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Overview of Base Isolation, Passive and
Active Vibration Control Strategies for
Aseismic Design of Structures!

Goodarz Ahmadi?

Recent development in passive and active vibration control of structures and their applica-
tions to earthquake resisting design is reviewed. Particular attention is given to the base
isolation methodology and passive control techniques. The performance of several base
isolation devices including the rubber bearing, the sliding-joint, the French system, and
the resilient friction isolator for seismic protection of buildings is described. The use of
recently developed passive frictional and viscoelastic dampers in structures is discussed. The
active control methodologies for protecting the building during earthquakes is presented. The
effectiveness of various base isolators, passive dampers and active control strategies under a
variety of conditions are described, and their advantages and disadvantages are pointed out.
It is shown that the acceleration transmitted to compact stiff structures during an earthquake
can be effectively reduced by using properly designed base isolation systems. On the other
hand, the passive dampers and active control methodologies may be used for protection of
tall buildings against earthquake. In addition, these latter techniques may become useful for
seismic rehabilitation of existing structures.

INTRODUCTION

The conventional technique for aseismic design
of structures is to strengthen the structural
members in order to protect them against
strong earthquakes. However, this strengthen-
ing strategy inevitably leads to higher masses
and hence higher seismic forces. A structure
designed in this way may survive a strong
earthquake, while it could result intolerable
damages to its members, as well as to its
sensitive internal equipment. Furthermore, the
economical consideration limits the construc-

tion of a completely safe structure within the
bounds of traditional design methodology.

In the past two decades, significant
progress has been made in developing an al-
ternative and attractive design strategy. The
new approach is to use passive and active
control mechanisms to control the vibration of
structure during the earthquake strong motion.
Thereby, the structure will become lighter and,
eventually can be constructed at lower cost.

In this paper, the recent development on
vibration control of civil engineering structures
is reviewed. Particular emphasis is placed on
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the recent advances in base isolation technol-
ogy. Recent studies on passive dampers for dis-
sipating vibration energy of structure and the
new development in active and hybrid vibration
control methodologies are also described.

BASE ISOLATION

The passive base isolation techniques attempt
to decouple the structure from the ground
during a seismic event. The approach relays
on minimizing the seismic energy that enters
the structure, by partly reflecting the energy
and partly dissipating it at the foundation level.
As a result, the base isolation methodology ap-
pears to have considerable potential in prevent-
ing earthquake damages to structures and their
internal equipment. The base isglation concept
has a long history. According to Kelly [1,2],
in 1909, a British physician obtained a patent
on separating a building from the ground by a
layer of talc or sand. However, it is only in the
last two decades that this design concept has
received serious attention. A number of base
isolation systems for various types of structures
have been suggested. Several of these have
been developed and used to protect buildings,
bridges, nuclear power plants and other struc-
tures against earthquakes. Extensive reviews
on historical and recent developments were
provided by Kelly [1,2] and Skinner et al. [3].

LRB System

The most important class of base isolation
systems which has been extensively studied and
implemented in a number of buildings around
the world, is the laminated rubber bearing
(LRB) base isolators [1-3]. An|LRB isolator
is made of alternating layers of rubber and
steel with the rubber being vuldanized to the
steel plates. The LRB is rather flexible in
the horizontal direction but quite stiff in the
vertical direction. The horizontal stiffness of
the bearing is also designed in such a way
that it can resist the wind fordes with little
or no deformation. The recommended natural
period of the LRB base isolation system (for
optimal performance) is between 1.5 to 2.5 sec.
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Figure 1. Schematic diagrams of various base
isolation systems.

The effective damping ratio of the isolator,
Co, varies considerably with the strain of the
rubber. According to [4,5], it may be as high
as 0.3 for low strain and reduces to about 0.05
for high strain rubber. Figure la shows a
schematic diagram for an LRB isolator. The
GERB system (6], which is composed of helical
springs and viscodampers behaves similar to
the LRB system in the horizontal direction and
its mechanical behavior may also be represented
by Figure 1a.

NZ System

The laminated rubber bearing base isolator
with a lead core has found wide application
in New Zealand, as well as other countries.
This system is referred to as the lead core
LRB, or the New Zealand (NZ) base isolation
system. The lead core is used to reduce the
lateral displacement and to offer an additional
mechanism for energy dissipation, while the
flexibility and restoring force are provided by
the rubber bearing. The performance of the NZ
isolator (lead core laminated rubber bearing)
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under a variety of conditions was reported in
(2,3,7]). Typically, in a natural period of around
2 sec, an effective damping of about 8% to
10% is assumed. A more detailed hysteretic
model for the NZ system was described by Su
et al. [8,9] and Fan et al. {10-12]. Figure 1b
displays the mechanical behavior of the NZ
base isolation system. The mechanical behavior
of hysteretic damper [3,13-15] may also be
schematically represented by this figure.

P-F System

Base isolation systems, in which the only isola-
tion mechanism is sliding friction, are the pure-
friction (P-F) or sliding-joint base isolation
systems. In this class of base isolation systems,
one or several friction plates, or a layer of
sand, are used to isolate the structure from
the ground. A schematic diagram for P-F base
isolation systems is shown in Figure 1c. There
has been a number of theoretical works on
the performance of this class of isolators under
deterministic or stochastic ground excitations
[16-23]. In [24,25], the use of a layer of sand
as a simple P-F base isolator for a building
in Bejing, China was described. Different P-
F systems usually have a friction coefficient in
the range of 0.03 to 0.25 [16-23].

R-FBI System

Recently, a base isolation system referred to
as the resilient-friction base isolation system
(R-FBI) was proposed by Mostaghel [26-28].
This isolator consists of several layers of Teflon
coated friction plates with a central core of
rubber. The rubber provides the restoring
force for the system and, hence, controls the
relative displacement, while energy is dissipated
by the friction forces. An extensive study of
the responses of a five-story building isolated by
the R-FBI system was provided by Mostaghel
and Khodaverdian [29]. A natural period of
3 to 4.5 sec was suggested for the R-FBI base
isolation system in [26-28]. Typically, a friction
coefficient of 4 = 0.05 and an effective damping
coefficient of ¢; = 0.08 are used. Figure 1d
illustrates the mechanical behavior of the R-
FBI system. The Alexisismon base isolation
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system developed by Ikonomou [30] also makes
use of the combined actions of sliding joint and
rubber bearings. The rubber element in the
Alexisismon system appears to act in bending
while in the R-FBI isolator it acts in shear.
Although these designs are quite different, the
mechanical behavior of the Alexisismon base
isolator may also be schematically represented
by Figure 1d.

EDF System

Another base isolation system which is used for
base isolation of nuclear power plants in regions
of high seismicity was developed under the aus-
pices of Electricite de France (EDF) [31]. It has
been used in the design of nuclear power plants
in France and Iran. Also the Kroeberg nuclear
power plant in South Africa relies on the EDF
base isolation system for protection against
earthquake. An EDF base isolator unit consists
of a laminated (steel-reinforced) neoprene pad
topped by a lead-bronze plate which is in
frictional contact with a steel plate anchored
to the base raft of the structure. Whenever
there is no sliding in the friction plate, the EDF
system behaves as an LRB and the flexibility
of the neoprene pad provides isolation for the
structure. The presence of the friction plate
serves as an additional safety feature for the
system. Whenever the ground acceleration
becomes very large, sliding occurs which dissi-
pates energy and limits the acceleration trans-
mitted to the superstructure. The behavior of
the EDF base isolator is shown schematically in
Figure le. In practice, the laminated neoprene
pad is designed to have a natural period of
about 0.8 to 1.2 sec, and the friction coeflicient
of the friction plate is about 0.2.

SR-F System

A base isolation concept which combines the
desirable features of the R-FBI and the EDF
systems was proposed in [32]. This system,
which is referred to as the sliding resilient-
friction (SR-F) base isolation system, is a R-
FBI unit with an additional upper friction
plate. The behavior of the SR-F isolator is
shown schematically in Figure 1f. Whenever
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story building under a horizontal sinusoidal, as
well as earthquake ground motions. In these
works, performances of different base isolation
systems subject to various earthquake excita-
tions were studied. The peak absolute acceler-
ation of each floor, the peak bage displacement
and the peak structural deflection for various
base isolation systems were evaluated and the
results were compared with each other and with
those of the fixed-base structure. The accel-
eration responses both in time and frequency
domains were examined. Earlier, Hadjian and
Tseng [39] discussed the requirement of base
isolation systems.

Response Spectra

In this section, a three story building is con-
sidered and the NOOW component of El Centro
1940 earthquake is used as the ground excita-
tion. Parameters of base isolation systems as
shown in Table 1 and a structural damping of
¢1 = 0.02 are considered. For various base iso-
lation systems and for the fixed-base structure,
the peak absolute acceleration at different floors
of the structure, for a range of structural natu-
ral periods, T, is evaluated. The resulting re-
sponse spectra curves are plotted in Figures 2-6.

Figure 2 shows the peak-acceleration re-
sponses for the fixed-base structure. The con-
stant acceleration of 0.348g for the base floor
(which is the peak ground acceleration of the
El Centro 1940 earthquake) is also shown in
this figure for reference. It is observed that the

Table 1. Values of parameters used for various base isolators.

Natural Damping Friction
Base Isolation System Period Coefficient Coefficient

T, (sec) Co p(pa/p)
Pure-Friction (P-F) - - 0.1
Laminated Rubber Bearing (LRB) 2 0.08 -
Resilient-Friction(R-FBI 4 0.08 0.05
Electricite de France (EDF) 1 0.08 0.2
New Zealand (NZ) 2 0.08 -
Sliding Resilient Friction| (SR-F) 4 0.08 0.05/0.2
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Figure 2. Variations of peak absolute acceleration
at various floors of the fixed-base structure.

accelerations is amplified as it is transmitted
to the higher floors. The peak acceleration
response of the third floor is about 1g which is
approximately three times that of the ground
excitation.

The peak acceleration responses at various
floors for the structure with an LRB system are
shown versus the fundamental natural period of
the structure in Figure 3. It is observed that
the acceleration responses for various floors
are almost identical and remain a constant of
about 0.15g to 0.2g which is significantly lower
than that of the fixed-based structure. This
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Figure 3. Variations of peak absolute acceleration
at various floors of the structure with the LRB
isolation system.
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figure clearly shows that the structure with a
laminated rubber bearing base isolation system
vibrates as a rigid body to seismic excitations.

In figure 4, the peak acceleration responses
of a three-story building with a pure friction
base isolator are shown. It is noticed that
the base floor experiences peak accelerations of
about 0.3g to 0.4g throughout the entire range
of Ty. However, the acceleration is generally
attenuated due to the structural damping as
it is transmitted from the base to the first
floor. It is also observed that the acceleration is
amplified as it propagates from the second floor
to the third floor.

Figure 5 illustrates the peak acceleration.
responses at various floors for the structure
which has a R-FBI or SR-F system at its
foundation. The general characteristics that
were noted for the P-F system are also noticed
for these resilient-friction systems. The acceler-
ation is first attenuated and then is amplified as
it is transmitted from the lower floor to higher
floors. At the third floor, the peak acceleration
reaches the same level as the base excitation.

The peak acceleration responses at various
floors for the structure with a EDF system
are shown in Figure 6. It is observed that
the acceleration responses have two distinct
features. Similar to the LRB system, the
differences of the peak acceleration between
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Figure 4. Variations of peak absolute acceleration
at various floors of the structure with the P-F
isolation system.
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Sensitivity Analysis

The sensitivity of the performance of different
base isolation systems to small variations in
their properties were studied by a number of
authors. Here, certain new results concerning
the sensitivity of frictional base isolation sys-
tems to variation in the friction coefficient are
presented. Figure 7 displays the peak structural
deflections for various frictional base isolators
subject to the accelerogram of El Centro 1940
earthquake. It is observed that the peak (top
floor) deflection response of the structure with
a pure friction system is almost identical to that
of a structure with a R-FBI system throughout
the entire range of friction coefficient. The
peak deflections for the EDF system is lower
than those of the pure friction and the R-FBI
systems for the same value of p.

As noted before, the SR-F base isolation
system has two effective friction coefficients,
namely, the friction coefficient of the body
plates, p;, and that of the upper plate, p.
Figure 8 shows the effect of variations in g
and p; on the peak deflection responses of a
structure with a SR-F base isolation system.
In this figure, SR-F1 corresponds to the case
when the friction coefficient of the upper plate
is varied, while p; is kept constant at 0.05.
Similarly, SR-F2 denotes the results when [
is changed and p is fixed at 0.1. It is observed
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Figure 7. Variations of peak deflections with
friction coefficient for different base isolation
systems.
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Figure 8. Variations of peak deflections with
friction coefficients for the SR-F base isolation
system.

that the peak deflection responses for the SR-
F1 system increases gradually as p increases
for p < 0.07. For pg > 0.07, the deflection
responses remain a constant of about 4 mm.
The peak deflection responses for the SR-F2
system also increase with u;, for p < 0.1,
while for g; > 0.1, no noticeable variation is
observed.

Figure 9 shows the effect of variation of
coefficient of friction on the peak base displace-
ment responses for the P-F, the R-FBI and the
EDF systems. It is observed that the peak base
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Figure 9. Variations of peak absolute base

displacements with friction coefficient for different
isolation systems.
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displacement respounses generally decrease as p
increases. The exception is the EDF system for
which the peak base displacement first increases
to a peak of about 19 cm at ¢ = 0.05, and then
decreases with further increase in p. For the R-
FBI and the P-F systems, about 50% decrease
in their peak base displacement responses is
observed when p varies from 0.03 to 0.1. The
effect of variations in friction coefficients of the
body and the upper plates on the peak base
displacement responses for the SR-F systems
are displayed in Figure 10. This figure shows
that as p increases, the peak base displacement
of the SR-F1 system first decreases and then
remains a constant for g > 0.07. Similarly, for
the SR-F2 system, the peak base displacement
decreases with an increase of py, up to pu; =
0.1, and then remains a constant for greater
value of y;. Additional results concerning the
sensitivity of base isolation devices to variation
in their physical properties were reported by
Fan et al. [10-12], among others.

The results presented here and in the
earlier works clearly show that the transmit-
ted acceleration and the column stresses of
the structure can be significantly reduced by
using a properly designed base isolation system.
The laminated rubber bearing is highly effec-
tive in protecting relatively compact and stiff
structures against earthquake. The frictional
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Figure 10. Variations of peak absolute base
displacements with friction coefficients for the
SR-F isolation System.
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Secondary Systems
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tems for fixed-base structures were reported in
[40-42] and an extensive state-of-the-art review
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Figure 11 shows the deflection floor spectra
for the top floor of the three story structure
with different base isolation systems and the
fixed-base one. It is observed that the floor
spectra of the fixed-base structure has a sharp
peak at the frequency of about 3.33 Hz, because
considerable energy is channeled into the funda-
mental natural frequency of the structure under
this broad-band earthquake ground excitation.
Beyond this frequency, the spectral amplitude
decreases rapidly. Figure 11 also shows that, for
fs > 2 Hz, all base isolation systems eliminate
the resonance peak and significantly reduce
the peak deflection of the secondary system.
The LRB system generally leads|to the lowest
deflection floor spectra among |the isolators
considered. However, for fs < 2|Hz, the LRB
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Figure 11. Deflections floor spectra for El Centro
1940 earthquake.

and the EDF systems lead to peak responses
higher than those for the fixed-base structure.
The LRB system also shows a resonance peak at
fs = 0.5 Hz, corresponding to the natural fre-
quency of the isolator. The natural frequencies
of the secondary systems are normally higher
than that of the structure. Thus, the use of
the base isolation systems significantly reduces
the peak deflection generated in the secondary
systems. '

Based on the results presented here and
in [3,47,48], it may be concluded that use of
base isolation systems provides considerable
protection for the secondary systems and the
structural contents. Among the isolators con-
sidered, the LRB system leads to the lowest
peak responses in the secondary systems.

Random Excitations

Sensitivity analysis of buildings with base iso-
lation devices subject to random earthquake
excitations was considered by a number of
researchers in the past. Extensive literature
reviews on the application of equivalent lin-
earization method and other approximation
techniques have been provided by Roberts
[52,53], Crandall and Zhu [54] and Spanos [55].
Ahmadi, Tadjbakhsh and co-workers [56-62]
performed a number of studies on performance
of various base isolation systems to random
models of earthquake excitations. Stochastic



Ahmadi on Overview of Base Isolation

earthquake response of secondary systems in
base isolated structures were analyzed in [62].
In these studies, the equivalent linearization
method was used for analyzing the responses
of structures with nonlinear frictional base iso-
lation systems. It was shown that this method
leads to reasonable peak response statistics for
the base-isolated structures. More advanced
procedures for random response analyses of
nonlinear systems were described in the liter-
ature. These include the Gaussian and non-
Gaussian cumulant-neglect method developed
by Noori and Davoodi [63,64], and the Wiener-
Hermite functional expansion technique pro-
posed by Jahedi and Ahmadi [65] and Orabi
and Ahmadi [66-68]. These techniques, how-
ever, have not been used for response analysis
of base isolated structures as yet.

PASSIVE DAMPERS

Use of passive dampers for protection of struc-
tures against earthquake has attracted con-
siderable attention. Aiken et al. [69], Roik
et al. [70] and Scholl [71] performed a series
of studies on the effectiveness of frictional
dampers for seismic applications. In practice,
the frictional dampers are installed at diagonal
bracing or at appropriate joints for damping
the vibration energy generated by earthquake
or wind excitations. Constantinou and Tad-
jbakhsh [72] described a procedure for optimal
design of first story damping of structures.
Graesser and Cozzarelli [73] developed a model
for hysteretic damping of materials including
shape memory energy alloys for seismic ap-
plications. Damping of structures was also
studied by Liang and Lee [74]. Chang et
al. [75] performed a series of experiments on the
effectiveness of the viscoelastic dampers. Zhang
et al. [76] and Soong and Lai [77], among others,
studied the performance of hysteretic and vis-
coelastic dampers for seismic applications. The
viscoelastic and hysteretic dampers are usually
made of layers of materials which are made to
deform under direct shear in order to dissipate
vibrational energy. The earlier studies have
shown that properly designed dampers can be
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highly effective in reducing the peak structural
responses. However, their performance is some-
what sensitive to the frequency content of the
excitation and the thermal environment that
the damper is exposed to.

ACTIVE CONTROL

Active vibration control systems have been
successfully utilized for aircraft, spacecraft,
mechanical devices and various structures [78-
84] in the last two decades. Also, notable
success for active vibration control of civil
engineering structures have been reported by
Abdel-Rahman and Leipholz [85-88], Leipholz
[89], Soong and co-workers [90-94], Masri and
Caughey [95,96], Yang and co-workers [97-103]
and Yao et al. [104-107]. Issues concerning the
significance of time delay in vibration control
of structures and acceleration control were dis-
cussed by Iwan and Hou [108]. Detailed anal-
ysis of active control systems were described
by Meirovitch [109]. The potential usage of
active control for retrofitting existing structures
was also discussed by Meirovitch [110]. A
procedure for instantaneous active control of
distributed parameter buildings was described
by Tadjbakhsh and Su [111,112]. Use of hybrid
passive and active control of structure was
suggested by Pu and Kelly [113] and Kobori
et al. [114]. Extensive reviews on active control
methodology were provided by Soong [115-117],
Meirovitch [109], Kobori [118], and Melcher and
Breitbach [119]. Samali et al. [120] studied
active control of coupled lateral-torsional mo-
tion of wind-excited buildings. Warburton and
co-workers [121-123] analyzed the performance
of tuned mass damper for vibration control of
structures. An extensive review of literature
on active vibration control and future research
need was provided by Housner et al. [124].
Recently, Lee-Glauser et al. [125] studied
the effectiveness of an active vibration absorber
(AVA) in conjunction with the use of a model
independent active control strategy. — Their
results for a three story building subjected to
the El Centro 1940 earthquake are reproduced
in Figure 12. In this figure the structural
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HYBRID CONTROL
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effective. Reinhorn et al. [128] provided an
extensive experimental study of the perfor-
mance of active tendon and active dampers.
Tadjbakhsh and Rofooei [129] and Luco et
al. [130] performed computer simulation of the
performance of hybrid systems. Active con-
trol of frictional isolation system was studied
in [131,132]. Application of hybrid vibration
control of aerospace structures was reported by
Lee-Glauser et al. [133]. These studies clearly
showed the feasibility of using a combination of
passive and active control systems for optimum
performance.

Lee-Glauser et al. [125] also analyzed the
performance of a hybrid combination of the
AVA systemr with a passive laminated rubber
bearing isolation system for seismic applica-
tions. Their resulting acceleration time history
for the El Centro 1940 earthquake excitation
is shown in Figure 12, and is compared with
acceleration levels for the uncontrolled struc-
ture, as well as for those with passive and active
systems. This figure shows that the hybrid
system is highly effective. In [125], it was also
shown that the presence of the AVA system will
significantly reduce the peak base displacement
of the passive isolation system.

CONCLUDING REMARKS

In this review article, the recent developments
in passive, active and hybrid vibration con-
trol of structures for earthquake protection are
presented. Certain results on performance of
various base isolation systems and active and
hybrid control systems are also described. The
presented material indicate that compact and
relatively stiff structures during an earthquake
can be effectively protected by using a properly
designed base isolation system. The passive
dampers and active control methodologies are
highly effective for protection of tall buildings
against earthquake. The hybrid combination
of passive and active control strategies may be
designed for optimal performance. In addition,
these different vibration control techniques may
also be used for seismic rehabilitation of exist-
ing structures.
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