optimized transportation network by im-
posing penalties for deviations from the controls
in the form of excise transportation taxes, the
actual user cost on a link a associated with
mode 4 will then in general no longer be equal
to ¢. but, rather, it will have the unit tax t;
added to the cost, in the case of overflow. The
equilibrium conditions in Statement 6, in the
form of such policy interventions for all modes
i, for all paths p € P, and all O/D pairs w,
would then take the form:

=X, ifz, >0

>\, ifz) =0,

C(f") +1, { (7)
where t, = 3, t.,6,, denotes the total trans-
portation tax levied on users of path p and
mode .

The command’s role is to determine the
transportation tax rates t; on the links so that
the constraint in Equation 5, reflecting the con-
trol, is satisfied as closely as possible, where the
unit penalties on the links are given as follows.
Here, it is assumed that a penalty function u,
exists, where pu® denotes the unit penalty for
exceeding the transportation control on link a
for mode 7. Note that, in effect, subsidized
travelers are not penalized in the case where the
load on a link is below the imposed control. It is
preassumed that the overflow penalty function
is, in general, a function of the entire link
overflow pattern and the overflow penalties are
grouped into a row vector p € R’F | and hence,
assume that:

p=u(6") . (8)
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The following condition must also be met
at equilibrium:

0<# <ul(s™), Viva, (9)

since the transportation tax ¢an never exceed
the corresponding unit penalty. Moreover, the
following complementarity conditions exist:

8 (i (6T -

57 (#)y =0, Vi,Va. (10)

a

t.) =0, and

In other words, if there is overflow on a link
of a mode beyond the level of the control, the
transportation tax will be equal to the penalty

for that mode on that link.
there is underflow on a link of
transportation tax on that lin

In addition, if
» mode, then the
k for that mode

is set to zero.
Equivalently, at equilibrium for each mode
it on each link a, the following conditions hold:

= wet S0
pa(6)S 0 o
>t, ité =0,

and:
. =0, if§ >0
t = L (1)
>0, ifé =0.

The above transportation |policy problem,
defined by the conditions in Statements 7 and
11, can be formulated as a variational inequality
problem.

Theorem 1

A link load, overflow and underflow pattern
(f*,6%,67") € K, with an attendant vector of
tax rates t € Rl associated with the constraint
in Equation 5 and minimal travel cost vector
A associated with the constraint in Equation 3,
satisfies the network equilibrium condition in
Statements 7 and 11, in the presence of policy
interventions in the form of transportation con-
trols and associated penalties if, and only if, it
satisfies the variational inequality problem:

of) - (f = f)+ut) - (67-6T) >0,
V(£ 6T 67 €K . (12)
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Proof

It is first shown that any solution that satisfies
conditions in Statements 7 and 11, must also
satisfy variational inequality in Statement 12.
The equilibrium condition in Statement 7 im-
plies that for a fixed mode i and a fixed path
p:

=2 ] [ -2y 20

(13)

Indeed, since if 21’ = 0, then x, >zt and the
first term on the left-hand side of Statement 13
is also nonnegative. On the other hand, if
J:f; > 0, then the first term on the left-hand
side of Statement 13 is zero and this expression
also holds true.

Summing now Statement 13 over all modes
i, paths p and O/D pairs w, and applying
the definition of ¢!, the following statement is
obtained:

Y Y aun+ St - o

1w pEePR,
: {T;—’L;] >0. (14)

From the complementarity conditions in
Statement 11 it follows, similarly, that for a
fixed mode 7 and a fixed link a:

[;1,;(6+‘) - tfl} . [5}; — 65*} >0 and
" {5;‘ - 5;;“] >0, (15)

Summing now Statement 15 over all modes
¢ and all links a, the following statement is
obtained:

DBDBIACAS A R A A
DI IR AT Y
i« (16)

Combining Statements 14 and 16, yields
the following:

D3N [C;(f*) + Zt;&ap} : {I; - I;']

1 w pEP,

DO OGS EA NS
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T S N A X
T (17)

Using then Equation 2, the following state-
ment is given:

DIPICAVRRCENA
I WHUSHCAET
D MACETARLA

(- ks >0, (18)

However, in light of the goal constraint
in Equation 5, the last term on the left-hand
side of Statement 18 is zero. Hence, the above
transportation problem satisfies the variational
inequality problem in Statement 12.

Now the “if” part of the Theorem is
considered.

Let (f*,61,677) € K solve Statement
12. Then the same point also solves the linear
programming problem:

Minimize s+ s-yexc(f) - f'+ (6776t
(19)

Letting the dual variables to the corre-
sponding dual problem of Statement 19 be
A and ¢, and using complementary slackness,
the relationships in Statements 7 and 11 are
found.m

The variational inequality in Statement 12
is distinct from the variational inequality gov-
erning the well-known traffic network equilib-
rium problem with fixed demand (cf. [1]) by the
addition of the penalty expression on the left-
hand side of the variational inequality in State-
ment 12 and in the definition of the feasible
set ' which in the case of this transportation
policy model includes the goal constraints for
all the modes of transportation. Nevertheless,
similarity in the structures of the variational
inequality is exploited in Statement 12 and
the fixed demand multimodal traffic network
equilibrium model in the suggestion of a decom-
position algorithm in the subsequent section.
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The decomposition algorithm will allow one
to apply the numerous algorithms, which have
been developed to the latter problem for the
solution of the major subproblem, such as
projection and relaxation methods (cf.  [5]).
It accomplishes this, in part. by splitting the
goal constraints in Equation 5 so that the first
subproblem is characterized by constraints with
a network structure.

In Nagurney, Thore and Pan [9], a spatial
market policy model was proposed with supply
and demand targets and transportation targets
on links of the underlying bipartite network and
a variational inequality problem governing the
equilibrium conditions derived. In that model
the penalties were assumed fixed and the net-
work had a special structure. In Nagurney and
Ramanujam (10], on the other hand, a single
modal transportation network policy model was
proposed, which allowed for gencralized penalty
functions.

A discussion of the qualitative properties
of the transportation policy model. as devel-
oped above, is now given; in particular a
uniqueness result is presented.

Theorem 2

Assume that the user link cost functions ¢ and
the penalty functions p are strongly monotone.
ie. forall (f1,6%"). (f%,6%) € K,

9

(e(fy =) - (S = zalf =

(20)
(u(8*') = () - (6 =0t =

Bl6T — |2, (21)

for some «, 3 > 0.

Then there exists at most one solution
(f*,6%,67") € K to the variational inequality
in Statement 12.

Proof
Assume that there are two solutions to the

variational inequality in Statement 12 given by:

2

(f,67",67") and (f2,6%7,67) .
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It follows then that:

(1) (FF =YY +u@t)- (¢ -6ty >0,

and:

(f*) - (fr = A +u@*y (6 -6t >0.

Adding inequalities in Statements 22 and 23

yields:
[e(f1) = e(£2) - 1f? = f1]

+ [66) — 6] 57 - 57" 2 0.

(24)

But Statement 24 is in contradiction to the

strong monotonicity assumptig
ments 20 and 21 hold. Hence,

ns that State-
it is concluded

that f! = f2 and 6+ = 6+’. Finally, in view
of the control constraints in Equation 5, it can

also be concluded that 6~ = §7
THE ALGORITHM AND
NUMERICAL EXAMPLES

In this section an algorithm i
the computation of the equilib

2
.;

g

]

5 proposed for
rium link load,

overflow and underflow pattern for the mul-

timodal model introduced in
section.
assumptions that the link cost

the preceding

The algorithm converges under the

functions ¢ are

strongly monotone and the penalty functions u

are monotone.

The algorithm, which is a
method of multipliers (cf. [11,
posed earlier for the spatial
model with goal targets and

version of the
12]), was pro-
policy market
fixed penalties

developed in [9]. Its principal advantage in the

framework of the multimodal
policy model on a general netw
ting feature. In particular, it res

transportation
ork is its split-
plves the varia-

tional inequality problem in Statement 12 into
a series of two simpler variational inequality

subproblems. The first subproblem takes the
form of the variational inequality governing the
well-known traffic network equilibrium problem
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with fixed demand, for which numerous efficient
algorithms exist (see e.g. [1,5], and the refer-
ences therein). The second variational inequal-
ity subproblem is a very simple subproblem
in the (6%,6~) variables only and is further
decomposable into the §* and 6~ variables
respectively. These subproblems, in turn, can
be solved via a Gauss-Seidel decomposition
method described in [13].

This algorithm is a specialization of an
algorithm developed for a class of variational
inequalities to which this transportation policy
model belongs. Additional theoretical results
and applications can be found in [9] and the
references therein.

The Algorithm for the Transportation
Policy Model

Given a sequence of parameters 0 < r; < 1, <
T3 S N

?

Step 0: Initialization

Set the iteration count ¢t = 0.

Initialize (6+°,6~") and (A°).

Step 1: Computation of Decomposed
Traffic Network Equilibrium Subproblem
Compute (f*+1) > 0, where f&*" = >, mg“&ap,
for all a, ¢, and di, = ¥ x;m, for all w, 1,
and satisfying:

ST AU T - oy

+& ) = F = [ -] 20,

Vi >0,e K. (25)
Step 2: Computation of Target
Deviations Subproblem
Compute ((6%)"*1, (67)1) > 0 satisfying:

D0 (6 = (£ = (8
+(EDT = LD A @ - @)

F S () 4 ()

—fE) =N (T - () >0,
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v 60 >0, Va,i. (26)
Update: Set

AN = N (fF -

(Y (&)Y, Yai. o (27)

Step 3: Convergence Verification

If convergence has been reached within a pre-
specified tolerance ¢, then stop; otherwise, set
t=t+1, and go to Step 1.

In Steps 1 and 2 the subproblems are
strongly monotone, and hence, the sequence of
iterates fit1, (61)41, (67)"! is well-defined.

Now numerical results are provided for
several examples. Here, for simplicity, a single
mode of transportation is assumed.

The transportation networks that are con-
sidered had user link cost functions that were
nonlinear and asymmetric, of the form:

Calf) = Gaafi+ D Garfs + hay  Va.
’ (28)

The penalty functions, on the other hand,
were linear and separable, that is, of the form:

1o (67) = m6 + 0, Va . (29)

Separable functions were considered since
it seems reasonable that in practice one may
wish to primarily penalize according to the
deviation on the particular link.

These functions were strongly monotone,
thereby guaranteeing convergence of the decom-
position algorithm.

The algorithm was coded in FORTRAN
and implemented on the IBM ES/9000. All
the examples utilized the projection method
to solve the traffic network equilibrium sub-
problem in Statement 25. In addition, the
parameter p = 0.1 and the G matrix in
the projection method were set equal to the
diagonal of the Jacobian matrix of the user link
cost functions evaluated at the initial link flow
pattern (cf. [1]). The equilibration algorithm
of Dafermos and Sparrow [8] (see also e.g. [14])
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was used here to solve the embedded quadratic
programming network problems. In view of
the structure of the penalty functions given by
Equation 29 the subproblem in Statement 26
was solved explicitly and in closed form.

The sequence {r} (see the Initialization
Step) was set as follows: 7, = 0.5, r, = 2,
for ¢ > 1. The convergence criterion was
= £ < e 6 — (B3] < e, [(67)7 -
(67)f] < e, for all a, with € set to 0.001.

For all the examples, the CPU time, ex-
clusive of input and output, the number of
iterations, the computed link load, overflow and
underflow pattern, along with the transporta-
tion taxes are reported. For the first two and
the smallest, network examples, the computed
path flows and user path costs (after taxes) are
also given.

Example 1

The first example, depicted in Figure 1,
consisted of four nodes, five links and two
origin/destination pairs. The user link cost
functions were:

cr(f) = 0.00005f) +7fi +2f2+3,
co(f) = 0.00003f5 +11f2 + f1 +8,
cs(f) = 0.00005f5 +2f;+ fs + 1,
ca(f) = 0.00003ff +2.5fs + fo +10 .
cs(f) = 0.00004f! + fs + 0.5f +6 .

The O/D pairs were: wy = (1,4) and wy =

Figure 1. Network 1.



Table 1. Computed Hows (f*, 6+
transportation taxes (t).

,67 ) and

Link | f, 6+ o7 t,
1 38.24 | 28.24 | 0.00 | 58.47
2 36.76 | 26.76 | 0.00 | 55.53
3 13.70 0.00 | 6.30 0.00
4 24.54 | 14.54 1 0.00 | 31.08
5 25.46 | 15.46 | 0.00 | 32.92

(1,3), and the travel demands:

dw, =50, dy, =25

The goal targets. f# were set to 10 for all

links «, except that f¥ = 20, ¢
function terms for the overflow
set to m, = 2 and o, = 2.

The initial path assignmer
distribution of the demand ¢
connecting each O/D pair. The

nd the penalty
penalties were

t was an equal
ver the paths
mitial overflow

and underflow pattern was set to zero.
The algorithm converged in seven itera-

tions and utilized 0.007 seconds

In Table 1. the user link los
and underflow pattern, along v
portation taxes are reported.

The first path for O/D pa
sisted of links 1, 3 and 5; the sq
of links 1 and 4, and the third p
2 and 5. The first path for O
consisted of links 1 and 3 and t
for O/D pair w,, ps, of link 2.

The equilibrium path flows
path costs, inclusive of the t
follows.

Equilibrium Path Flows and

O/D Pair w,:
aro=13, @, R
Co(f7) + t,, = 659.56
Cp;;(f*) + fm = 661.26 .

O/D Pair wsy:

vt =124,

;19
Xy, x, =12.6,

i
H

of CPU time.
d and overflow
ith the trans-

ir wy, p;. con-
rcond path, p.,
ath, py, of links
D pair w,, p4.
1e second path

and associated
axes,

were as

Costs

241,
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Table 2. Computed flows (f*,¢6+",6~") and
transportation taxes (t).

Link | f. | 6F | 6. | i,
I [37.95 [27.95 | 0.00 | 579.01
2| 37.05 | 27.05 | 0.00 | 560.95
3 (1320 0.00 | 6.80 | 0.00
4| 2475 | 14.75 | 0.00 | 315.10
525241524 | 0.00 | 324.87

Co(f) +tp, = 565.12

Coo(f*) +t,, = 560.95 .

Example 2

Example 2 is constructed from Example 1 as
follows. The network topology of Figure 1. the
user link cost functions and the travel demands
were retained. The goal targets were as in
Example 1, except that the penalty function
= 20 and o, = 20 for all links
were increased. The algorithm converged in ten
iterations and 0.008 CPU seconds.

The new equilibrium link load, overflow
and underflow pattern and transportation taxes
are reported in Table 2.

terms m,

The new computed equilibrium path flows
and costs are as follows.

Equilibrium Path Flows and Costs
O/D Pair w;:

Co (f*) + 1, =1470.95
Cpp(f*) + t,, = 1460.76
CP.’;(f*) + tm = 1462.27 .

O/D Pair wy:

=122, o*
v, =122, a7

=128,
Co (") +t,, =1079.61,

Cp (f*) +t,, =1070.94 .
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Figure 2. Network 2.

Example 3

The third example consisted of 20 nodes, 28
links and 8 O/D pairs, and is depicted in Fig-
ure 2. The network had been used previously
(without penalty functions) in Nagurney (6]
where it is referred to as Network 20. The user
link cost functions are reproduced here for the
convenience of the reader.

= 0.00008f2 + 8f; + 2fs + 400,
= 0.00004f3 + 5fs + 2fs + 650,
co(f) = 0.00001f3 +6fa+

ci(f) =0.00005f; +5fi + 2> + 500,
co(f) = 0.00003f1 + 4f2 + 4f1 + 200,
c3(f) = 0.00005f3 +3f5 + fa + 350
cs(f) =0.00003f) + 64+ 3fs + 400,
cs(f) = 0.00006f5 + Gfs + 4fs + 600,
cs(f) =Tfe+3fr 4500,

)

)

2f10+ 700

co(f) = 4f10 + fi2 + 300,
ey (f) = 0.00007 £ + 7 fiy + 4f12 + 650
cio(f) = 8f12 +2f13 + 700 .
ci3(f) = 0.00001f; + 7 fis + 3f1s + 600 .
c1a(f) = 8f1a + 3f15 + 500
c15(f) = 0.00003f75 + 9fy5 + 2f1a + 200
c16(f) = 8f16 + 5 12 + 300 .
cir(f) = 0.00003 fi; + 7fiz +2f15 + 450 .
fls(f) = 5fis + f1s + 300 .
(m(f) = 8f1n +3f17 + 600 |
cao(f) = 0.00003f3 + 6 foo + for + 300
en(f) = 0'00004](;1 + 4 foy + for 400,
Can(f) = 0.00002f3; + 6f22 + foz + 500 .

0.00003f3; 4+ 9f23 4 2faq + 350 .
0.00002 f5, + 824 + fo5 +400 .
0.00003 fas + 9 fos + 3 f26 + 450 .

53 (f)
)
)
) = 0.00006 fo5 + 7 f26 + 8f2r + 300,
)
)=

(
caa(f
cos(f

(

(

(

-

a6 f
car(f
cos( f
The O/D pairs were: w; = (1,20), w, =
(1.19), wy = (2,17), wy = (4,20), ws = (6.19).

we = (2, 20) wr = (2,13) and wg = (3,14) and
the travel demands:

= 0.00003 f3; + 8far + 3fos + 500 .

0.00003 fpq + 7 fos + 3 f20 + 650 .

dy, =50. dy, =60, d,, =100.d,, =100,

ws

dy, = 100, d,, = 100, d,,, = 100. d,., = 30.

The penalty functions for this example
were set as follows. All the m, and o, terms in
the overflow penalty functions were set equal to
ten. The goal target for this and the subsequent
example were set to f# = 10 for all links.
In this and the next example, the algorithm
was initialized with all the demand for each
O/D pair allocated to the minimal uncongested
cost path. The overflow and underflow were
initialized to zero for both examples.

The algorithm converged in ten iterations
and required 0.730 CPU secouds for conver-
gence. The computed link load, overflow and
underflow values, as well as the transportation
taxes are reported in Table 3.

Example 4

The final example is constructed from Example
3 as follows. The network topology and all the
functions were retained except that the penalty
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Table 3. Computed flows (f*,64,6~") and
transportation taxes ().

Link | f. 5F | & t
1 | 1312 312 0.00] 41.20
2 | 215.28 | 205.28 | 0.00 | 2062.80
3 | 160.80 | 150.80 | 0.00 | 1518.02
4 |20552 | 19552 | 0.00 | 1965.22
5 | 199.75 | 189.75 | 0.00 | 1097.54
6 | 299.30 | 289.30 | 0.00 | 2903.02
7 | 198.08 | 188.08 | 0.0D | 1890.81
8 | 197.49 | 187.49 | 0.00 | 1884.86
9 | 125.01 { 115.01 | 0.00 | 1160.09
10 | 96.86 | 86.86 | 0.00 | 878.57
11 | 97.78 | 87.78 | 0.00 | 887.81
12 | 104.49 | 94.49 | 0.00 | 954.91
13 | 55.25| 4525 | 0.00 | 462.54
14 577 | 0.00| 4235  0.00
15 0.00 | 0.00 | 10.0 0.00
16 | 101.66 | 91.66 | 0.00 | 926.62
17 0.59 | 0.00| 9.41|  0.00
18 | 7248 | 6248 | 0.00 | 634.77
19 | 12501 | 115.01 | 0.00 | 1160.09
20 | 96.86 | 86.86 | 0.00 | 878.57
21 | 194.64 | 184.64 | 0.00 | 1856.19
22 | 199.14 | 189.14 | 0.00 | 1901.42
23 | 204.41 | 194.41 | 0.00 | 1954.09
24 | 210.18 | 200.18 | 0.00 | 2011.84
25 | 210.16 | 200.16 | 0.00 | 2011.61
26 | 211.86 | 201.86 | 0.00 | 2028.60
27 | 212.40 | 202.40 | 0.00 | 2034.02
28 | 124.95 | 114.95 | 0.00 | 1159.52

function terms m, and o, were increased to 100
for all the links. The algorithm required sixteen
iterations for convergence and 0,829 seconds of
CPU time.

The computed link load, overflow and
underflow values, as well as the [transportation
taxes are reported in Table 4.

SUMMARY AND CONCLUSIONS

In this paper a new model has heen developed
that allows the decision maker t¢ impose trans-
portation controls on the links|and modes of
a general transportation network. Associated
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Table 4. Computed flows (f*,6%",6~") and
transportation taxes (¢).

Link | /. &F | 6o ta
1 | 1496 | 4.96] 0.00] 59553
2| 214.77 | 204.77 | 0.00 | 20576.55
3 | 16535 | 155.35 | 0.00 | 15635.33
4 | 207.14 | 197.14 | 0.00 | 19814.00
5 19593 | 185.93 | 0.00 | 18693.07
6 | 295.47 | 285.47 | 0.00 | 28646.58
7 | 200.18 | 190.18 | 0.00 | 19117.70
8 | 196.07 | 186.07 | 0.00 | 18707.42
9 | 124.32 | 114.32 | 0.00 | 11532.21
10 | 95.02 | 85.02| 0.00| 8602.14
11 | 100.13 | 90.13 | 0.00 | 9113.07
12 | 99.42 | 89.42 | 0.00 | 9042.29
13 | 5819 | 48.19 | 0.00 | 4918.72
14 | 11.22 | 122 000| 221.58
15 0.00 | 0.00 | 10.00 0.00
16 | 9574 | 85.74 | 0.00 | 8674.29
17 410 | 0.00| 590 0.00
18 | 7175 | 61.75 | 0.00 | 6275.17
19 | 124.32 | 114.32 | 0.00 | 11532.21
20 | 95.02 | 85.02 | 0.00 | 8602.14
21 [ 195.15 | 185.15 | 0.00 | 18615.23
22 | 194.59 | 184.59 | 0.00 | 18558.75
23 | 202.79 | 192.79 | 0.00 | 19379.00
24 | 214.01 | 204.01 | 0.00 | 20500.61
25 | 213.98 | 203.98 | 0.00 | 20498.33
26 | 209.76 | 199.76 | 0.00 | 20075.34
27 | 213.81 | 203.81 | 0.00 | 20481.33
28 | 125.64 | 115.64 | 0.00 | 11663.84

with the goals are penalty functions that pe-
nalize the users of the transportation network
if the controls are not met.

The model is first developed and the equi-
librium conditions derived. The governing con-
ditions are then shown to satisfy a variational
inequality problem. A uniqueness result is also
given,

An algorithm is then proposed to com-
pute the equilibrium link load, overflow and
underflow pattern, along with the transporta-
tion taxes to be assessed on the users. The
algorithm resolves the large-scale problem into
a series of traffic network equilibrium problems
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and a simpler subproblem. For the latter, one
may avail oneself of numerous algorithms in the
literature.

Finally, numerical examples are provided
to illustrate the approach.

This work may be viewed as a contribution
to the growing literature on transportation
policy modelling (see also [14]).
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