On the Existence of MFD Switch-on and
Switch-off Shock Waves for Rectilinear
Motion in Some Models of Plasma

Mahmoud Hesaaraki!

The shock waves structure problem in MFD for rectilinear motion in some models of plasma
reduces to finding heteroclinic orbits for an ordinary differential equations system of six
variables depending on five viscosity parameters, a,7, k,o~! and x; one electrical parameter
€ > 0 and a magnetic parameter § > 0. For € > 0, this system admits four rest points
say, u;(€),0 < i < 3, which are all nondegenerate. For € = 0, the system admits infinitely
many rest points including the four rest points @; = él_% u;(€),0 <1 < 3. Two of these

rest points are nondegenerate and the other two are degenerate. The heteroclinic orbits
between uo(€) and u;(€) correspond to the structure for the fast shocks, the heteroclinic
orbits between uz(€) and u3(€) correspond to the structure for the slow shocks, while the
heteroclinic orbits between T, and %;; and %z and %3 correspond to the switch-on and switch-
off shocks, respectively. In [1] we have shown that the fast and the slow shocks admit
structure. In this paper, by using some results from [1-4], we will show that for each pair of
(4,7),0 < i < j < 3,(4,5) # (1,2) there is a complete orbit related to the rest points %; and
@;. Moreover, these orbits are obtained as the limiting case of the heteroclinic orbits for the
fast and the slow shocks. In spite of these facts, the switch-on and the switch-off shocks do
not admit structure and physically cannot occur.

1

INTRODUCTION aVis = (V = 62)By + xa~1bys — a; ‘;/3 ,

In this paper, we will continue our work begun V = oV +V + 1 B2+B3)—J

in [1] on the structure of MFD shock waves of 7 p(.T) 2( 2+ Bj) ’
arbitrary strength for ionized gases governed by KT = e(V,T) - %Vz _ -;—(V — §%)(B2 + B?)

general equations of state. As discussed in [1],
the structure problem reduces to finding hete-
roclinic orbits for a six-dimensional system of
ordinary differential equations of the following
form:

aVB2 = Y2,
aVBS = Y3,
-1
g
aVys =€ + (V — 62)B; — xa~6ys — a‘}” ,

1
+JV+§(y§+y§)—€Bz—C, (1)

where the symbols a,7n,k,07! and x denote
the “viscosity” parameters (which are always
nonnegative), while J > 0, § > 0, € > 0
and C are constants. The variables V and T
correspond to volume and temperature and are
naturally positive, while p(V,T) and e(V,T)
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correspond to pressure and
respectively. For this system
variable is t, which is a coordi

internal energy,
the independent
ate variable. The
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disallowed in this case. (see Lemma 4.1 in

)

constant ¢ is the longitudinal component of the
magnetic induction and the variables B, and B;
are the components of this field along the axes
perpendicular to the ¢-axis. Finally, y, and ys3
are auxiliary variables which are defined by the
first two equations of the above systems.

It is known that the above system, under
some hypotheses, admits (at most) four rest
points, when § > 0 and € 0. We denote
them by u;(€),0 <1 < 3. Moreover, éi_rg u;(€)
exists. We denote it by %;,0 < ¢ < 3. For the
case € = 0, this system admits infinitely many
rest points including %@;,0 < ¢|< 3. For the case
6 = 0, the reader is referred to [3].

The following results are known [1]. For all
values of the viscosity parameters and € > 0,
there is an orbit running from uy(€) to u,(€)
(the heteroclinic orbits corresponding to the
fast shocks) and likewise an orbit running from
u2(€) to uz(€) (the heteroclinic orbits corre-

spondence to the slow shocks
intermediate shocks, that is th
ui(E) and u,-(e), 1= 0, 1, j e
do not admit structures.

This leaves open the ques
ture for the switch-on and the

). Moreover, the
1e shocks between
= 2,3, in general,

stion of the struc-
switch-off shocks,

i.e., the existence of heteroclinic orbits between

o and T; (for the switch-
heteroclinic orbits between %
switch-off shocks).

In order to handle this
problems, we shall study the
limiting case of € > 0 whene
technique is different from th
The reason for using a differen:

on shocks), and
» and W3 (for the

and the related
case € = 0 as a
ver € — 0. This
e one used in [1].
t approach is that

that topological technique cannot be applied

here because:

1. After building the isolated invariant set,

in [1], we have chosen a

constant K, be-

tween P(u;(€)) and P(uy(€)) and split

the isolated invariant set
invariant sets Sy; and Sy,

into two isolated
respectively, for

the fast and the slow shocks. Since € = 0
implies P(w,) = P(%W.,), such a splitting is

2. To calculate the Conley indices h(Sp;) and
h(Sa3), in [1], we let C increase; then, by
cancellation of the rest points uy(€),u;(€)
and uy(€), uz(€), we could calculate these
indices. But, when € = 0 as C increases
then %;,%, and %, and %; simultaneously
cancel.

In the next section, we will find the rest
points %;, 0 < ¢ < 3 and its relationship to
the rest points u,;(€), 0 < i < 3. We will then
find some bounds for the connecting orbits for
the fast and the slow shocks independent of the
viscosities and € > 0, assuming that § > 0 is
fixed and, afterward, will prove the existence of
bounded complete orbits for the case € = 0 and
nonexistence of the switch-on and the switch-off
shock waves.

HYPOTHESES AND REST POINTS

Let S(V,T) be the entropy of the system.
Following [1-9], we assume that the following
hypotheses hold:

H,: The function p, e and S are positive when
V,T > 0.

H,: For fixed T >0, p(V,T) - 0as V — 0.

Hj;: Given any positive constants V; and K,
there exists a To > 0 such that if 0 < V <
Vo and T > Ty, then e(V,T) > K.

Hy: On any interval 0 < V < Vp, S(V,T) —
0 uniformlyin VasT — 0.

Hj: Consider p as a function of V and S, then
pv <0, pyy >0 and ps > 0.

We will use these hypotheses directly, or we will
take advantage of some results based on them.

As we mentioned before, the switch-on and
the switch-off shock waves occur when € = 0
in System 1, thus, in this case, our system of
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equations becomes:

aVBz =Y2,
aVBz=ys,
-1
aViy = (V =8By - xa 0ys = 1
-1
. - g
aVys =(V - 6%)Bs + xa ™ 6y2 — aé/a ,

: 1
v =p(V,T)+V + E(Bg +B3)-J,
KT =e(V,T) - %v‘*’ - —;-(V — 8%)(B? + B?)

1
+JV+§(y§+y§)—C’. 2)

Thus, at a rest point of this system, y; =
y3 =0 and (V — 6*)B; = (V — §%)B, = 0.

Case 1

If, at a rest point, V # é*, then B, = B3 = 0.
Substituting these values of y, = y3 = B; =
B; = 0 into the equations for V and T, we
arrive at the following criterion for a rest point:

F1(‘/’T') =V - J+p(V,T) =0,

'F;(V,T)=e(V,T)—-;-V2+JV-0=o “
3

The equations Fy(V,T) = 0 and F,(V,T) =0
determine the graphs of the functions T;(V)
and T»(V) in the region V,T > 0, respectively
(see Figure 1). Equations 3 are the same as
Equations 2.6 in [4]. From Section 2 in [4], we
have the following theorem.

Theorem 1

The equation 23+ = 0 has precisely one so-
lution. At this point 7(V) has a maximum
value. For fixed J > 0, there is a constant
C, such that for C > C;, Equations 3 admit
no solution. For C < Cj, they admit two
solutions, say (V;, T:), ¢ = 0,3,V3 < Vo.
The function T, (V) is decreasing in the interval
(V3,V,). Moreover, in this interval, the curve
Fo(V,T) = 0 lies in the region F,(V,T) < 0.

Hence, in this case the following points are
two of the rest points of System 2:

@ =(0,0,0,0,V,,T:), i=0,3. (4)
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RV, T)=0
. Fp(V,T) =0
: F(V,T) =0
: Fp(V,T) =0

o o w »

Figure 1. The + and — signs show the sign of the
related function to the curve in the regions.

Case 2

If, at a rest point of System 2, V = §?, then, at
that rest point, we must have:

1
5(B§ + B +p(:,T)+6*-J =0,

e(8?,T) — %5‘ +J8-C=0.
(5)

Then, T,(6%) is the unique solution of the
second equation of Equations 5. If V3 < 82 <
Vo, then, from the last statement in Theorem
1, we must have F(6%,T5(6%)) = 62 — J +
p(62,T2(6%)) < 0. Thus, from the first equation
of Equations 5, we obtain:

1 —

§(B§ + BY) +p(6*, T(*)+ &6 -J =0,
or

(B} + B3) = 2(J - 6 — p(6*,T(6*)))

= :32 ) :3 > 0. (6)

For the case € > 0, as we shall see later, at a rest
point, we have B; = 0. Thus, if we let B3 = 0,
then from Equation 6, we obtain B, = £4. In

this way we find the following two rest points
Uy and Ty:

U; = ((—l)iﬁ, 010,07627T2(62)) ,i=1,2.
(7)

Therefore, we have the following theorem.
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Theorem 2

For suitable values of J > 0, C € Rand § > 0
the points @; = (0,0,0,0,V;,T;), i = 0,3 and
U = ((—l)iﬂ70’0a0,62172(62))1 i = 1,2, are
the four rest points for System 2. Moreover,
each point of the set of points {u € RS :
(B21 B37 01 07 62, T2(62))7 Bg + 32 = :321 BZa BS S
R} is also a rest point of System 2.

Now we shall consider the rest points of
System 1, whenever € > 0. At a rest point, in
this case, y; = y3 = By = 0 and B; = —55.
Substituting these values of y; and B;,i =2, 3
into the equations for V and ', we obtain the
following equations at a rest point:

F(V,T) = % eWVv-)?+v-J

+p(V,T)=0,
B(V,T)= 3 € (V- 8) - 2v?
+JV-C+eV,T)=0.

(8)

These equations are the same jas Equations 2.3
in [4]. Thus, from [4] we have the following
theorem.

Theorem 3

For fixed J > 0, § > 0 and € > 0, there are
two numbers Cy > C, such that for C > G
the system of algebraic Equations 8 admits
no solution at all. For C C, it admits
precisely four solutions. Two of these solutions
are located in the region V > |62 and the other
two are located in the region 0 < V < 6%, For
C= Co, Cl <C< Co and = Cl, it admits
one, two and three solutions, |respectively. At
most, two of these are located in V' > 6% (or
0<V <é?).
From now on we assume that Equations 8
admit four solutions. We denote these solutions
by (Vi(€),Ti(€)), 0 < i < 3 where Vy(€) >
Vi(€) > 6% > Va(€) > V3(€). [This means that
System 1 admits the following| four rest points:
'U«,(G) = (_ € (V; - 52)_1707 70, Vi, T;.),

0<i<3,

(9)

where V; and T; means V;(€) and T;(€), respec-
tively.
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Now we have the following lemma, its
proof is the same as proof of Lemma 3.2 in [4].

Lemma 1

Suppose in System 1, § > 0, J > 0 and C €
R are fixed. Given €; > 0 there are positive
numbers a; and b;, ¢ = 1,2 such that if u =
(B2, B3,0,0,V,T) is a rest point of this system
corresponding to 0 < € < €;, then (V,T) €
[al,bll X {az, by].

Finally, in this section, we have the follow-
ing theorem. Its proof is the same as proofs of
Theorem 2.4 and Corollary 2.1 in [4].

Theorem 4

Suppose System 2 admits the four rest points
%;, 0 < ¢ < 3. Then there is an €;> 0 such
that for 0 < € <€,;, System 1 admits the four
rest points u;(€), 0 < ¢ < 3. Moreover Ti(€
) < 11,;4.1(6), 1= 0,1,2, and U = él_f{(l)u,(e),
0<:¢<3.

SOME BOUNDS ON HETEROCLINIC
ORBITS

As we mentioned before, the existence of
bounded complete orbits correspondence to €
= 0 will be proven as limits of the structure for
the fast and the slow shock waves as € — 0.
In order to do this, we need to have the set
of all heteroclinic orbits correspondence to the
fast and the slow shocks bounded and bounded
away from V = 0 and T = 0 independent of
€ and the viscosity parameters. This section is
devoted to finding such bounds. Prior to this
we have the following.

Given an autonomous system of ordinary
differential equations in R™:

dz
F =@, (10)

we will denote by z.t the value of the solution
of this system at time ¢ that is x initially. As f
is assumed smooth, z.t will be uniquely defined
for each z on an open interval of ¢ contains 0.
For S C R*,J C R, we let S.J = {z.t :
z € S,t € J}. The set S is called invariant if
SR=S. For Y C R*, the w-limit set of Y is
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defined to be the maximal invariant set in the
closure of Y.[0,00). Similarly, o-limit set of ¥
is defined to be the maximal invariant set in the
closure of Y.(—00, 0].

By an orbit we mean a solution of Sys-
tem 10 which is defined on an open interval.
By a complete orbit we mean an orbit which
is defined for all t € R. We say that ~(t) is an
orbit running from x, to z; if () is a complete
orbit and tEEnoo ~(t) = zo and tE-If-noo v(t) = 2.
Then z, and x; must be rest points. Such an
orbit is called a heteroclinic orbit.

System 10 is called gradient-like in the
open set U C R", if there is a continuous real
valued function h on U which is strictly increas-
ing on nonconstant solutions of System 10. The
function h is called a gradient-like function. We
also say that this system is gradient-like with
respect to h on U.

Note that the w-limit set of the orbit z.t
means the set of limit points of sequences x.t,
as t, tends to plus infinity, and « -limit set of
this orbit is the set of limit points of these se-
quences as t,, goes to minus infinity. It is known
that, for a bounded complete orbit, each of
these two sets is nonempty, compact, connected
and invariant. In the case of a gradient-like sys-
tem, the restriction of the gradient-like function
to each of these sets is constant. Therefore,

each of them consists of rest points [9,10].

Now we shall show that Systems 1 and 2
are both gradient-like. To do this, we defined
the real valued functions P and Pon V > 0
and T > 0 by:

P(u) = T-l{%v2 + %(V - 62)(BZ+B3)-JV
1
- §(y§ +y3)+ € B, — f(V,T)+C},

1 1
P(u) = T‘l{EV"’ + —2—(V - 6°)(B2 + B%)

IV - L@E+ud) - fV.T) +C),
(1)

where f(V,T) is the Helmholtz free energy
function [11]. This function satisfies:

fV=—p7 fT=_S’e=f+TS' (12)
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Theorem 5

System 1 is gradient-like with respect to P(u)
in the region {u € R% : V, T > 0} for all choices
of the viscosities except for the case n = k =
o~ ! = 0. System 2 is gradient-like with respect
to P(u) in the above region for all choices of the
viscosities except for the case o # 0, 0~ = 0.

For the proof of this theorem see Theorem
3.1in [1].

Here we assume that 8, J,C and the vis-
cosity parameters a, 7,k and o~! are fixed and
x = 0, moreover Theorems 4 and 5 hold.

Let €; be the same as in Theorem 4, €y,
0 < € < €,, a fixed number. For 0 < € < &,
let S(€) be defined as the set of all points which
lie on bounded complete orbits of System 1
corresponding to the above parameter values
and So= U S(€).

0<e<€on
The next four lemmas are modifications of

Lemmas 3.2-3.5 in [1]. Those parts of their
proofs which are similar will be referred to {1].

Lemma 2
On Sy, V< J.

Proof

If p = 0, then, from the fifth equation of
System 1, we obtain V < J. If  # 0, then from
p(V,T) > 0 we get V > 0, whenever V > J.
Thus, if V ever exceeds J on a complete orbit
in {V,T > 0}, then the V coordinate on that
orbit must go to +oco as t tends to +oo.

Lemma 3

There are constants €, > 0 and a > 0 such that
onSy,T>aand V > a.

Proof

Suppose such an a and €, do not exist. Then,
similar to the proof of Lemma 3.4 in [2], we can
conclude that there exists a sequence {€;} and
a sequence {u}} in Sy, such that u; € S(€;),
€, — 0 and the T coordinate of {u}} converges
to zero, moreover on u;.t, the heteroclinic orbit
of System 1, corresponding to the particular
value of € = €, we have T = 0 at v}. This
means that the right hand side of the last
equation in System 1 at v/ is zero and T} — 0
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where T} is the sixth compon
denote the gradient-like functi
to €; by P;(u), then from (3.4
Pyuy) = S(uj). Since 0 <
the fifth component of u}) a
hypothesis Hy, S(uj) = S(V},
P, ) = 0.

Now let Y = {(V,T)
a2 < T < by}, where a; and b;,
in Lemma 1.

)

By Theorem 3.2 in [1], w/.t

ent of u}. If we
b1t corresponding
in [1] we obtain
Vi < J (V] is
nd 7 — 0, by
I;) — 0. Hence,

5al§VSb1,

i = 1,2 are given

Then A = inf S(V,T) > 0.
T)ey

tends to a rest

point, say uy, as t tends to —0o. By Lemma 1

(V/,Tj’) € Y, where V" and

AR R
and the sixth components of

increasing along the orbits, P;

T]f' are the fifth

uj. Since P; is

(u3) > P;(uf) =

S(uf) > A > 0. This contradicts P;(u}) — 0.

Hence such a > 0 and €, exist|

Lemma 4

There is a constant M
So, |Bz}, 'Bgl, ly2| and |y3| are 1
Proof

We will consider the following

Case 1
a = 0.
System 1, we obtain y; =
the last four equations of Sys
the following system of ordi
equations (assuming x = 0):

0By = € H(V - 6*)B,,
07 By = (V — 6B, ,

such that on
ess than M.

cases.

From the first two equations of

y» = 0. Then
tem 1 reduce to
nary differential

. 1
nV=p(V,T)+V+§(B§+B§)~J,

KT = e(V, T)——%

+JV—-eB,~-C.

If o7! =0, then B3 =0 and B, =

Substituting in the third and
we obtain:

VZ—% (V —62)(B2+B2)

(13)

__E
i V-
fourth equations

. 1
7]V=p(V,T)+V—J+§€2 (V-6)2,

kT:e(V,T)—%VuJV—c

+ % e (V-6
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This system of equations is the same as (4.3.4)
in [2]. Thus from [2] such an M, independent
of 0 < € < €y, in this case exists. If o0~ # 0
and @ <V < J, then |B,| and |Bs| decrease
at most exponentially. Thus, there is a positive
constant b, such that if an orbit of Equations 13
initiating at a point with |B,| + |B;| > b, then
either V sometimes exceeds J or:

By(t) + B5(t) > 2(J + 1+ 1),

independent of 0 < € < €;, on an interval
of time of length J, say for ¢t € [to, ¢y + J].
If n # 0, then from the third equation of
Equations 13, we obtain V > 1 on [ty, to + J].
Thus, V(t,+J) > J. Hence, such an orbit is not
in Sp. If n = 0, then from the third equation of
Equations 13 we get B3(t)+ B2(t) < 2J on any
orbit of Equations 13. Hence, such an M must
exist, in this case, independent of 0 < € < €.

Case 2

a # 0. Using x = 0, the first five equations of
System 1 become:

QVBz =
O[VBg =

e (V _ 8B,
aVyz €+( 6 )B2 a V )
O[Vyg =(V—‘62)Bg'—'—‘—
. 1
nv =§(B§+B§)+V—J+p(V,T).

Ifa <V < J, from the first four equations,
we see that |B;| and |y;|,i = 2,3 decrease at
most exponentially. Thus, given any positive
constants K and tg, two constants M > M; >
K can be found such that any orbit initiating at
a point (Bag, Bso, Y20, Y30, Vo, To) with y2 > M,
which is defined for ¢ € [0,J], either V ¢
la, J] for some ¢t € [0,J] or y? > K for all
t € [0,J], i = 2,3, independent of 0 < € <
€. Moreover, any orbit initiating at a point
(Bb, By, vh, 95, V', T') with (B2 + y2) > M?
which is defined for ¢ € [0, o], either V ¢ [a, J]
for some t € [0,%,] or (BZ + y?) > 2M, for all
t € [0,%], ¢ = 2,3, independent of 0 < € < &,.
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B2

DY,

Figure 2. Arrows on the boundary of D show the
direction of the flow on this set.

Now let § = tan™ 22 with § = 0
( mod 27) on the positive y; — azis . A

straightforward calculation gives:

g 1 2 2\ . 2

oV [cos 6 —(V—6*)sin”0

ol . € siné
+-07‘7$1n000s0—m .

Choose 0 < ¢ < X such that fora <V < J
a8

and |8] < @ or |§ — 7| < ¢, we have 2 > 2,

for all 0 < € < €. Now define:

D={u:B:<c(B;+y3), a<V<J},

where ¢ = tan® p(1 + tan? ) ! < 1 .

From % > ;15 we see that any orbit
segment on which V' € [a,J] either stay out
of D or else spends time (i.e., an interval for t)
in D which is at most 4apJ. Note that such
an orbit, having crossed out of any component
of D, cannot re-enter the same component of D
without passing through the other component
of D (see Figure 2).

Now choose cK > 2(aJ +n) and t, = (2+
4¢)aJ. Then, by the above argument, there are
two constants M > M; > K such that any orbit
initiating at a point y3 > M, either V' ¢ [a, J]
for some t € [0,J] or y2 > K for all t € [0, J].
Moreover, any orbit initiating at a point B2+
y2 > M?, either V ¢ [a, J] for some t € [0, o]
or B2 +y2 > 2M; > 2K for all t € [0,1o].
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We shall now show that BZ(t) + y3(t) <
M? on S;. Supposing this statement to be
untrue, then there is an orbit in Sy which starts
at B2(0) + y2(0) > M? and along that orbit
B2(t) + y3(t) > 2M; > 2K > %(aJ + ) for
t € [0,%y]. Note that in Sy, V ¢ [a,J] cannot
occur. If the orbit segment is ever in D, it gets
out in time 4apJ. Thus, if the orbit does not
lie completely out of D for the time interval
[0,J], then it goes through a boundary point
of D at the time t; € [0,aJ + 4apJ]. Since
Bi(t,) = c[Bi(t) + y3(t)] and 0 < ¢ < 1/2,
we must have y2(¢;) > M,. Thus, by the above
argument, in the time interval [t;,¢; + J] along
the orbit, y2(¢) > K > 0. Since the orbit
cannot re-enter D without crossing y, = 0,
the orbit must lie outside of D for the time
interval [t;,¢; + J]. Since [t;,t + J} C [0, 0],
Bi(t) > ¢[B3(t) + y3(t)] = 2(a +n) for a time
interval J. Therefore:

v

1 oo 2
dat = §[Bz(t) + B3(t)] +V(@E)-J

+p(V(O,T(0) > 3B ~ T 27,

or ¥ > 1 for the time interval [t;,; + J] where
t2 =0or tl. Thus:

ta+J dv
/ —d?dtZJorV(t2+J)2J.
t

2

Such an orbit cannot lie in Sy. Hence B2(t) +
y2(t) < M? on Sp. With a similar argument for
B; and y3, we obtain B2(t) +y2(t) < M? on So.

Lemma 5

There is a constant Ty such that if u € Sy, then
T < Ty, where T is the sixth component of u.

Proof

By considering the sixth equation of System 1
the proof is similar to the proof of Lemma 3.6
in [3].

Now, suppose that the numbers J > 0, 6 >
0,C€R, e >0and (o,n,k,07",x) = 0 are
such that Theorems 4 and 5 hold. Let 0 < ¢ <
€,. For 0 < € < €, let S(€) be defined as the
set of all points which lie on bounded complete
orbits of System 1 correspondence to the above
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parameter values and So = |[|J S(€). Note
0<€E<Ep

that for the set S; we had x = 0, but for the
set Sy we have x > 0.

Theorem 6

Let S, be as above. Then thgre are positive
numbers a' and M’ such that Sy C {u € R® :
lu] < M',V >a',T >a'}.

Proof

Let a, M and T, be the same as in the above
lemmas. Define Np = {u € R® : |u| <
M+J+T, V > % T > %}. Then N,
is an isolating neighborhood for parameters
a,n,k,071,J,6,C,0 < € < € and x = 0. Since
X is a regular parameter, Ny can be widened
to a block valid for all flows parameterized
by x > 0 which contains all of the bounded
complete orbits of System 1 for 0 < € < €
and 0 < x £ xo for any given xo > 0. Thus,
such an a’ > 0 and M’ > 0 must exist.

THE SWITCH-ON AND THE
SWITCH-OFF SHOCKS

In this section we will study the existence of
the switch-on and the switch-off shock waves.
As we mentioned before, the switch-on and the
switch-off shocks occur when € = 0. Thus, for
these shocks, we should consider System 2, its
rest points %;, 0 < 7 < 3 and its other rest
points which are given in Theorem 2. Given
a,n,k,07! > 0 and x > 0, in this section
we shall prove the existence of some bounded
complete orbits of System 2 . Moreover, we will
see that for each (i,5) € {(m,n):0<m<n<
3} \{(1,2)}, there is a heteroclinic orbit which
is running from %; to %; lying in the subspace
{u € R®: By = y; = 0}. The technique we use
here is to obtain these bounded complete orbits
as limiting of the heteroclinic orbits for the fast
and slow shocks as € — 0. In|the first step we
have the following lemma.

Lemma 6

Let D C R™ be a bounded open set, €, > 0,
I =(0,€&) and f : DxI — R" be continuous.
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Moreover, assume that the following conditions
hold:

Cy: The function f is uniformly Lipschitz on
DxI.

C,: There is a uniformly Lipschitz vector field -
g on D such that lim f(u,€) = g(u)
uniformly on D.

Cs: For each €€ I, there is a heteroclinic orbit
of the system:

& = iwe), (19

say 7(u, €), which is running from the rest
point uo(€) to the rest point u,(€) lying
in D.

Cy: ém% u(€) =u;, 1 = 0,1 and ug # u,.

Cs: The system of equations: .

> =g, (15)

is gradient-like with respect to a function
P on a neighborhood of D with P(u,) <
P(u,). Moreover for each A € (0,1) the
hypersurface P(u) = AP(ug)+(1-A)P(u,)
contains no rest points of System 15. Then
there is a complete orbit of System 15 lying
in D, its w-limit set and a-limit set consist
of rest points. The first set contains u; and
the second set contains u,.

Proo,f

Choose a sequence of points €, € I such that
€,— 0. Denote the corresponding heteroclinic
orbit to €, by 7x(t). The set Q@ = {u € D:
P(u) = 3;P(uo) + 1P(u,)} intersects i(t),
for large values of k say at the point u, =
Ye(te) . Since Q is compact, {u}} must have a
convergent subsequence. We may assume that
u, — ug and ¢, = 0 for all k. Let a > 0 be
given. Then Condition C; implies that there is
a constant M such that for 0 <t < a:

() — Am ()] < 1F (ve(2), €k) = F(Am(t), €m)I
5 M"'Yk(t) - 7m(t)| + l €r ~— €Em I]a
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where . = £. On the other hand, for 0 <t < a
we can write:

17 (t) = Ym ()] < |7 (0) — Ym(0))]

+ / FOn(8), €x) = F(m(5), Em)lds
< (0) = 1m(0)] +aM| €4 — En |

M / e (8) = Yom(8)]ds -

Therefore, by Gronwall’s inequality we must
have:

I (8) — ym(t)| <
[17%(0) = Ym(0)] + aM| €k — € [Je*M.

Hence {v:(t)} and {7i(t)} are both uniformly
Cauchy on [0,a]. Let v(t) = klim (t). Then
4(t) exists and (t) = Jim Fx(t). Now for 0 <
t < a we can write:

17(t) — g(y(®)) < [7(t) — % (D)
+ 1 (ve(2), €x) — g(7 ()]
+ |g(v(®)) = g(v(E))I-

Thus if £ — oo, Condition C, yields |§(t) —
g(7(t))] < 0. Hence, 7(t) is a solution of
System 15 in the interval [0,a). Similarly
~4(t) is a solution of System 15 in the interval
(—a,0]. Since a is arbitrary, v(t) is a solution
of System 15 on R containing ug. Since ug is
a regular point of System 15, (t) is a noncon-
stant complete orbit of System 15. Since this
complete orbit is bounded, its o-limit set and
w-limit set both are nonempty and connected.
Then, from Condition Cs we see that a-limit
set and w-limit of v(t) consist of rest points of
System 15 and ug is in o-limit set and v, is in
w-limit set of this orbit.

Now consider System 2. According to
Theorem 2, for suitable values of J > 0, C €
R and 6§ > 0, this system admits infinitely
many rest points. Moreover, by Theorem 4, for
these values of J,C,8, and € > 0 and small,
System 1 admits the four rest points u(€).
By considering, this fact we have the following
theorem.
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Theorem 7

Suppose in System 2, a, 7,k and o~ are fixed
and positive. Suppose for fixed J > 0,6 > 0
and C € R this system admits infinitely many
rest points, given in Theorem 2. Then there
are two complete orbits of this system such that
their a-limit sets are %, and their w-limit sets
are contained in the set E = {# € R® : 7 =
(Bz,Ba,O, 0, 62, 7(62)), B,, B3 € R, B% +B§ =
B%}. The rest point %, is in one of these a-limit
sets and W, is in another one. Also there are
two other complete orbits of this system such
that %; is their w-limit set and their a-limit
sets are contained in the set E. Moreover @, is
in one of these a-limit sets and &, is in another
one. Besides, there is a complete orbit which is
running from %, to Us.

Proof

We will show that System 1 as System 14
together with System 2 as System 15, the set
{u € R P(u) < [(P(w) + P(w)), Ju| <
M,V > a/, T > da'} as D, the rest points
uo(€),u;(€), %o and T, as the rest points uo(€),
u, (€), up and u, satisfy Conditions C, — Cs of
Lemma 6.

Condition C; obviously holds. By Theo-
rem 4.1 in [1] Condition C; holds too. Condi-
tion C, is satisfied by Theorem 4. By Theorem
5, System 2 is gradient-like with respect to
P(u), which is given by Equations 11, moreover
P(%) < P(w@) and the hypersurface P(u) =
L[P(g,) + P(m,)] contains no rest points of
System 2. This means that Condition Cs holds
too.

In order to see that Condition C, holds,
we denote the vector fields of Systems 1 and 2
by Gy (u) and G2(u) respectively. Then:

IG1(u) = Ga(u)| S €1+ |Ba)) S € 1+ M),

where M’ is the same as above. Thus Condition
C, holds too. Therefore, by Lemma 6 there is
a complete orbit of System 2 which is running
from @y, and %, is in its w-limit set and this limit
set is contained in the set E which is defined in
the above. This orbit is lying in the set {u € R®:
luf < M’ and V > a', T > a'}.
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NOW, if u(t) = (BZ(t), B3(t)7 y2(t)a y3(t)v
V(t), T(t)) is a solution of System 2 then, from
symmetry, we see that (—B,(t), —Bs(t), —y.(t),
—y3(t), V(t), T(t)) must be another solution of
this system. Thus, by considering Equation 7,
there must be another orbit running from 7,
and %@, is in its w-limit set and this limit set
is contained in the set E. By using a similar
argument, we can show that there are two
different complete orbits, their w-limit set is
the rest point %z and their |a-limit sets are
contained in the set £. One of these a-limit
sets contains %; and another one contains ..

Finally consider the rest points 7, and u;.
Note that the subspace {u € R®: B, = B3 =
y2=y3 =0,V >0, T > 0} is invariant under
System 2, and in this subspace the system
becomes the gas dynamics equations. It is
known that there is a unique orbit running
from one rest point to another one for the gas
dynamics equations [2,9]. Thus, there is an
orbit running from %, to ;.

Remark

1If, in System 2, we replace B, B3, y; and y; by
B, 0,y and 0, respectively, we gbtain the system
(2.5) in [4]. Thus by Theorem 6.1 in [4] for
each (3,7) € {(n,m): 0 <n<m<3,nm=
0,1,2,3, (n,m) # (1,2)} there is a complete
orbit which is running from @, to %,;. Moreover
there is no connecting orbit between u; and ..
These orbits lie in the subspace {u € R®: B; =
ys = 0}.

Since each neighborhood of %, (%) contains
infinitely many other rest points of System 2
and the rest points %, and u; are nondegener-
ated, the switch-on and the switch-off shocks
do not admit structure. Since small change
on T, (%,) makes the related heteroclinic orbits
disappear, these shocks physically are called
nonevolutionary [12]. This
shocks, physically, cannot occur.
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