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Research Note

Traveling Wave Solutions of the Sine-Gordon
and the Coupled Sine-Gordon Equations

Using the Homotopy-Perturbation Method

A. Sadighi1, D.D. Ganji1;� and B. Ganjavi2

Abstract. In this research, the Homotopy-Perturbation Method (HPM) has been used for solving sine-
Gordon and coupled sine-Gordon equations, which have a wide range of applications in physics. HPM
deforms a di�cult problem into a simple one which can be easily solved. The results obtained by HPM are
then compared with those of the Adomian Decomposition Method (ADM). The method has been shown to
e�ectively, easily and accurately solve a large class of nonlinear problems with approximations converging
rapidly to accurate solutions.
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Traveling wave solution.

INTRODUCTION

Most of the problems and phenomena in di�erent
�elds of science occur nonlinearly, especially in uid
mechanics, solid state physics, plasma physics, plasma
waves, thermo-elasticity and chemical physics. Ex-
cept in a limited number of these problems, we en-
counter di�culties in �nding their exact analytical
solutions. Therefore, approximate analytical solu-
tions, such as Backlund transformation [1], Darboux
transformation [2], Hirota's bilinear method [3], the
tanh method [4,5], the sine-cosine method [5,6], the
homogeneous balance method [7,8], the exp-function
method [9-11] the Adomian decomposition method [12-
14], the variational iteration method [15-20] and
the homotopy-perturbation method [21-29], are in-
troduced, among which the homotopy perturbation
method [21-29] is the most e�ective and convenient for
both weakly and strongly nonlinear problems.

HPM was �rst proposed by He. The method
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does not depend on a small parameter in the equation.
Using the homotopy technique in topology, a homotopy
is constructed with an embedding parameter, p 2 [0; 1],
which is considered as a \small parameter". HPM
was successfully applied to di�erent branches of science
and engineering, such as: nonlinear oscillation equa-
tions [30,31], heat transfer equations [32-34], mechanics
of uids [35,36] and etc.

The main objective of this paper is to employ
HPM for solving sine-Gordon and coupled sine-Gordon
equations. The capability, e�ectiveness and conve-
nience of the method are revealed by obtaining the
analytical solutions of the models and comparing with
ADM.

FUNDAMENTALS OF THE HOMOTOPY
PERTURBATION METHOD

To illustrate the basic ideas of the method, we consider
the following equation [21]:

A(u)� f(r) = 0; r 2 
; (1)

subject to the boundary condition of:

B
�
u;
@u
@n

�
= 0; r 2 �; (2)
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whereA is a general di�erential operator, B a boundary
operator, f(r) a known analytical function and � the
boundary of the domain, 
.

A can be divided into two parts, which are L and
N , where L is linear and N is nonlinear. Equation 1
can, therefore, be rewritten as follows:

L(u) +N(u)� f(r) = 0; r 2 
: (3)

The Homotopy perturbation structure is shown as
follows:

H(�; p)=(1�p)[L(�)�L(u0)]+p[A(�)�f(r)]=0; (4)

where:

�(r; p) : 
� [0; 1]! R: (5)

In Equation 4, p 2 [0; 1] is an embedding parameter and
u0 is the �rst approximation that satis�es the boundary
condition. It can be assumed that the solution of
Equation 4 can be written as a power series in p, as
follows:

� = �0 + p�1 + p2�2 + � � � ; (6)

and the best approximation for the solution is:

u = lim
p!1

� = �0 + �1 + �2 + � � � : (7)

The above convergence is discussed in [21,22].

IMPLEMENTATION OF THE METHOD

In order to illustrate the advantages and accuracy
of HPM, we will consider the sine-Gordon nonlinear
hyperbolic equation and the coupled sine-Gordon equa-
tion.

Sine-Gordon Equation

We �rst study the sine-Gordon equation in the form
of [37]:

utt � uxx + sinu = 0; �1 < x <1; (8)

subject to the initial conditions:

u(x; 0) = 0; ut(x; 0) = 4 sech(x); (9)

which has a wide range of applications in physics,
not only in relativistic �eld theories but also in solid-
state physics, nonlinear optics, etc. It also appears
in a number of other physical applications, including
the propagation of uxons in Josephson junctions (a
junction between two superconductors), the motion of
a rigid pendulum attached to a stretched wire and
dislocations in crystals.

In order to solve Equation 8, using HPM, we
construct the following homotopy:

(1� p)�tt + p(�tt � �xx + sin �) = 0: (10)

Computing the Taylor series expansion of sinu about
the point zero and substituting into Equation 10,
Equation 10 transforms to:

(1�p)�tt+p(�tt� �xx+� � 1
3!
�3+

1
5!
�5� � � � )=0:

(11)

Substituting � from Equation 6 into Equation 11 and
rearranging, based on the powers of p-terms, we have:

p0 :
@2�0

@t2
= 0; (12)

p1 :
@2�1

@t2
� @2�0

@x2 + �0 � 1
6
�3

0 +
1

120
�5

0 = 0; (13)

p2 :
@2�2

@t2
� @2�1

@x2 + �1 � 1
2
�2

0�1 +
1
24
�4

0�1 = 0: (14)

Solving Equations 12 to 14, we obtain:

�0 =
4t

cosh(x)
; (15)

�1 = � 64t7

315 cosh5(x)
+

8t5

15 cosh3(x)
� 4t3

3 cosh3(x)
;
(16)

�2 =
512t13

36855 cosh9(x)
� 128t11

1925 cosh7(x)

+
4t9(�4290 cosh4(x) + 143000 cosh2(x))

2027025 cosh9(x)

� 4t7(51480 cosh6(x)� 205920 cosh4(x))
2027025 cosh9(x)

+
4t5(�270270 cosh6(x) + 405405 cosh4(x))

2027025 cosh9(x)
: (17)

The solution of the sine-Gordon equation (Example 1),
Equation 8, when p! 1, will be as follows:

� = �0 + �1 + �2; (18)

which is in good agreement with that obtained by
ADM [37]. The behavior of u(x; t) obtained by HPM,
with di�erent values of time, is shown in Figure 1.
Figure 2 shows that the smaller the t is, the more
accurate the numerical solution obtained by HPM
is. As t becomes closer to 1, more terms must be
considered for more accurate answers.
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Figure 1. The behavior of u(x; t) obtained by HPM for
example 1.

Coupled Sine-Gordon Equation

We next consider a system of a coupled sine-Gordon
equation (Example 2) in the form of:

utt � uxx = ��2 sin(u� w); (19)

wtt � c2wxx = sin(u� w); (20)

which models one-dimensional nonlinear wave pro-
cesses in two component media [38]. The coupled sine-
Gordon equation generalizes the Frenkel-Kontorova
dislocation model [39].

In order to solve the system of coupled sine-
Gordon equations (Equations 19 and 20), using HPM,
the following homotopy for these equations should be
constructed as follows:

(1� p)utt + p(utt � uxx + �2 sin(u� w)) = 0; (21)

(1� p)wtt + p(wtt � c2wxx � sin(u� w)) = 0: (22)

Computing the Taylor series expansion of sin(u�
w) about the point zero and substituting into Equa-
tions 21 and 22, these equations transform into:

(1� p)utt + p
�
utt � uxx + �2 (u� w

� 1
3!

(u� w)3 +
1
5!

(u� w)5
��

= 0; (23)

(1� p)wtt + p
�
wtt � c2wxx � (u� w)

+
1
3!

(u� w)3 � 1
5!

(u� w)5
�

= 0: (24)

Substituting u and w from Equation 6 into Equation 11
and rearranging, based on the powers of p-terms, we
have:

p0 :

8><>:
@2u0
@t2 = 0

@2�0
@t2 = 0

(25)

p1 :

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

@2u1
@t2 � @2u0

@x2 + �2(u0 � w0)
+ 1

2�
2(u2

0w0 � u0w2
0) + 1

6�
2(w3

0 � u3
0)

+ 1
12�

2(w2
0u3

0 � w3
0u2

0)
+ 1

24�
2(w4

0u0 � w0u4
0)

+ 1
120�

2(u5
0 � w5

0) = 0
@2w1
@t2 � c2 @2w0

@x2 + w0 � u0

+ 1
2 (u0w2

0 � u2
0w0) + 1

6 (u3
0 � w3

0)
+ 1

12 (w3
0u2

0 � w2
0u3

0) + 1
24 (w0u4

0 � w4
0u0)

+ 1
120 (w5

0 � u5
0) = 0

(26)

Figure 2. The comparison of the results obtained by HPM and ADM for example 1, at: (a) t = 0:6, and (b) t = 1.
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p2 :

8>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>:

@2u2
@t2 � @2u1

@x2

+�2(u1 � w1 + u0u1w0 � u0w0w1)
+ 1

2�
2(u2

0w1 � w2
0u1) + 1

2�
2(w2

0w1 � u2
0u1)

+ 1
4�

2(w2
0u2

0u1 � w2
0u2

0w1)
+ 1

6�
2(w0w1u3

0 � u0u1w3
0)

+ 1
6�

2(w3
0w1u0 � w0u3

0u1)
+ 1

24�
2(u4

0u1�w4
0w1+w4

0u1�u4
0w1)=0

@2w2
@t2 � c2 @2w1

@x2 + u0w0w1

�u0u1w0+1=2(u2
0u1�w2

0w1+w2
0u1�u2

0w1)
+ 1

4 (w2
0u2

0w1 � w2
0u2

0u1)
+ 1

6 (u0u1w3
0 � w0w1u3

0 + w0u3
0u1 � w3

0w1u0)
+ 1

24 (w4
0w1 � u4

0u1 + u4
0w1 � w4

0u1)
+w1 � u1 = 0

(27)

Solving Equations 25 to 27, we obtain:

u0 = A cos(kx); (28)

w0 = 0; (29)

u1 =
1
2
t2
��A�2 cos(kx)�Ak2 cos(kx)

� 1
120

A5�2 cos5(kx) +
1
6
A3�2 cos3(kx)

�
;

(30)

w1 =
1
2
t2
�
A cos(kx)� 1

6
A3 cos3(kx)+

1
120

A5 cos5(kx)
�
; (31)

u2 =
1
12
t4A cos(kx)

�1
2

(�2 + �4 + k4 + k2�2A2)

� 1
3

(�2 + �4)A2 cos2(kx)

+
1
15

(�2 + �4)A4 cos4(kx)

� 1
180

(�2 + �4)A6 cos6(kx)

+
1
8
k2�2A4 cos4(kx)

+
1

5760
(�2 + �4)A8 cos8(kx)

� 1
12
k2�2A4 cos2(kx)

+ k2�2(1�A2 cos2(kx))
�
; (32)

w2 = �t4A cos(kx)
�� 1

2160
(1 + �2)A6 cos6(kx)

+
1
24

(1 + k2 + �2 + c2k2(1 +A2))

� 1
36

(1 + �2)A2 cos2(kx)

+ (1 + �2)A8 cos8(kx)

� 1
48

(1 + 3c2)k2A2 cos2(kx)

+
� 1

576
(1 + 5c2)k2

+
1

180
(1 + �2)

�
A4 cos4(kx)

� 1
144

c2k2A4 cos2(kx)
�
: (33)

The solution of the coupled sine-Gordon equation
(Equations 19 and 20), when p! 1, will be as follows:

u = u0 + u1 + u2; (34)

w = w0 + w1 + w2; (35)

which are in excellent agreement with those obtained
by ADM [38]. The behavior of u(x; t) and w(x; t)
obtained by HPM, with di�erent values of time, are
shown in Figure 3. The accuracy and e�ciency of HPM
at some �xed values of time, compared with ADM, are
shown in Figures 4 and 5.

CONCLUSION

In this study, we have successfully developed HPM
for solving sine-Gordon and coupled sine-Gordon equa-
tions. It is apparently seen that HPM is a very powerful
and e�cient technique for �nding solutions for wide
classes of nonlinear problems in the form of analytical
expressions and presents a rapid convergence for the
solutions.

Many of the results attained in this paper con�rm
the idea that HPM is a powerful mathematical tool for
solving di�erent kinds of nonlinear problem arising in
various �elds of science and engineering. It is worth
pointing out that, in order to achieve more accurate
solutions for the sine-Gordon and the coupled sine-
Gordon, more components of Equation 6 must be taken
into account.

In conclusion, HPM provides highly accurate nu-
merical solutions for nonlinear problems, in comparison
with other methods. It also does not require a large
computer memory and discretization of variables t
and x. As mentioned, this method avoids linearization
and physically unrealistic assumptions.
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Figure 3. The behavior of: (a) u(x; t) and (b) w(x; t) obtained by HPM at A = 1, c = 1, k = 1 and � = 1 for example 2.

Figure 4. The comparison of the u(x; t) obtained by HPM and ADM at A = 1, c = 1, k = 1 and � = 1 for example 2, at:
(a) t = 0:6 and (b) t = 0:8.

Figure 5. The comparison of the w(x; t) obtained by HPM and ADM at A = 1, c = 1, k = 1 and � = 1 for example 2, at:
(a) t = 0:6 and (b) t = 0:8.
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