Computational Nonlinear Least Squares in
Electric Current Tomography
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Producing images of cross-sections of a body, or tomography, has applications in medical
engineering. We consider the electric current tomography, which has recently attracted some
attention. The quantity which plays a key role in representing the picture is the conductivity
(or resistivity) of the existing tissues in the cross-section of the body. Electrical current is
injected into the body and the voltages of various points of the surrounding environment
are measured. The injection of electrical current and the measurement of the voltages are
accomplished by certain electrodes around the surface of the section. The distribution of body
resistivity is estimated by using the measured voltages. Several computational methods for
construction of the image (computing conductivity distributions) are discussed, resulting in
optimization models of the nonlinear least squares type. Various numerical techniques for
solving the least squares problem are discussed. A system is built to demonstrate the practical
usefulness of electric current tomography. The system is tested and useful results are noted.

INTRODUCTION

Much activity has been devoted to the construc-
tion of images of cross-sections of a body (or
tomography). Recently, electrical impedance
tomography (EIT) has attracted some atten-
tion. The quantity playing a key role in
. constructing the image is the resistivity of the
cellular tissues around the considered cross-
section. To compute the resistivity, sinusoidal
electric current is injected into the surrounding
area. The flow of the current causes a drop in
voltage in various points of the body. Since the
surface of the body is most easily accessible,
an estimate of the resistivity distribution inside
the body is obtained by measuring the voltage
of the surface. Injection of the current, voltage

measurement and image construction are all
carried out under the control of a computer and
the connecting electrodes situated within the
surrounding area (see Figure 1). To construct
the image, one needs to solve certain nonlinear
least squares problems. Various schemes for
finding numerical solutions of such problems are
discussed and contrasted. The effect of some of
these techniques in our setting is demonstrated
by testing our proposed system.

THE PRINCIPAL RELATION

The flow of electric current having the density
3(x,y) inside an object with resistivity P(z,y)
will cause an electric field E(z,y). The follow-
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Figure 1. Placement of electrodes for chest tomography.

ing equation is held [1]:
> 15 1
P P (1)

where V(z,y) is the electric potential function.
Letting ;7 denote the density| of the current
injected by the electrode, then the following
boundary conditions are obtained:

7 in positive current electrode

1 0V oo .
— —— = ( —J in negative current electrode
P on
0  otherwise ,
(2)
where Z—Z is the derivative of the potential func-

tion with respect to the normal direction (the
direction perpendicular to the surface area).
Thus, Equation 1 with the boundary conditions
in Equation 2 must be held| In electrical
impedance tomography, we are faced with the
inverse problem, measuring the distribution of
the current and the potential function around
the surface of the cross-section of the body,
we are interested in obtaining the resistivity
of the section inside. To do this, we indeed
solve Equation 1 with boundary conditions in
Equation 2 iteratively. In other words, we first
assume an initial resistivity distribution P(z,y)
for the section and then solye Equation 1.
Based on the potential distribution obtained
for the surface and its difference from the

measurements, and use of a particular iterative
method, convergence to the actual solution is
accomplished.

THE FINITE ELEMENT METHOD

The differential equation, Equation 1, can be
quite complicated in practice and, hence, an
analytic solution cannot be hoped for. Thus,
we solve Equation 1 numerically by the finite el-
ements method (FEM). To do this, we consider
the cross-section as a planar 16 equally-sided
polygon divided into 56 triangular elements, as
in Figure 2 (increasing the number of elements
results in higher accuracy but requires more
storage and more time for computations. For
practical reasons, we restricted ourselves to
56 elements). We assume that the potential
function is linear for each element inside the
polygon. Therefore, we will have:

56
V(z,y) =D Vi(z,y) , (3)

a+ bz + cy inside element e

Ve(z,y) = {

0 otherwise, (4)

where a, b and c are constant scalars. Using the
linear functions in Equation 4, one can show
that the following relations are held for each
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element e [2}:

Yiu Y2 Y3 Ver I,
Yor Yo Yo Vo | =1 L2 |,
Yo, Yo Yas || Via Ls (5)
where:
Y = (bibj + cic;)/(2A.Fe) ,i # 7, (6)
bi=Ya—Ys, b2=uys—v1,
b3 =y1 — Y2,

€ =T3— Tz, C2=IT1 I3,

C3 =T2 — Ty,

(7)

)/11=_Y32_K37 E2:_E1_Y237
Y33=—Y31—Y32a
}/;ijj/}ia i>j:132,37

(8)

with the following definitions:

P, = resistivity of element e (assumed
constant within the element),

V.; = potential of vertex i of element e,

x;,y; = plane coordinates of vertex i of
element e,

A, = area of element e,

R;; 2 YL, = electrical resistivity between
vertices ¢ and j (i # j) of element e,

I, =electrical current entered into vertex ¢

of element e.

Thus, it is shown that the FEM approx-
imation for a triangular element having resis-
tivity P. is identical with a triangular electric
resistance network [3]. For the exact solution of
Equation 1, we need to know the current and
potential distributions on the entire section of
the body. However, we can only have a finite
number of measurements in practice. Further-
more, the accuracy obtained in the measure-
ments is limited by the number of electrodes
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Figure 2. A 16 equally-sided polygon with 56
elements.

being used. It can be shown that for N
electrodes, the number of possible independent
measurements would be N(N~3)/2 [4]. For our
computer simulation, we chose 16 electrodes.

THE LEAST SQUARES MODEL

There are a number of methods for computing
the resistivity distribution. One technique is
based on minimizing the error (the difference
between the measured voltages and their esti-
mates obtained in the iterative process) in a
particular norm. Using the Euclidean norm (or
2-norm) we obtain the nonlinear least squares
problem:

& J|If(P) - Yall:

(f(P) - Yo)T(f(P) - E)(é

minimize K(P)

— b =

T2

where Vo = [vo1,v02,... ,%c]T is the vector
of measured voltages, P = [py,pa,... ,pum|” 18
the vector of resistivities corresponding to the
elements, and f(P) = [f1,f2,...,fr]” is the
vector of computed voltages which is a function
of resistivities. The necessary conditions for
the solution of the above problem are that the
gradient of K(P) must vanish at the solution
[5,6]. Hence, we have:

K'(P)=[f(P)"({(P)-Y) =0,  (10)
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where the L by M matrix f'(}
of f(P):

O4(P)

[f'(P)i; = op,;

We note here that the model
be supplemented to include

P) is the Jacobian

(11)

n Problem 9 may
constraints on P.

The simplest, of course, is the nonnegativities

of resistivities. Constrained o
lems need to be handled diff

ptimization prob-
erently [6]. How-

ever, for our problem we do not find the added

complication necessary, sinc
estimate for resistivities is oft
hence, the subsequent iterat
nonnegative. Next, we turn

e a good initial
en available and,
es would remain
into a discussion

of various methods for solving Problem 9.

METHODS OF SOLUTI(

Numerical methods for solvin
focused on finding a solution

DN

)g Problem 9 are
of the nonlinear

Equation 10. Nonlinear equations are usually

solved by an iterative process

based on a linear

approximation (to follow Newton’s approach).
The linear approximation of Equation 10 is as

follows:

K'(Ppyyy) =~ K'(Puy) + K"

(P(k))AP(k) == 0 3
(12)

where K", the Hessian of K(P), is as follows:

L
K" 2 fT8 + 5 (fi = vos)

=1

Having Py, an estimate

A2 (fi = voi)

(13)

of the resistivity

vector, at hand, AP is obtained by solving

Equation 12.
following linear system of equ

K"(Py))APgy = —K'(Pyy) -

Thus, we need to solve the

ations for AP;,y:

(14)

The new estimate can then be defined as:

Pty = By + ARy -

(15)

We note that, when far from a solution of
Problem 9, the updating scheme in Equation 15
may not be satisfactory. In situations like this,
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one usually performs a line search to find a
parameter ax,0 < a; < 1, so that Pyyy) =
Py + ax APy is approximately a minimizer
(with respect to a) of K(Puy + aAPy) [5,6].
For our purposes, the simplified version in
Equation 15 turns out to be satisfactory.

We are now ready to propose an algorithm

for solving the inverse problem.

(a) Inject the electric current into the section

of the body and measure the voltages on
the surface of the body.

(b) Divide the section of the body into M
triangular elements (M < L) and initialize
the resistivity vector to some arbitrary
(nonnegative) numbers (this is the initial
P, say Pyy). Set k to 0.

(c) Based on Py and using the FEM, compute
f(Py) and f'(Pyy).

(d) Solve the system of Equation 14 to com-
pute APy.

(e) Let -P(k+1) = [,(k) + Alj(k)
(f) If convergence criteria is met then stop.
(g) Let k=k+ 1. Go to step (c).

Steps (c) and (f) of the algorithm need some
comment. In step (c), since the FEM approxi-
mation turns the section of the body into an
electric resistance network, the computations
of f(P) and f'(P) are made easily possible
[4]. For convergence criteria in step (f), one
may set a predetermined tolerance level for the
acceptance of the approximated error in the
solution, the difference between the measured
and the computed voltages. Based on the
tolerance level, the convergence criteria may be
set by choosing a norm, say the Euclidean, for
the difference vector.

The Gauss-Newton Method

The key numerical step of our concern in the
algorithm is step (d). Various methods propose
different ways for solving Equation 14. From
Equation 13, we realize that the exact Hessian



Mahdavi-Amiri and Seydnejad on Tomography

consists of two terms, the first being that f T f1
is available, and the second (the summation)
requiring second order information concerning
(fi — vp;) for all i. One method, the Gauss-
Newton [7-9], disregards the second term alto-
gether and uses the approximation:

K'=fTf . (16)

Using K" as Equation 16, and using Equa-
tion 10, Equation 14 turns to:

[f (Pay)I” f' (P APy =

= 7' @Po)I” [£(Pw) = Vil
(17)

which may be used as an approximation to
Equation 14 in step (d).

The Jacobian matrix plays an important
role in the solution of the inverse problem. The
components of this matrix are the derivatives
of voltages with respect to resistivity of the
elements. It is clear that the low accuracy in the
Jacobian matrix would result in an unreliable
picture, since this would mean low sensitivity of
the measured voltages with respect to the resis-
tivities. Unfortunately, the closer the element is
to the center of the section the less reliable the
picture becomes (due to the low sensitivities).
But, reliable images are needed.

One remedy is to increase the number of
the elements. This, of course, would mean
less area for each element and, hence, more
work may be required to obtain the image.
In general, the matrix [f'(P)]T[f'(P)] may be
ill-conditioned (this is certainly true when the
Jacobian matrix is rank deficient or close to a
rank deficient one). This is the situation where
the Gauss-Newton method may not converge
to a solution (or the convergence may be too
slow for any practical purpose), especially when
the initial point may fall far from the solution.
Although, for our purposes we can always start
with a good initial point, solving the system in
Equation 17 would still have numerical difficul-
ties when it is badly conditioned. To solve this
difficulty, regularization techniques have been
suggested, which we discuss below.
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The Levenberg-Marquardt Method

Instead of minimization of K(P) as in Prob-
lem 9, one, for example, suggests the minimiza-
tion of a penalized model [10]:

K(P) = 5 1£(P) = Yall: + 57G(P) , "
18

when r is a constant positive scalar and G(P)
is a nonnegative function of P. Usually, G(P)
is taken to be a quadratic term of form:

G(P)£ PTHP, (19)

for some positive definite matrix H. It is now
easy to see that the system in Equation 17
becomes:

{lf (Pay))"f'(Pw) + rH}Y APy =
—[f'(Pa)IT1£(Pwy) = Vo] - (20)

If we choose H = I, then the resulting
method is what is called the Levenberg and
Marquardt method for solving nonlinear least
squares models [11,12]. We realize that the
approximation matrix rI is effectively being
used in place of the second term in Hessian,
given by Equation 13. For our problem, the
second term of the Hessian at the solution must
vanish, so large values for » may not cause
convergence to the solution, or at least slow
down the convergence rate. On the other hand,
small values of r may cause divergence from
the solution. Our suggestion, arrived at from
numerical experiments, is to use r = —113 at the
initial point and reduce it by the factor ;5 after
each iteration (penalized models are very com-
mon in constrained nonlinear optimization. For
general discussions, see [6]). There should be
rooms for improvement in the way of choosing
r and its subsequent reductions.

Recent developments for solving nonlinear
least squares problems propose more accurate
approximations for the summation term in
Equation 13. These methods are named as
“secant” or “quasi-Newton”. They are based
on secant approximation of the second order
terms in the summation, either individually or
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collectively. We tried these n
the material in [13,14]. Since g
results do not present superio
niques for the problem at h

nethods based on
ur computational
rity of these tech-
and, we will not

elaborate on them here any further (we note,
however, that they are as competitive as the
other methods mentioned before). We feel that
further work on secant methods for our problem
may prove promising.

The Weighted Methods

Any of the above methods may be applied to a
weighted least squares form:

2

2 !

minimize K(P) = %IlW(_f_(P) - Wl -
21

where W is the weight matrix :

wrr

L
where w;; > 0,1 < ¢ < L and Y w; = 1.
=1

This model would permit the
separate weight to the voltage
each element (the original mo

assignment of a
corresponding to
del in Problem 9

considers equal weights of 1 for all the elements

inherently).

This new model may be more

meaningful in situations where the sensitivities

of certain elements are consid

ered higher than

others, or where the presence of noise in the

system is considered to be m
some elements.

ore damaging to

With this viewpoint, it can

be shown that the Gauss-Newton version for
solving Problem 21 becomes the solution for the

system of equations:

[FTW2 1P = - TW(f - Vo),

(22)

and the Levenberg-Marquardt method would

result in solving the system:

’

[FTW2f' + rI|APgy = —f'7
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We choose the weights to compensate for
possible damage in the presence of noise. That
is, we assume that the less the measured
voltage, the more sensitive it will become to
the noise in the system, and, hence, a smaller
weight is assigned to it. For computational pur-
poses, we first normalize the vector of voltages
and then the individual weights are taken to
be the ratios obtained as the absolute values
of the corresponding normalized components to
the overall sum of the components.

PRACTICAL RESULTS

A 16-sided polygon phantom having a diameter
of 12.5 ¢cm and height of 2.5 ¢m has been
used. The phantom is filled with a saline
solution having a resistivity of 65% ohm-meter.
Figure 3 illustrates the constructed image of the
phantom filled with the solution. Figures 4 and
5 show the constructed image after the insertion
of a cylinder (marked with broken lines). In
Figure 4, a glass cylinder having a diameter
of 3.5 cm has been dropped, while the one in
Figure 5 is a metal cylinder with 3 cm diameter.
These results have been presented in [15]. Some
of the main factors for the introduction of errors
in producing the image are reported possibly as:
(1) the use of a small number of elements for
the FEM, (2) the actual 3-dimensional shape
of the phantom while the presentation here
is based on a 2-dimensional analysis, (3) the
existence of noise and error in the electronic
system being used, and (4) error in construction
of the phantom.

CONCLUSIONS

For constructing electrical impedance images,
an approximate electrical resistance network for
the considered section of the body is obtained
by an FEM approximation. Then, starting
with an initial estimate of the resistivity dis-
tribution of the section, an iterative process is
developed to find the resistivities so that the
difference between the measured and computed
voltages is minimized in the least squares sense.
Various nonlinear least squares methods are
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Figure 3. Constructed image of the phantom
having a salt-water solution.

8.48 — 8.98
8.98 —1.18 &k

Figure 4. Constructed image with the presence of
glass cylinder (the broken lines mark the actual
position of the cylinder).

< 8.48
8.48 — 8.98 =

8.98 — 1.18 TE5T
>1.18

Figure 5. Constructed image with the presence of
metal cylinder.

341

discussed and used in the computations. It is
found that the Jacobian matrix of the vector
function of voltages plays a significant role in
the convergence behavior of a method to the
solution. Various techniques as possible ways
for improving the speed of convergence to the
solution have been suggested.
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