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Generalized Curvilinear Coordinate Interface
Tracking in the Computational Domain

A.H. Nikseresht1;�, M.M. Alishahi2 and H. Emdad2

Abstract. Volume Of Fluid (VOF) is one of the most powerful methods to resolve free surface 
ows.
In this study, a new algorithm is developed in a curvilinear coordinate system, which implements an
implicit pressure based method (SIMPLE) with a staggered grid and a Lagrangian propagation of the
interface, using the VOF method in the computational domain. Based on this algorithm, a computer code
is generated and two test cases of dam-breaking problems, both in curvilinear and Cartesian grid systems,
are examined and, then, two applications of this method, including 
ow through a curved gate under a
dam and the impact problem of a circular cylinder, are presented. The results show good agreement with
experimental and other computational results.
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INTRODUCTION

Incompressible viscous 
ow with a moving free surface
occurs in many instances, both in industry and in
nature, such as environmental engineering, die-casting,
injection molding processes, marine sciences and many
others. The available numerical methods for solving
such problems can be classi�ed into moving and �xed
grid approaches. The moving grid approach is typically
con�ned to special applications, due to limitations
in the rezoning technique [1-3]. In this regard, the
�xed grid approach seems to be a more viable method
whenever a general motion of free surface 
ow is
considered [4].

Among the existing �xed grid approaches, Harlow
and Welch [5] proposed the well-known marker and
cell method (MAC) that labels 
uid particles with
markers. Nakayama and Mori [6] improved the MAC
method to preclude the possibility of producing an
unphysical liquid front advancement. In the MAC
method, the region occupied by the 
uid is tracked
by the location of the markers in the course of the

uid motion. Such a method de�nes the 
uid region
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rather than the free surface and, thus, requires large
computer storage and additional computational time to
move all the 
uid markers to new locations, especially
when a three-dimensional problem is encountered [7].
Furthermore, a �nite volume far from the free surface
might be unrealistically over�lled or partially �lled
with markers, due to numerical errors. Hirt and
Nichols [8] introduced the Volume Of Fluid method
(VOF) for incompressible 
ow with a moving free
surface.

In the VOF method, the interface describes, im-
plicitly, the data structure that represents the interface,
which is the fraction, C, of each cell that is �lled with
a reference phase, say, phase 1. The scalar �eld, C, is
often referred to as the color function. The magnitude
of C in the cells cut by the free surface is between
0 and 1(0 < C < 1) and, away from it, is either
zero or one. The data, C, are given at the beginning
of a computational cycle but no approximation of
the interface position is known apriori. The method
is implicit, since one needs to \invert" data C to
�nd the approximate interface position. In other
words, an algorithm for interface reconstruction is
needed. Typically, one can reconstruct the interface by
the straightforward Simple Line Interface Calculation
(SLIC) method [9], Flux Corrected Transport method
(FCT) [10] or by various \Piecewise Linear Interface
Calculation" (PLIC) methods [11,12]. The second and
third methods give much better results than the �rst
method.
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It should be mentioned that, in earlier studies, the
VOF method was applied in the Cartesian coordinate.
Some recent works that implement the VOF method
in curvilinear coordinates are presented by Kothe et
al., [13] who work mainly in the physical domain. Their
methods have some di�culties and cannot be easily
used, along with operator split techniques.

In the present study, the �nite volume method
in the physical domain is used to solve the Navier-
Stokes equations. However, the free surface equation
is transferred to the computational domain and the
free surface is resolved in that plane. The two steps of
propagation and reconstruction are carried out in this
domain. In the present work, the PLIC for the interface
reconstruction method is used. The main advantages
of the proposed technique, i.e. the PLIC-VOF method
in the computational domain over the earlier method
of PLIC, in the physical domain, are as follows:

1. Operator splitting in the computational domain is
more easily carried out than in the physical domain.
In the computational domain, splitting can be done
in each coordinate direction, separately.

2. The method of interface tracking (PLIC-VOF) in
the computational domain needs less computer re-
sources, because just one 
ux computation on each
face is required compared to two-face computation
in the curvilinear physical domain.

3. The extension of the PLIC method to 3-D in the
computational domain is straightforward.

Incompressible Navier-Stokes equations are dis-
cretized using the �nite volume method, based on the
Patankar pressure correction algorithm (SIMPLE) [14].
Hence, the appropriate numerical algorithm to solve
the Navier Stokes equations, for a two-phase with a
high-density di�erence incompressible 
ow in the curvi-
linear coordinate, is introduced. The performance of
the proposed numerical procedure is examined through
the solution of two well-documented dam-breaking
examples in Cartesian and curvilinear coordinates and
comparison of the results with the experiment is also
presented.

GOVERNING EQUATIONS

A single set of governing equations, covering both
liquid and the surrounding air, for incompressible 
ows,
can be written in the following non-dimensionalized
form [12]:
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where L is an arbitrary characteristic length, Fr = U1p
gL

is the Froude no. and density �� and viscosity ��
are unity in the liquid region, which jump to another
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. This jump happens in a few

cells across the interface, as explained in the following.
At the interface, a kinematic, as well as a dynamic
condition, should be applied. Note that the dynamic
condition, i.e., continuity of pressure at the interface, is
automatically implemented via solving N-S equations
through the interface. The kinematic condition, which
states that the interface is convected with the 
uid, can
be expressed in terms of C, as follows:

@tC + u:rC = 0: (4)

�� and �� at any cells (denoted by ij) can be computed
using a simple volume average over the cell:

��ij = Cij��L + (1� Cij)��a; (5)

��ij = Cij��L + (1� Cij)��a: (6)

DISCRETIZATION OF EQUATIONS

The general transport equation for dependent variable
� is written as:

@(��)
@t

+r:(�u�)�r:(�r�) +B = 0; (7)

where u; � and � are the velocity, density and di�usion
coe�cient, respectively and B is a source term, which
generally depends on �. Regarding the di�usion term
in Equation 7, in general, the curvilinear coordinate
system will be decomposed into two parts. One
part is similar to the discretized di�usion term in
an orthogonal curvilinear system and the other part
contains mixed derivatives. Therefore, the numerical
schemes that are mainly prepared for 
ux calculations
in orthogonal coordinate systems, such as the QUICK
or the Power-law scheme [14], can be equally applied
in general curvilinear coordinates. The cross derivative
terms are discretized with an alternative approximation
that is introduced in [15].

Discretization of the Momentum Equations

A staggered grid arrangement is adopted, in which the
pressure computation at the geometric center of the
control volume and the tangential velocity components,
U�i , lie at the midpoints of the respective control
volume surfaces and have the following expression [15]:
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U�i =
Si:u

jSij cos�i
; (8)

where Si are the surface area vectors and �i are
the angles between the surface area vectors and the
tangential vectors, ei. The unit tangent vectors, ei, are
calculated at the centers of the control volume surfaces
and are locally parallel to the coordinate lines, �i. In
order to discretize the momentum equations, auxiliary
discretizations for the Cartesian velocity components
are considered [16]. The resulting equation can be
written as follows:

aPU �1P =aEU 0�1E +aWU 0�1W +aNU 0�1N +aSU 0�1S +b0U�1 ;
(9)

where:

U 0�1E = a11uE + a12vE ; (10)

U 0�1W = a11uW + a12vW ; (11)

U 0�1N = a11uN + a12vN ; (12)

U 0�1S = a11uS + a12vS ; (13)

b0U�1 = a11bu + a12bv; (14)
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In Equations 9 to 14, the primed velocities are recog-
nized as the velocity components parallel to U �1P at the
neighboring points. It is seen that the primed velocity
components, such as U 0�1E , are combinations of U �1
and U�2 and that a �eld solution, in terms of these
velocities, cannot be obtained. This di�culty can be
easily removed by introducing the \actual" neighbors
(e.g., U�1E ) in the discretization equation as follows:

aPU �1P = aEU �1E + aWU�1W + aNU �1N + aSU�1S + b0U�1

+ aE(U 0�1E � U �1E ) + aW (U 0�1W � U�2W )

+ aN (U 0�1N � U�1N ) + aS(U 0�1S � U �1S ): (15)

In Equation 15, terms such as aE(U 0�1E � U �1E ) and
similar terms in the source term, b0U�1 , represent
the e�ect of curvature. They are equivalent to the
discretized source terms, which would be resulted from
tensor analysis. The discretized form of the momentum
equations, with part of the pressure di�erence term
written explicitly, can be expressed as:

aPU �1P =
X

anbU �1nb +A�1(Pw � Pe) + bU�1 ; (16)

aPU �2P =
X

anbU �2nb +A�2(Ps � Pn) + bU�2 ; (17)

where nb denotes the neighbor, bU�1 and bU�2 include
all explicit terms and:
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INTERFACE TRACKING

In the PLIC, at each time step, given the volume
fraction of one of the two 
uids in each computational
cell and an estimate of the normal vector to the
interface, a planar surface is constructed within the
cell having the same normal. This planar surface also
divides the cell into two parts, each of which contains
the proper volume of one of the two 
uids. This
planar interface is then propagated by the 
ow, and the
resulting volume 
uxes of each 
uid into neighboring
cells are determined. The updated values of the volume
fraction are found throughout the domain and the
numerical simulation can proceed to the next time step.
The next three subsections describe the procedure
for estimating the normal vector, the construction of
the interface in each cell and the propagation of the
interface by the 
ow. It should be noted that all of
these three steps are carried out in the computational
domain, (�1; �2). For this purpose, at �rst, the volume
fraction equation:
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should be transformed to the computational domain as
follows:
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where Vol is a volume of each cell.
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Now, if U = (U�1 jS1j cos�1)
Vol and V = (U�2 jS2j cos�2)

Vol ,
then, Equation 20 has a similar form to its counterpart
in the Cartesian coordinate:
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Normal Estimation

Reconstruction is based on the idea that a normal
vector, ~m, together with the fractional volume, C,
determines a unique line interface cutting the cell. In
the �rst part of the reconstruction, a normal direction
to the interface is estimated using a �nite-di�erence
formula. The normal vector in the �1, �2 domain is
de�ned as:

~m = rC: (22)

At �rst, a cell corner value of the normal vector, ~m, is
computed at (i+ 1=2, j + 1=2) by:

m�1;i+1=2;j+1=2 =
1

2h
(Ci+1;j � Ci;j

+ Ci+1;j+1 � Ci;j+1); (23)

m�2;i+1=2;j+1=2 =
1

2h
(Ci;j+1 � Ci;j

+ Ci+1;j+1 � Ci+1;j); (24)

where h = ��1 = ��2 = 1. Then, the required
cell centered values are computed from the cell corner
values by averaging:

mij =
1
4

(mi+1=2;j�1=2 +mi�1=2;j�1=2

+mi+1=2;j+1=2 +mi�1=2;j+1=2): (25)

Connecting Fractional Volume and Interface
Position

In the second part of the reconstruction, an interface,
which divides the computational cell into two parts
containing the proper volume of each 
uid, must be
found. This is achieved by deriving an explicit expres-
sion, which relates the \cut" volume to parameter �,
which completely de�nes the interface. The problem
can be stated as follows.

Given a rectangular (or square) cell of sides c1
and c2 in the (�1, �2) plane, as depicted in Figure 1,
and a straight line (such as EH) with normal vector ~m,
one must �nd the area of the region (ABFGDA). To
obtain an expression for this area, let one suppose that
the components, m1 and m2, of the normal are both
positive. The most general equation for the straight
line in the (�1, �2) plane with normal ~m is:

m1�1 +m2�2 = �: (26)

This equation is similar to its Cartesian counterparts
if (x1, x2) is substituted for (�1, �2). Thus, the same
formulation for the area computation would be used in
terms of (�1, �2) [10,11].

Figure 1. The \cut area" refers to the region within the
rectangle ABCD, which also lies below straight line EH,
having normal m and parameter �.

Lagrangian Propagation of the Interface
Segments

Once the interface has been reconstructed, its motion,
by the underlying 
ow �eld, must be modeled by a
suitable advection algorithm. This can be achieved
by either an Eulerian or a Lagrangian scheme. The
Lagrangian approach to the propagation of the inter-
face can be best described by considering the way in
which the given interface, Equation 26, is convected by
the 
ow. For this purpose, rewrite Equation 26 with
superscript (n) attached to all the variables,

m(n)
1 �(n)

1 +m(n)
2 �(n)

2 = �(n); (27)

and think of this as the equation for the interface in
a given cell at the initial time, tn. The Lagrangian
advection of this interface, by the 
ow, as time proceeds
to tn+1 = tn + � , will modify it to a new form,
which must be calculated. Since, in practice, the
time stepping is performed separately in each spatial
direction through operator splitting, the advection of
the interface along any spatial coordinate, say �1, will
be described here.

To make the description simpler, let one suppose
that the left face of the cell is located at �1 = 0, and
the right face at �1 = h = c1. Also, denote the �1
components of the velocity on the faces by U0 and Uh,
as indicated in Formula 21. These are taken to be
constant over the entire face to which they are assigned.
The formulation in the general coordinate system will
be the same as those of Cartesian coordinates [10-12]
and only the x1 and x2 should be exchanged with �1
and �2. To illustrate the method, the procedure is
sketched in Figure 2. The shaded region represents
the volume lost by the original cell and gained by the
downwind cell, which can be calculated from parallel
piped AEFB. With this procedure, the volume fraction
�eld is updated at time tn+1. This Lagrangian method
is stable and satis�es the physical constraint on the
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Figure 2. A schematic illustration of the Lagrangian
propagation of the interface.

volume fraction, 0 � C � 1, when the CFL condition,
(max juj)�=h < 1=2, is satis�ed. The programming of
the Lagrangian method is considerably simpli�ed by
the fractional-step strategy, which can be easily applied
in the computational domain.

NUMERICAL PROCEDURE

The algorithm follows these steps:

a) Initialize the 
ow �eld variables and, then, the
numerical procedure in one time step is as follows.

b) Propagate the volume fraction for the new time
step, based on the velocity from the previous time
step and update phase averaged quantities by the
following sub steps:
1- Normal estimation;
2- Reconstructing the interface;
3- Propagating the interface;
4- Compute new values of C and other averaged

quantities.
c) Use a SIMPLE algorithm to solve the 
ow �eld

governing equations.
d) Repeat b-c.

RESULTS AND DISCUSSION

Dam-Breaking Flow

To examine the performance of the present numerical
procedure, the results of two cases of dam-breaking
problems are compared with the experimental and
other numerical results. To show the robustness and
versatility of the code, a random curvilinear grid, as
well as a Cartesian grid, is used in the computation
of the mentioned problems and results are compared
with each other and experiments. Water and air are
adopted as the media of the 
ow. The height and
width of the water column of the two cases are (2.25 in,
2.25 in) and (4.5 in, 2.25 in). Corresponding Reynolds
numbers, in terms of the height of the liquid region, are

43,129 and 121,986, respectively. In most free surface

ows, the grid near the free surface should be �ne,
but in applications such as dam-breaking, since the

ow sweeps through a great part of the domain at all
possible inclinations, it is better to use �ne grids in
the entire 
ow �eld. Thus, for simplicity, a uniform
Cartesian grid and a random curvilinear grid system
are used. For sure, a random general grid is not the
proper choice for any 
uid 
ow problem. However, it
provides a critical test case for the correctness and ro-
bustness of the curvilinear coordinate algorithm when
it produces the same results as those of a Cartesian
grid. In the case of a (2.25 in, 2.25 in) problem, three
grids, namely, 81 � 41, 101 � 51 and 201 � 101 grid
points, are employed on the dimensionless domain of
0 � x � 4 and 0 � y � 2, which means Cartesian grid
sizes of �x = �y = 0:05 and 0.04, respectively. The
random curvilinear grid sizes of 101 � 51 for the �rst
case and 101 � 41 for the second case are presented
in Figure 3. Also, the conditions applied on each
boundary are depicted in Figure 3.

Figure 4 shows the resulting water front, xf (�),
of the present study on various grids, for the case
of a square water column, H = W = 2:25, in
both grid systems. The results show no signi�cant
di�erence. The available experimental data [17] and
the existing numerical results, such as the standard

Figure 3. Curvilinear grids of two cases of dam-breaking

ows. (a) Case 1 with grids of (101�51) and (b) Case 2
with grids of (101�41).
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Figure 4. Comparison of waterfront xf (�) among the
present results with three grid systems and experimental
data at various grid points for the case of (2.5 in * 2.5 in).

MAC method [5] and the modi�ed MAC method [6]
are also plotted in Figure 5. As shown in Figure 5, the
MAC method overpredicts the experimental results,
but the present work shows much better agreement
with the experiment.

Considering that the Power-law scheme is of �rst
order accuracy, the discretization accuracy is also of
the �rst order. Therefore, the accuracy of the wave
front computation in the present study is of order �x.

Figures 6 and 7 show the isobar and velocity
vector of the �rst case, (2.5 in * 2.5 in), at various

Figure 5. Comparison of waterfront xf (�) from the
present results, experimental data and other existing
numerical results for the case of (2.5 in *2.5 in).

Figure 6. Isobars with increment of �p = 0:05 at various
times for the case of (2.5 in * 2.5 in).
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Figure 7. Velocity vectors at various times for the case of
(2.5 in * 2.5in).

time steps and compares the results of two systems of
grid. The shape and position of isobars, including the
waterfront, is almost the same in both grid systems.
However, there are small wiggles in the right most
regions of isobars, especially at later times. These
might be due to an anomaly of randomly generated
grids (Figure 3). It is obvious that the pressure is
essentially near zero in the air region and this can
be attributed to the negligible density of the air, as
compared to the water. It is interesting to note, from
velocity vectors in Figure 7, that the liquid motion
induces a vortex in a layer of air adjacent to the
free surface. This �nding is consistent with physical
reasoning.

In the second case of (4.25 in * 2.25 in), two
grids, namely 101 � 41 and 201 � 81 grid points, are
employed on the dimensionless domain of 0 � x � 10=3
and 0 � y � 4=3 in both Cartesian and curvilinear
systems. Figure 8 presents a comparison of the present
results of the Cartesian and curvilinear grids and shows
good agreement between the results of these two grid
systems. Figure 9 shows the comparison of a waterfront
from di�erent sources, including the results of the
present work, the previous VOF code of Hirt and
Nicholls [8] and the modi�ed MAC method. It is
obvious from Figure 9 that the Hirt and Nichols code [8]
overpredicts the experimental data. The MAC results
are more comparable with the experimental data in
Figure 9 than with those of Figure 5, however, the

Figure 8. Comparison of waterfront xf (�) among the
present results with two grid systems and experimental
data at various grid points for the case of (2.5 in * 2.5 in).

Figure 9. Comparison of waterfront xf (�) among the
present results and experimental data and other existing
numerical results for the case of (4.5 in * 2.5 in).
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consistency of the present results with experiments are
almost the same in both cases.

Flow Under Sluice Gate

To present another example, which may be of some
practical interest, consider a model of an arc gate
with a dimensionless radius of 0.69, with the center at
(1.67, 0.81), under a dam of the dimensionless height
of 1.4, as shown in Figure 10. This �gure shows the
dimensionless geometry, di�erent conditions on each
boundary and the grid system. This example obviously
shows the bene�ts of using curvilinear grids and the
simpli�cations provided by the computational domain
approach. Figure 11 presents the pressure distribution
of the 
ow at various times. It can be seen that the free
surface contracts around the exit, i.e. vena contracta,
and at later times (� = 1:5, � = 2:0), it re-expands as
physically expected. In Figure 12, the velocity vectors
of 
ow at various times are shown and it is obvious that,
after the 
ow discharges with high velocity from the
gate at some distance downstream, the 
uid velocity
decreases and, thus, the elevation of the water front
increases accordingly. It is interesting that the wiggles

Figure 10. Mesh system and dimensionless geometry of
gate.

Figure 11. Isobars with increment of �p = 0:05 at
various times for 
ow out of opening gate.
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Figure 12. velocity vectors at various times for 
ow out
of opening gate.

in Figures 6 and 7 are absent in this case, indicating
that these errors originate from the randomly generated
grids in Figure 3.

Water Impact of Circular Cylinder

Another applicable example is the water impact of cir-
cular cylinders, which has been studied extensively to
clarify wave impact on members of o�shore structures
in a splash zone. The circular cylinder used in this
calculation has a radius of 5.5 m. It is dropped with
a constant velocity of 10 m/s. A grid system, with
elements of (180 � 250) and the schemes of Power-
Law and QUICK, were also used. In the present
computational scheme, in order to avoid unsteady
calculation and grid regeneration, a circular cylinder,
as a rigid body, is �xed to the grid system and, instead
of moving the body downward, the free surface is forced
to move upward. These conditions can be realized
by imposing a continuous in
ow of the 
uid from
the lower boundary of the physical domain and the
moving side walls. The pressure on the upper boundary
is also �xed. The numerical results of this study,
together with the published experimental, analytical
and other numerical results, are shown in Figure 13.
In this �gure, the non-dimensional impact force, (f),
namely the slamming coe�cient, (CS = f

1=2�V 2D ), is
plotted as a function of the non-dimensional immersion
height. As shown in this �gure, the theoretical model of
Von-Karman indicates an initial slamming coe�cient,
CSo = � [18], whereas that of Wagner and Fabula
gives CSo = 2� [19,20]. The experimental coe�cient,
CSo, exhibits a considerable degree of scatter, ranging
from 3.5 to 6.5 [21]. Based on experimental data,
Campbell [21] proposed an empirical formula for the

Figure 13. Slamming coe�cients of circular cylinder
(r = 5:5 m, V = 10 m/s) versus immersion height.
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slamming coe�cient, as shown in this �gure. The
results of a �nite di�erence computation of Arai [22],
also included in Figure 13, is based on inviscid 
ow.
The present work results, of both Power-Law and
QUICK schemes, are shown and the agreement with ex-
perimental data is good, especially for QUICK schemes
at h/r> 0:15.

With regard to the above examples, it can be
expressed that the new method of PLIC-VOF interface
tracking in the computational domain is robust and
accurate enough to handle critical test cases, such
as random grids, and produce acceptable results for
applied and non-rectangular geometries.

CONCLUSION

A single set of dimensionless equations is derived to
handle both liquid and air phases in viscous incom-
pressible free surface 
ows. The momentum equations
are solved using the SIMPLE method in a staggered
grid. The Lagrangian approach in the computational
domain is also applied in the context of a VOF method,
to resolve the free surface e�ects. It is indicated
that, with this new implementation of the PLIC-VOF
method in the computational domain, it is an easy
task to split the propagation algorithm, because the
same algorithm as in the Cartesian grid is applied
in the computational grid approach. The results of
two cases of dam-breaking problems are presented,
which show good agreement with experimental data
and other numerical methods. The results for a
random curvilinear grid and a Cartesian grid show
the same agreement with experimental results. The
application of a 
ow of water under a curved gate
and a water impact problem, using curvilinear co-
ordinates, are also presented. It can be concluded
that the present method and the code are robust,
produce results of good quality and, also, can be easily
implemented.
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