

## Vibration Analysis of Moderately Thick Rectangular Plates with Internal Line Support Using the Rayleigh-Ritz Approach

Sh. Hosseini-Hashemi<sup>1</sup>, K. Khorshidi<sup>1,\*</sup> and H. Payandeh<sup>1</sup>

**Abstract.** In this study, the free vibration of moderately thick rectangular plates with several internal line supports was analyzed; the plates having twenty one possible boundary conditions (a combination of clamped, simply supported and free classical boundary conditions). The dimensionless equations of the strain (potential) and kinetic energy were derived, based on the Mindlin plate theory, to study the transverse vibration of moderately thick rectangular plates (in terms of the resultant stress, with consideration of transverse shear deformation and rotatory inertia). The Rayleigh-Ritz method, assuming two dimensional polynomial functions as admissible displacement functions, was applied. Numerical results were presented for a wide range of aspect ratios and thickness to length ratios. The influence of line support location and thickness to length ratio on the frequency parameters was shown graphically.

Keywords: Free vibration; Line support; Rectangular Mindlin plate; Rayleigh-Ritz.

## INTRODUCTION

Moderately thick plates are extensively used in modern structures. Analysis of these plates is of great importance for design engineers. The solution of the flexural vibration depends on the boundary conditions of the plate. Rectangular plates are commonly used as structural components in many branches of modern technology, namely, mechanical, aerospace, electronic, marine, optical, nuclear and structural engineering. Thus, the study of their free vibration behavior is very important to the structural designers. In recent years, many researchers have worked on the vibration of plates.

The published work concerning the vibration of such plates is abundant; however, the vast majority is based on the thin plate theory. An excellent reference source may be found in the well-known work of Leissa [1] and his subsequent articles [2-7] published in the Vibration Digest from time to time. His remarkable work on the free vibration of thin rectangular plates [8] also presents comprehensive and accurate analytical results for twenty one distinct cases, which involve all possible combinations of classical boundary conditions.

The thin plate theory neglects the effect of shear deformation and rotatory inertia, which result in the over-estimation of vibration frequencies. This error increases with increasing plate thickness. Improving on the thin plate theory, Mindlin and coworkers [9,10] proposed the so-called first order shear deformation theory for moderately thick plates and incorporated the effect of rotatory inertia. The first order shear deformation plate theory of Mindlin, however, requires a shear correction factor to compensate for the error resulting from the approximation made on the nonuniform shear strain distribution.

Over the years, solutions for eigenvalue problems of thick plates have been represented, using several different approximate methods. Dawe and Roufaeil [11] treated the free vibration of Mindlin rectangular plates using the Rayliegh-Ritz method. They used the Timoshenko beam functions as the admissible functions of the plate. Liew et al. [12,13] investigated the free vibration of Mindlin rectangular plates, respectively, by us-

Impact Laboratory, Department of Mechanical Engineering, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran.

<sup>\*.</sup> Corresponding author. E-mail:  $k\_khorshidi@iust.ac.ir$ 

Received 12 April 2006; received in revised form 29 September 2007; accepted 11 December 2007

ing two dimensional polynomials and one-dimensional Gram-Schmidt polynomials as the admissible functions of the plate in the Rayliegh-Ritz method. Cheung and Zhou [14] developed a set of static Timoshenko beam functions as the admissible functions to study the vibration of moderately thick rectangular plates by the Rayliegh-Ritz method. The finite element, finite strip, finite layer, collocation and superposition methods have also been used, respectively, by Al Janabi et al. [15], Dawe [16], Cheung and Chakrabarti [17], Mikami and Yoshimura [18] and Gorman [19], to study the eigenvalue problems of thick plates. Moreover, some investigations on the three-dimensional vibrations of rectangular plates have been reported by Srinvas et al. [20], Wittrick [21], Liew et al. [22-24] and Liew and Teo [25]. Zhou and Cheung [26] presented the free vibration of line supported thin rectangular plates using a set of static beam functions. In their work, the eigenfrequency equation for the plate is derived by minimizing the functional energy, by applying the Rayleigh-Ritz method. Xiang e al. obtained an exact solution for the vibration of multi-span moderately thick rectangular plates. They employed the Levy type solution method and the state-space technique to develop an analytical and exact approach for the free vibration of thin plates [27] and moderately thick plates [28]. In their work, the plates, having two opposite edges, have simply supported boundary conditions, namely SSSS, SCSS, SCSC, SSSF, SFSF and SCSF.

The study of the vibration behavior of multi span rectangular plates, having classical boundary conditions, can be found in [26] for thin plates and in [28] for six cases of moderately thick plates. No data concerning the vibration behavior of multi-span moderately thick rectangular plates for the rest of the fifteen boundary conditions are available in the literature. To fill this apparent void, the present work was carried out to provide the vibration analysis for all twenty-one possible classical boundary conditions. In the present work, a new set of two dimensional complete polynomial functions were developed for the vibration behavior of multi-span moderately thick rectangular plates, considering Mindlin's plate theory. The internal line support is set in one or two directions. The nondimensional equations of strain and kinetic energy were derived and the frequency parameters and mode shapes were obtained by applying the Rayleigh-Ritz method. Finally, some numerical results were given for moderately thick rectangular plates with a number of internal line supports in one or two directions. The influence of line support location and thickness to length ratio on the frequency parameters was studied graphically. Numerical results were compared with known values in the literature for thin plates [26] and a Levy type solution [28].

## ASSUMPTIONS OF MINDLIN PLATE THEORY

Consider a flat, isotropic, rectangular Mindlin plate of uniform thickness, h, length, a, width, b, modulus of elasticity, E, Poisson's ratio,  $\nu$ , shear modulus,  $G = E/2(1 + \nu)$ , and density per unit volume,  $\rho$ , oriented so that its mid-plane surface contains the  $x_1$  and  $x_2$ axis of a Cartesian Co-ordinate system,  $(x_1, x_2, x_3)$ , as shown in Figure 1.

The displacements along the  $x_1$  and  $x_2$  axes are denoted by  $W_1$  and  $W_2$ , respectively, while the displacement in the direction perpendicular to the undeformed mid-plane surface is denoted by  $W_3$ . In the Mindlin plate theory, the displacement components are assumed to be given by:

$$W_1 = -x_3 \psi_1(x_1, x_2, t), \tag{1}$$

$$W_2 = -x_3\psi_2(x_1, x_2, t), \tag{2}$$

$$W_3 = \psi_3(x_1, x_2, t), \tag{3}$$

where t is the time,  $\psi_3$  is the transverse displacement,  $\psi_1$  and  $\psi_2$  are the slope, due to bending alone in the respective planes.

Using the displacement field given in Equations 1 to 3, the components of the strains may be expressed as:

$$\varepsilon_{11} = \frac{\partial W_1}{\partial x_1} = -x_3 \psi_{1,1},\tag{4}$$

$$\varepsilon_{22} = \frac{\partial W_2}{\partial x_2} = -x_3 \psi_{2,2},\tag{5}$$

$$\varepsilon_{33} = \frac{\partial W_3}{\partial x_3} = 0,\tag{6}$$

$$\varepsilon_{12} = \frac{1}{2} \left( \frac{\partial W_1}{\partial x_2} + \frac{\partial W_2}{\partial x_1} \right) = -\frac{1}{2} (\psi_{1,2} + \psi_{2,1}) x_3, \quad (7)$$



Figure 1. A Mindlin plate with co-ordinate convention.

Sh. Hosseini-Hashemi, K. Khorshidi and H. Payandeh

$$\varepsilon_{13} = \frac{1}{2} \left( \frac{\partial W_1}{\partial x_3} + \frac{\partial W_3}{\partial x_1} \right) = -\frac{1}{2} (\psi_1 - \psi_{3,1}), \tag{8}$$

$$\varepsilon_{23} = \frac{1}{2} \left( \frac{\partial W_3}{\partial x_2} + \frac{\partial W_2}{\partial x_3} \right) = \frac{1}{2} (\psi_2 - \psi_{3,2}). \tag{9}$$

Using Hook's law, the components of the stress may be expressed as:

$$\sigma_{11} = \frac{E}{1 - \nu^2} (\varepsilon_{11} + \nu \varepsilon_{22}), \qquad (10)$$

$$\sigma_{22} = \frac{E}{1 - \nu^2} (\varepsilon_{22} + \nu \varepsilon_{11}), \qquad (11)$$

$$\sigma_{12} = 2G\varepsilon_{12},\tag{12}$$

$$\sigma_{13} = 2G\varepsilon_{13},\tag{13}$$

$$\sigma_{23} = 2G\varepsilon_{23}.\tag{14}$$

# FORMULATION OF RAYLEIGH-RITZ APPROACH

From the vibration theory of moderately thick plates, the strain and kinetic energies of an elastic isotropic plate in the Cartesian coordinate are as follows:

$$T = \frac{1}{2} \rho \int_{V} \left( \left( \frac{\partial W_1}{\partial t} \right)^2 + \left( \frac{\partial W_2}{\partial t} \right)^2 + \left( \frac{\partial W_3}{\partial t} \right)^2 \right) dV,$$
(15)  
$$U = \frac{1}{2} \int_{V} (\sigma_{11}\varepsilon_{11} + \sigma_{22}\varepsilon_{22} + \sigma_{33}\varepsilon_{33} + 2\sigma_{12}\varepsilon_{12} + 2\sigma_{13}\varepsilon_{13} + 2\sigma_{23}\varepsilon_{23}) dV,$$
(16)

where V is the volume of the plate, T is the kinetic energy and U is the strain energy. For generality and convenience, the coordinates are normalized, with respect to the plate planar dimensions, and the following nondimensional terms are introduced:

$$X_1 = \frac{x_1}{a}, \qquad X_2 = \frac{x_2}{b}, \qquad \delta = \frac{h}{a}, \qquad \eta = \frac{a}{b},$$
$$\beta = \omega a^2 \sqrt{\frac{\rho h}{D}}, \qquad (17)$$

where  $\beta$  is the frequency parameter,  $\omega$  is the natural frequency,  $D = Eh^3/12(1-\nu^2)$  is the flexural rigidity,  $\delta$  is the thickness to length ratio and  $\eta$  is the aspect ratio. By assumption of the free harmonic vibration and using nondimensional parameters, the maximum strain and kinetic energy of the rectangular plate is

given by:

$$T_{\max} = \frac{\eta}{2D} \beta^2 \int_{-0.5}^{0.5} \int_{-0.5}^{0.5} \left\{ \frac{\delta^2}{12} (\tilde{\psi}_1^2 + \tilde{\psi}_2^2) + \tilde{\psi}_3^2 \right\} dX_1 dX_2, \tag{18}$$
$$U_{\max} = \frac{\eta}{2D} \int_{-0.5}^{0.5} \int_{-0.5}^{0.5} \left\{ \tilde{\psi}_{1,1}^2 + \tilde{\psi}_{2,2}^2 \eta^2 + 2D\eta \tilde{\psi}_{1,1} \tilde{\psi}_{2,2} + \frac{1-D}{2} (\eta \tilde{\psi}_{1,2} + \tilde{\psi}_{2,1})^2 + \frac{6(1-\nu)\kappa^2}{\delta^2} \left[ (\tilde{\psi}_1 - \tilde{\psi}_{3,1})^2 + (\tilde{\psi}_2 - \eta \tilde{\psi}_{3,2})^2 \right] \right\} dX_1 dX_2, \tag{19}$$

where  $\kappa$  is the shear correction factor to account for the fact that the transverse shear strains are not truly independent of the thickness coordinate. Also,  $\tilde{\psi}_1$ ,  $\tilde{\psi}_2$ and  $\tilde{\psi}_3$  are dimensionless parameters, chosen as below:

$$\tilde{\psi}_1(X_1, X_2) = \psi_1(x_1, x_2, t)e^{-i\omega t},$$
  
$$\tilde{\psi}_2(X_1, X_2) = \psi_2(x_1, x_2, t)e^{-i\omega t},$$
(20)

$$\tilde{\psi}_3(X_1, X_2) = \psi_3(x_1, x_2, t) \frac{e^{-i\omega t}}{a},$$
(21)

where  $1 = \sqrt{-1}$ . In view of nondimensional terms, the energy functional for the Mindlin plate is given by:

$$L = U_{\max} - T_{\max} = \frac{\eta}{2D} \int_{-0.5}^{0.5} \int_{-0.5}^{0.5} \left\{ \tilde{\psi}_{1,1}^2 + \tilde{\psi}_{2,2}^2 \eta^2 + 2D\eta \tilde{\psi}_{1,1} \tilde{\psi}_{2,2} + \frac{1-D}{2} (\eta \tilde{\psi}_{1,2} + \tilde{\psi}_{2,1})^2 + \frac{6(1-\nu)\kappa^2}{\delta^2} \left[ (\tilde{\psi}_1 - \tilde{\psi}_{3,1})^2 + (\tilde{\psi}_2 - \eta \tilde{\psi}_{3,2}^2)^2 \right] -\beta^2 \left\{ \frac{\delta^2}{12} (\tilde{\psi}_1^2 + \tilde{\psi}_2^2) + \tilde{\psi}_3^2 \right\} dX_1 dX_2.$$
(22)

After choosing a set of appropriate admissible functions for  $\tilde{\psi}_1$ ,  $\tilde{\psi}_2$  and  $\tilde{\psi}_3$ , the eigenvalue equation can be derived by applying the Rayleigh-Ritz method to minimizing Equation 22, with respect to the unknown coefficients in these admissible functions. For Mindlin plates, the transverse deflection and bending slopes may be parameterized by two dimensional complete polynomial functions:

$$\tilde{\psi}_1(X_1, X_2) = \sum_{i=0}^{N_1} \sum_{j=0}^i a_n X_1^j X_2^{i-j} G_1(X_1, X_2), \quad (23)$$

Vibration Analysis of Moderately Thick Rectangular Plates

$$\tilde{\psi}_2(X_1, X_2) = \sum_{i=0}^{N_2} \sum_{j=0}^i b_n X_1^j X_2^{i-j} G_2(X_1, X_2), \qquad (24)$$

$$\tilde{\psi}_3(X_1, X_2) = \sum_{i=0}^{N_3} \sum_{j=0}^i c_n X_1^j X_2^{i-j} G_3(X_1, X_2), \quad (25)$$

where n = (i + 1)(i + 2)/2 - j and  $N_i(i = 1, 2, 3)$  is the order of the two dimensional polynomial.  $a_n, b_n$ and  $c_n$  are unknown coefficients and  $G_1$ ,  $G_2$  and  $G_3$ are fundamental functions, which satisfy the geometric boundary conditions of rectangular Mindlin plates. The fundamental functions are written as follows:

$$G_i(X_1, X_2) = (X_1 + 0.5)^{0_{\text{OR}}1} (X_1 - 0.5)^{0_{\text{OR}}1} (X_2 + 0.5)^{0_{\text{OR}}1} (X_2 - 0.5)^{0_{\text{OR}}1},$$
  
$$i = 1, 2, 3.$$
(26)

.0 1.

The geometric boundary conditions of the Mindlin plates can be expressed as:

For simply supported edges:

$$\tilde{\psi}_1 = 1, \quad \tilde{\psi}_2 = 0, \quad \tilde{\psi}_3 = 0$$
 In  $X_1$  – direction,  
 $\tilde{\psi}_1 = 0, \quad \tilde{\psi}_2 = 1, \quad \tilde{\psi}_3 = 0$  In  $X_2$  – direction.  
(27)

For clamped edges:

$$\tilde{\psi}_2 = 0, \quad \tilde{\psi}_2 = 0, \quad \tilde{\psi}_3 = 0 \quad \text{In } X_1 - \text{direction},$$
  
 $\tilde{\psi}_2 = 0, \quad \tilde{\psi}_2 = 0, \quad \tilde{\psi}_3 = 0 \quad \text{In } X_2 - \text{direction}.$ 
(28)

For free edges:

-- \ /--

$$\tilde{\psi}_1 = 1, \quad \tilde{\psi}_2 = 1, \quad \tilde{\psi}_3 = 1 \quad \text{In } X_1 - \text{direction},$$

$$\tilde{\psi}_1 = 1, \quad \tilde{\psi}_2 = 1, \quad \tilde{\psi}_3 = 1 \quad \text{In } X_2 - \text{direction}.$$
(29)

For example, the fundamental functions for a SCFC Mindlin rectangular plate without internal line support (as shown in Figure 2, case 14), can be written as:

$$G_{1}(X_{1}, X_{2}) = (X_{1} + 0.5)^{0} (X_{1} - 0.5)^{0} (X_{2} + 0.5)^{1}$$

$$(X_{2} - 0.5)^{1},$$

$$G_{2}(X_{1}, X_{2}) = (X_{1} + 0.5)^{1} (X_{1} - 0.5)^{0} (X_{2} + 0.5)^{0}$$

$$(X_{2} - 0.5)^{1},$$

$$G_{3}(X_{1}, X_{2}) = (X_{1} + 0.5)^{1} (X_{1} - 0.5)^{0} (X_{2} + 0.5)^{1}$$

$$(X_{2} - 0.5)^{1}.$$
(30)



Figure 2. Boundary conditions of Mindlin plate analyzed.

- - 1

After minimizing Equation 22, the governing eigenvalue equation can be derived as:

$$([K] - \beta^{2}[M]) \begin{cases} \{a_{n}\} \\ \{b_{n}\} \\ \{c_{n}\} \end{cases} = 0,$$
(31)

where [K] is the stiffness matrix and [M] is the mass matrix. Because not all elements of  $[\{a_n\} \ \{b_n\} \ \{c_n\}]^T$  are equal to zero, from Equation 31, one has:

$$\det([K] - \beta^2[M]) = 0.$$
(32)

The frequency parameter,  $\beta$ , is obtained by solving the generalized eigenvalue problem defined by Equation 32. The unknown coefficients vector in Equation 31 is the Null space of the  $([K] - \beta^2[M])$  matrix for any mode sequence.

### APPLYING THE RAYLEIGH-RITZ APPROACH FOR VIBRATIONS OF MULTI-SPAN MINDLIN RECTANGULAR PLATES

It is considered that the plate, as shown in Figure 3, consists of four spans that were divided at the locations of an internal line support in the  $X_1$ -direction and an internal line support in the  $X_2$ -direction. For analysis, this plate was separated into four plates. The boundary conditions of each span contain classical boundary conditions along the edges and special boundary conditions along the internal line supports.

Along the interface between the spans, for example span (I) and span (II), the following essential and natural boundary conditions must hold to ensure the continuity of the plate and satisfaction of the internal line support conditions:

Along the line support:



**Figure 3.** A Mindlin plate with four span in two directions.

$$\tilde{\psi}_3|^I = 0, \tag{33}$$

$$\tilde{\psi}_3|^{II} = 0, \tag{34}$$

$$\tilde{\psi}_{3,3}|^{I} = \tilde{\psi}_{3,1}|^{II}, \tag{35}$$

$$\tilde{\psi}_2|^I = \tilde{\psi}_2|^{II}, \tag{36}$$

$$\tilde{\psi}_1|^I = \tilde{\psi}_1|^{II},\tag{37}$$

$$M_{11}|^{I} = M_{11}|^{II}. (38)$$

For free vibration analysis of the plate, the domain of integration was separated. For example, for the four-span plate, as shown in Figure 3, the domain of integration is given by:

$$\int_{-0.5}^{0.5} \int_{-0.5}^{0.5} ()dX_1 dX_2 = \int_{-0.5}^{-0.5+a'} \int_{-0.5}^{-0.5+b'} ()dX_1 dX_2$$

$$+ \int_{-0.5+a'}^{-0.5+a'} \int_{-0.5+b'}^{0.5} ()dX_1 dX_2$$

$$+ \int_{-0.5+a'}^{0.5} \int_{-0.5}^{-0.5+b'} ()dX_1 dX_2$$

$$+ \int_{-0.5+a'}^{0.5} \int_{-0.5+b'}^{0.5} ()dX_1 dX_2.$$
(39)

All the results presented hereafter are for a rectangular Mindlin plate, having Poisson ratio  $\nu = 0.3$ , the shear correction factor is  $\kappa = \sqrt{5/6}$  and  $N_1 = N_2 = N_3 = N$ .

#### **Convergence Studies**

After having developed a method of analysis in the preceding section, a primal question is: "How many terms of a two dimensional complete polynomial (Equations 23-25) were required to obtain reasonably convergent results?" This question was answered through several numerical studies, as shown in Tables 1 to 6, for some different boundary conditions.

Tables 1 to 6 illustrate the accuracy, convergency and usefulness of the approach described above. From the results presented in these tables, it is observed that, for the first ten frequency parameters of rectangular Mindlin plates with two equal spans in an  $X_1$ -direction, the size of terms of the two dimensiondal polynomial is N = 11. Vibration Analysis of Moderately Thick Rectangular Plates

| ) for SFSF bou   | ndary conc | intion (case | e b) and ge | ometry pa | rameters ( | $o = 0.05, \tau$ | j = z). |
|------------------|------------|--------------|-------------|-----------|------------|------------------|---------|
| Mode<br>Sequence | N=4        | N=5          | N=6         | N=7       | N=8        | N=9              | N = 10  |
| 1                | 1.1566     | 1.1566       | 1.1555      | 1.1555    | 1.1540     | 1.1529           | 1.1529  |
| 2                | 1.4000     | 1.2617       | 1.2617      | 1.2544    | 1.2544     | 1.2463           | 1.2463  |
| 3                | 3.0187     | 3.0187       | 2.6646      | 2.6646    | 2.6587     | 2.6528           | 2.6528  |
| 4                | 4.5556     | 3.8591       | 3.8591      | 3.2165    | 6.3265     | 3.1562           | 3.1562  |
| 5                | 4.7648     | 3.9095       | 3.9095      | 3.8859    | 3.8859     | 3.8838           | 3.8838  |
| 6                | 6.5902     | 4.5556       | 3.9774      | 3.9774    | 3.9424     | 3.9424           | 3.9324  |
| 7                | 10.6650    | 6.4946       | 6.4946      | 5.4951    | 5.4951     | 5.4106           | 5.4106  |
| 8                | 11.2676    | 9.5555       | 6.6596      | 6.6596    | 5.6880     | 5.6880           | 5.6629  |
| 9                | 11.4672    | 10.6650      | 7.2034      | 7.2034    | 5.9790     | 5.8337           | 5.8337  |
| 10               | 12.5240    | 11.2676      | 8.0827      | 8.0827    | 7.9561     | 6.8379           | 6.8378  |

**Table 1.** Convergence studies of frequency parameters  $\lambda = \beta/(\eta^2 \pi^2)$  of rectangular Mindlin plate with two equal spans (a' = 0.5, b' = 0) for SFSF boundary condition (case 5) and geometry parameters ( $\delta = 0.05, \eta = 2$ ).

**Table 2.** Convergence studies of frequency parameters  $\lambda = \beta/(\eta^2 \pi^2)$  of rectangular Mindlin plate with two equal spans (a' = 0.5, b' = 0) for SSSF boundary condition (case 4) and geometry parameters ( $\delta = 0.05, \eta = 2$ ).

| Mode<br>Sequence | N=4     | N=5     | N=6     | N=7    | N = 8  | N=9    | N = 10 |
|------------------|---------|---------|---------|--------|--------|--------|--------|
| 1                | 1.2340  | 1.2073  | 1.2036  | 1.2001 | 1.2000 | 1.1973 | 1.1957 |
| 2                | 2.3552  | 2.1925  | 2.1311  | 2.1111 | 2.0958 | 2.0900 | 2.0874 |
| 3                | 4.0878  | 3.1334  | 3.1194  | 2.9638 | 2.9579 | 2.9258 | 2.9247 |
| 4                | 4.4619  | 3.9732  | 3.9275  | 3.9122 | 3.9091 | 3.9076 | 3.9045 |
| 5                | 5.8913  | 5.5889  | 4.9408  | 4.7911 | 4.7653 | 4.7281 | 4.7212 |
| 6                | 9.6110  | 7.0022  | 5.7109  | 5.2212 | 5.0311 | 4.9620 | 4.9333 |
| 7                | 10.7125 | 7.6849  | 6.4289  | 5.8538 | 5.6695 | 5.6237 | 5.5888 |
| 8                | 10.9521 | 9.4502  | 8.1371  | 7.4678 | 6.9624 | 6.3506 | 6.3269 |
| 9                | 16.7501 | 11.5272 | 10.2920 | 8.0522 | 7.8457 | 7.5745 | 7.4613 |
| 10               | 18.5986 | 13.0911 | 10.5893 | 8.8053 | 7.9776 | 7.9707 | 7.9668 |

**Table 3.** Convergence studies of frequency parameters  $\lambda = \beta/(\eta^2 \pi^2)$  of rectangular Mindlin plate with two equal spans (a' = 0.5, b' = 0) for SCSS boundary condition (case 2) and geometry parameters ( $\delta = 0.05, \eta = 2$ ).

| Mode     | N = 4         | N = 5   | N = 6   | N = 7          | N = 8  | N = 9  | N = 10  |
|----------|---------------|---------|---------|----------------|--------|--------|---------|
| Sequence | <b>1• = ±</b> | 10 = 0  | 10 = 0  | 1 <b>•</b> = 1 | 1 = 0  | 11 = 5 | 11 = 10 |
| 1        | 2.3108        | 2.1379  | 2.0990  | 2.0653         | 2.0541 | 2.0477 | 2.0481  |
| 2        | 3.1974        | 2.9671  | 2.8310  | 2.7785         | 2.7531 | 2.7311 | 2.7287  |
| 3        | 5.4532        | 5.1853  | 4.7826  | 4.7501         | 4.6883 | 4.6800 | 4.6708  |
| 4        | 7.3194        | 5.5081  | 5.2884  | 5.0198         | 4.9389 | 4.8961 | 4.9037  |
| 5        | 7.6125        | 5.7188  | 5.3533  | 5.1257         | 5.0896 | 5.0328 | 5.0255  |
| 6        | 12.6581       | 10.1995 | 6.8593  | 6.7650         | 6.2865 | 6.2350 | 6.1570  |
| 7        | 13.1905       | 10.2871 | 8.3432  | 8.1001         | 7.5032 | 7.4395 | 7.3292  |
| 8        | 13.4555       | 10.7083 | 9.4893  | 8.8533         | 8.8151 | 8.3440 | 8.3318  |
| 9        | 14.2582       | 12.3057 | 10.1669 | 9.1221         | 8.8966 | 8.6523 | 8.6780  |
| 10       | 18.4549       | 14.8508 | 11.9872 | 9.3214         | 9.0184 | 8.9318 | 8.8754  |

| Mode<br>Sequence | N=4     | N=5     | N=6     | N=7     | N=8    | N=9    | N = 10 | N = 11 |
|------------------|---------|---------|---------|---------|--------|--------|--------|--------|
| 1                | 2.8679  | 2.7164  | 2.6327  | 2.5894  | 2.5637 | 2.5446 | 2.5424 | 2.5289 |
| 2                | 4.4599  | 3.5529  | 3.4209  | 3.2431  | 3.2041 | 3.1451 | 3.1313 | 3.1133 |
| 3                | 6.4961  | 5.7405  | 5.5955  | 5.5074  | 5.4704 | 5.4636 | 5.4527 | 5.4491 |
| 4                | 7.9128  | 6.7942  | 6.0899  | 5.9535  | 5.6737 | 5.5503 | 5.5375 | 5.4827 |
| 5                | 8.7816  | 7.3894  | 6.3197  | 5.9535  | 5.8085 | 5.7949 | 5.7501 | 5.7552 |
| 6                | 12.3833 | 10.5217 | 8.6831  | 7.6553  | 7.3615 | 6.8523 | 6.8485 | 6.7175 |
| 7                | 12.7345 | 10.8626 | 9.8252  | 8.8404  | 8.4895 | 8.3433 | 8.2450 | 8.2366 |
| 8                | 13.4848 | 11.5294 | 9.9600  | 9.7693  | 9.6106 | 9.5239 | 9.1348 | 9.1915 |
| 9                | 15.1323 | 12.2180 | 10.8022 | 10.0807 | 9.7124 | 9.5827 | 9.5805 | 9.5636 |
| 10               | 16.4597 | 14.4955 | 12.2997 | 10.7195 | 9.9395 | 9.7809 | 9.7838 | 9.7401 |

**Table 4.** Convergence studies of frequency parameters  $\lambda = \beta/(\eta^2 \pi^2)$  of rectangular Mindlin plate with two equal spans (a' = 0.5, b' = 0) for SSCC boundary condition (case 10) and geometry parameters ( $\delta = 0.05, \eta = 2$ ).

**Table 5.** Convergence studies of frequency parameters  $\lambda = \beta/(\eta^2 \pi^2)$  of rectangular Mindlin plate with two equal spans (a' = 0.5, b' = 0) for CFSF boundary condition (case 18) and geometry parameters ( $\delta = 0.05, \eta = 2$ ).

| Mode<br>Sequence | N=4     | N=5     | N=6    | N=7    | N=8    | N=9    | N = 10 |
|------------------|---------|---------|--------|--------|--------|--------|--------|
| 1                | 1.6307  | 1.6265  | 1.6249 | 1.6235 | 1.6221 | 1.6215 | 1.6206 |
| 2                | 1.7705  | 1.7236  | 1.7042 | 1.6972 | 1.6959 | 1.6907 | 1.6898 |
| 3                | 3.5757  | 3.1925  | 2.9911 | 2.9296 | 2.9258 | 2.9242 | 2.9205 |
| 4                | 4.7480  | 4.2740  | 3.9861 | 3.5418 | 3.4441 | 3.3902 | 3.3840 |
| 5                | 5.8437  | 4.7157  | 4.6819 | 4.6733 | 4.6701 | 4.6676 | 4.6660 |
| 6                | 6.4246  | 4.8571  | 4.7877 | 4.7320 | 4.7180 | 4.7115 | 4.7081 |
| 7                | 10.4410 | 7.8102  | 6.2957 | 6.1677 | 5.9410 | 5.8232 | 5.7969 |
| 8                | 11.4837 | 9.1497  | 7.0777 | 6.6838 | 6.0138 | 5.9890 | 5.9835 |
| 9                | 11.6112 | 10.3245 | 8.1198 | 7.1609 | 6.7004 | 6.4150 | 6.3732 |
| 10               | 12.8013 | 11.1113 | 9.0680 | 8.5869 | 8.3989 | 7.0742 | 6.9666 |

**Table 6.** Convergence studies of frequency parameters  $\lambda = \beta/(\eta^2 \pi^2)$  of rectangular Mindlin plate with two equal spans (a' = 0.5, b' = 0) for SCFS boundary condition (case 14) and geometry parameters ( $\delta = 0.05, \eta = 2$ ).

| Mode<br>Sequence | N = 4   | N=5     | N=6     | N=7     | N=8    | N=9    | N = 10 | N = 11 |
|------------------|---------|---------|---------|---------|--------|--------|--------|--------|
| 1                | 1.7155  | 1.6830  | 1.6690  | 1.6621  | 1.6560 | 1.6519 | 1.6510 | 1.6508 |
| 2                | 2.9813  | 2.6525  | 2.5135  | 2.4543  | 1.4293 | 2.4125 | 2.4015 | 2.4007 |
| 3                | 4.5902  | 3.6581  | 3.4884  | 3.2598  | 3.2224 | 3.1866 | 3.1734 | 3.1674 |
| 4                | 4.9628  | 4.7857  | 4.7346  | 4.7073  | 4.6955 | 4.6887 | 4.6833 | 4.6788 |
| 5                | 7.6167  | 6.3851  | 5.6753  | 6.6198  | 5.2868 | 5.1559 | 5.1137 | 5.1025 |
| 6                | 8.8693  | 7.7765  | 6.0204  | 7.5434  | 5.4571 | 5.4174 | 5.3908 | 5.3823 |
| 7                | 9.4622  | 8.0651  | 6.9218  | 8.9564  | 6.3208 | 6.2261 | 6.1765 | 6.1681 |
| 8                | 10.7970 | 9.3896  | 9.0640  | 9.3443  | 7.2000 | 6.5273 | 6.4794 | 6.4052 |
| 9                | 15.7370 | 12.0571 | 10.5515 | 9.9701  | 8.5045 | 8.2273 | 7.9230 | 7.9174 |
| 10               | 16.7031 | 12.8721 | 10.8349 | 11.2708 | 8.9094 | 8.8923 | 8.8816 | 8.8770 |

### **Comparing Studies**

Numerical results were compared with known results that are available in the literature. In order to validate the accuracy of the present prediction, a comparison has been carried out for both thin ( $\delta = 0.001$ ) and moderately thick rectangular plates, with different boundary conditions (Figure 2) and different locations of internal line support.

The frequency parameters,  $\lambda = \beta/(\eta^2 \pi^2)$ , given by the authors, were compared with the available results in Zhou's work [26], using the Rayleigh-Ritz method for thin rectangular plates and Xiang's work [27], using the Levy type solution for moderately thick rectangular plates.

From the results, as shown in Tables 7 to 15, there is excellent agreement between the present work and results in the literature.

## NUMERICAL RESULTS

In this paper, the frequency parameters were obtained from the free vibration analysis of a multi-span moderately thick rectangular plate in dimensionless form,  $\lambda = \beta/(\eta^2 \pi^2)$ , by using the Rayleigh-Ritz energy method. Numerical calculations have been performed for each of the twenty-one possible classical boundary conditions, with arrangement of the boundary conditions as shown in Figure 2.

The results were given in Tables 16 to 19 for the thickness to length ratio,  $\delta = 0.1$ , and the aspect ratio,  $\eta = 2$ . In each table, the frequency parameters were presented for the first ten mode sequences of a moderately thick rectangular plate with two equal spans in an  $X_1$ -direction.

As shown in Figures 4 and 5, it is observed that the behavior of the internal line support is close to a simply supported edge.

**Table 7.** Comparison studies of frequency parameters  $\lambda = \beta/(\eta^2 \pi^2)$  of rectangular Mindlin plate with two equal spans in  $X_1$ -direction for geometry parameters ( $\delta = 0.1, \eta = 2$ ).

| Mode     | SSSS I     | Plate              | SFSF I     | Plate              | SCSC       | Plate   |
|----------|------------|--------------------|------------|--------------------|------------|---------|
| Sequence | Xiang [28] | $\mathbf{Present}$ | Xiang [28] | $\mathbf{Present}$ | Xiang [28] | Present |
| 1        | 1.9317     | 1.9323             | 1.1523     | 1.1529             | 2.2684     | 2.6513  |
| 2        | 2.2663     | 2.2948             | 1.2406     | 1.2463             | 2.6992     | 2.8230  |
| 3        | 4.6084     | 4.6045             | 2.6500     | 2.6528             | 4.7726     | 5.0543  |
| 4        | 4.6084     | 4.6474             | 3.0780     | 3.1562             | 4.9693     | 5.0711  |
| 5        | 4.7671     | 4.8254             | 3.8792     | 3.8838             | 5.2839     | 5.9807  |
| 6        | 5.2781     | 5.5062             | 3.9134     | 3.9323             | 5.9928     | 6.6160  |
| 7        | 7.0716     | 7.1420             | 5.3950     | 5.4106             | 7.5084     | 8.5816  |
| 8        | 7.4914     | 7.8483             | 5.6358     | 5.6629             | 7.9604     | 8.6107  |
| 9        | 8.6162     | 8.6378             | 5.6448     | 5.8337             | 8.7010     | 8.8731  |
| 10       | 8.6162     | 8.7919             | 6.3488     | 6.8378             | 8.7906     | 8.9342  |

**Table 8.** Comparison studies of frequency parameters  $\lambda = \beta/(\eta^2 \pi^2)$  of rectangular Mindlin plate with two equal spans in  $X_2$ -direction for geometry parameters ( $\delta = 0.1, \eta = 2$ ).

| Mode     | SSSS I     | Plate              | SFSF I     | Plate              | SCSC       | Plate   |
|----------|------------|--------------------|------------|--------------------|------------|---------|
| Sequence | Xiang [28] | $\mathbf{Present}$ | Xiang [28] | $\mathbf{Present}$ | Xiang [28] | Present |
| 1        | 1.1927     | 1.1957             | 1.1946     | 1.1931             | 2.0248     | 2.0481  |
| 2        | 2.0689     | 2.0874             | 2.3943     | 2.5976             | 2.5548     | 2.7287  |
| 3        | 2.8892     | 2.9247             | 2.9544     | 2.9770             | 4.6528     | 4.6708  |
| 4        | 3.8954     | 3.9045             | 3.8956     | 3.9031             | 4.8153     | 4.9037  |
| 5        | 4.6804     | 4.7212             | 4.8564     | 4.9926             | 4.9054     | 5.0255  |
| 6        | 4.8667     | 4.9333             | 5.4232     | 5.6005             | 5.7650     | 6.1570  |
| 7        | 5.5230     | 5.5888             | 5.5330     | 5.7243             | 7.1971     | 7.3292  |
| 8        | 6.0679     | 6.3269             | 6.2076     | 6.5187             | 7.8210     | 8.3318  |
| 9        | 7.2563     | 7.4613             | 7.6775     | 7.9669             | 8.6389     | 8.6780  |
| 10       | 7.9474     | 7.9668             | 7.9474     | 8.0729             | 8.7618     | 8.8754  |

| δ    | a'  | Method     |        |        | Mode   | Sequence |         |         |
|------|-----|------------|--------|--------|--------|----------|---------|---------|
|      |     |            | 1      | 2      | 3      | 4        | 5       | 6       |
|      | 0.1 | Xiang [28] | 2.6392 | 5.4604 | 6.7781 | 9.5650   | 10.3620 | 13.5290 |
|      |     | Present    | 2.7071 | 5.5960 | 6.9793 | 9.7684   | 10.4629 | 13.5769 |
| 0.01 | 0.3 | Xiang [28] | 3.5328 | 6.3571 | 9.6807 | 11.2430  | 12.6200 | 14.8980 |
|      |     | Present    | 3.8739 | 6.4669 | 9.3245 | 11.6000  | 12.1222 | 14.2023 |
|      | 0.5 | Xiang [28] | 4.9955 | 7.0108 | 7.9884 | 9.5607   | 12.9690 | 14.1610 |
|      |     | Present    | 4.9907 | 7.4812 | 8.6132 | 10.0759  | 13.4899 | 13.9793 |
|      | 0.1 | Xiang [28] | 2.5843 | 5.1324 | 6.5118 | 9.1169   | 9.9078  | 12.4250 |
|      |     | Present    | 2.5982 | 5.3745 | 6.5507 | 9.5783   | 10.1859 | 13.1340 |
| 0.05 | 0.3 | Xiang [28] | 3.4630 | 6.1682 | 9.2836 | 10.7130  | 11.9640 | 13.8330 |
|      |     | Present    | 3.5113 | 6.2988 | 9.3556 | 11.2127  | 11.5998 | 13.8050 |
|      | 0.5 | Xiang [28] | 4.8907 | 6.7106 | 7.7267 | 9.0653   | 12.3050 | 13.2290 |
|      |     | Present    | 4.9313 | 6.7857 | 7.7416 | 9.1842   | 12.2853 | 13.2692 |
|      | 0.1 | Xiang [28] | 2.4416 | 4.9380 | 5.8821 | 8.1036   | 8.8524  | 10.6750 |
|      |     | Present    | 2.4582 | 4.9807 | 5.9313 | 8.3533   | 9.0149  | 10.8019 |
| 0.10 | 0.3 | Xiang [28] | 3.2732 | 5.6883 | 8.3308 | 9.4966   | 10.4850 | 11.613  |
|      |     | Present    | 3.3045 | 5.6591 | 8.7895 | 9.9055   | 10.4761 | 11.252  |
|      | 0.5 | Xiang [28] | 4.6084 | 5.9863 | 7.0716 | 7.9475   | 10.8090 | 11.3000 |
|      |     | Present    | 4.5691 | 6.0985 | 6.9653 | 8.1135   | 10.691  | 11.5734 |

**Table 9.** Comparison studies of frequency parameters  $\lambda = \beta/(\eta^2 \pi^2)$  of square Mindlin plate with an internal line support for SSSS boundary condition (case 1).



Figure 4. First nine mode shapes of CFSF rectangular Mindlin plates with two equal spans (a' = 0.5, b' = 0) for geometry parameters  $(\delta = 0.1, \eta = 2)$ .

The results were given in Tables 20, and 21 for the thickness to length ratios,  $\delta = 0.01$ , 0.05 and 0.1, over a range of location of internal line supports in an  $X_1$ -direction, a' = 0.1, 0.3, 0.5 and 0.7. In each table, the frequency parameters are presented for the first six mode sequence for a moderately thick square plate.

The results are given in Table 22 for a moderately

thick square plate with two equal spans in an  $X_1$ -direction for common shear correction factors,  $\kappa = \sqrt{5/6}, \sqrt{\pi^2/12}$  and  $\sqrt{0.86667}$ .

In order to study the effect of line support location on the first four frequency parameters of the plates, consideration may now be paid to Figures 6 and 7. From the results in these figures, it is observed that,

| δ    | a'  | Method     |        |        | Mode S | equence |        |        |
|------|-----|------------|--------|--------|--------|---------|--------|--------|
|      |     |            | 1      | 2      | 3      | 4       | 5      | 6      |
|      | 0.1 | Xiang [28] | 1.2456 | 3.2596 | 4.2351 | 6.5319  | 7.4051 | 9.1903 |
|      |     | Present    | 1.2470 | 3.2706 | 4.2402 | 6.5855  | 7.5085 | 9.2204 |
| 0.01 | 0.3 | Xiang [28] | 1.4263 | 3.2920 | 4.4249 | 5.4786  | 6.4685 | 8.5657 |
|      |     | Present    | 1.4290 | 3.3070 | 4.4355 | 5.5920  | 6.6058 | 9.1578 |
|      | 0.5 | Xiang [28] | 1.6309 | 2.3050 | 4.7253 | 5.1271  | 7.6042 | 9.7036 |
|      |     | Present    | 1.6332 | 2.3122 | 4.7297 | 5.1583  | 7.6132 | 9.703  |
|      | 0.1 | Xiang [28] | 1.2324 | 3.1863 | 4.1481 | 6.3087  | 7.1414 | 8.828  |
|      |     | Present    | 1.2357 | 3.1979 | 4.1554 | 6.3746  | 7.1530 | 8.9323 |
| 0.05 | 0.3 | Xiang [28] | 1.4082 | 3.2051 | 4.3260 | 5.2780  | 6.2026 | 8.1429 |
|      |     | Present    | 1.4139 | 3.2232 | 4.3414 | 5.2114  | 6.1532 | 8.3649 |
|      | 0.5 | Xiang [28] | 1.6067 | 2.2520 | 4.6094 | 4.9625  | 7.3277 | 9.2880 |
|      |     | Present    | 1.6078 | 2.2617 | 4.6166 | 4.9910  | 7.3318 | 9.301  |
|      | 0.1 | Xiang [28] | 1.2046 | 3.0298 | 3.9283 | 5.8065  | 6.5417 | 7.9780 |
|      |     | Present    | 1.2072 | 3.0380 | 3.9354 | 5.8708  | 6.5570 | 8.0465 |
| 0.10 | 0.3 | Xiang [28] | 1.3707 | 3.0266 | 4.0825 | 4.8245  | 5.6518 | 7.2603 |
|      |     | Present    | 1.3752 | 3.0281 | 3.8952 | 4.8007  | 5.0274 | 7.2050 |
|      | 0.5 | Xiang [28] | 1.5593 | 2.1387 | 4.3358 | 4.5951  | 6.7071 | 8.153' |
|      |     | Present    | 1.5593 | 2.1526 | 4.3386 | 4.6358  | 6.7074 | 8.3569 |

**Table 10.** Comparison studies of frequency parameters  $\lambda = \beta/(\eta^2 \pi^2)$  of square Mindlin plate with an internal line support for SFSF boundary condition (case 5).

**Table 11.** Comparison studies of frequency parameters  $\lambda = \beta/(\eta^2 \pi^2)$  of square Mindlin plate with an internal line support for SCSC boundary condition (case 3).

| δ    | a'  | Method                   |        |        | Mode    | Sequence |         |         |
|------|-----|--------------------------|--------|--------|---------|----------|---------|---------|
|      |     |                          | 1      | 2      | 3       | 4        | 5       | 6       |
|      | 0.1 | Xiang [28]               | 3.3169 | 5.8735 | 8.1316  | 10.6280  | 10.6670 | 15.2300 |
|      |     | Present                  | 3.3396 | 5.9375 | 8.1986  | 10.3577  | 10.7797 | 15.4488 |
| 0.01 | 0.3 | Xiang [28]               | 4.6841 | 7.1453 | 11.7790 | 12.0230  | 14.6140 | 18.5410 |
|      |     | $\mathbf{Present}$       | 4.8868 | 7.8217 | 12.1692 | 12.3386  | 14.9731 | 18.6906 |
|      | 0.5 | Xiang [28]               | 7.0108 | 9.5608 | 9.6209  | 11.6900  | 14.1510 | 15.7750 |
|      |     | $\operatorname{Present}$ | 7.4218 | 9.6728 | 9.9063  | 11.7744  | 14.4464 | 15.9824 |
|      | 0.1 | Xiang [28]               | 3.1958 | 5.6619 | 7.6536  | 9.9975   | 10.1140 | 13.9760 |
|      |     | Present                  | 3.2094 | 5.6802 | 7.6894  | 9.1155   | 10.2124 | 13.9334 |
| 0.05 | 0.3 | Xiang [28]               | 4.5184 | 6.8505 | 11.1380 | 11.2380  | 13.5430 | 17.1470 |
|      |     | $\operatorname{Present}$ | 4.8831 | 7.3487 | 11.1867 | 11.2991  | 13.7515 | 16.6390 |
|      | 0.5 | Xiang [28]               | 6.7130 | 8.9583 | 9.0738  | 10.7970  | 13.2440 | 14.4270 |
|      |     | Present                  | 6.7618 | 9.0162 | 9.1234  | 10.8949  | 13.2788 | 14.5781 |
|      | 0.1 | Xiang [28]               | 2.9489 | 5.1901 | 6.7054  | 8.6714   | 8.9777  | 11.6060 |
|      |     | Present                  | 2.9696 | 5.2306 | 6.7635  | 8.7661   | 9.1216  | 11.5263 |
| 0.10 | 0.3 | Xiang [28]               | 4.1108 | 6.1636 | 9.5728  | 9.7472   | 11.3940 | 14.2020 |
|      |     | Present                  | 4.1627 | 6.2729 | 9.8679  | 9.9255   | 12.1808 | 14.6765 |
|      | 0.5 | Xiang [28]               | 5.9992 | 7.5511 | 7.9854  | 9.0159   | 11.3540 | 11.9280 |
|      |     | Present                  | 6.0244 | 7.6832 | 8.0103  | 9.1964   | 11.3708 | 12.1525 |

| δ    | a'  | Method     |        |        | Mode   | Sequence |         |         |
|------|-----|------------|--------|--------|--------|----------|---------|---------|
|      |     |            | 1      | 2      | 3      | 4        | 5       | 6       |
|      | 0.3 | Xiang [28] | 1.5211 | 4.4498 | 5.0600 | 8.2985   | 9.3796  | 11.6760 |
|      |     | Present    | 1.5988 | 4.5239 | 5.6179 | 9.1252   | 9.7252  | 11.4575 |
| 0.01 | 0.5 | Xiang [28] | 1.9456 | 4.9069 | 5.7162 | 8.6236   | 9.1039  | 9.8289  |
|      |     | Present    | 2.0469 | 4.9813 | 5.9851 | 8.8918   | 9.5790  | 9.9238  |
|      | 0.7 | Xiang [28] | 2.7881 | 4.2836 | 5.9685 | 7.0169   | 10.1550 | 11.0050 |
|      |     | Present    | 2.9095 | 4.3437 | 6.0560 | 7.1178   | 10.2627 | 11.0766 |
|      | 0.3 | Xiang [28] | 1.4993 | 4.3475 | 4.9037 | 7.9353   | 8.9944  | 11.1120 |
|      |     | Present    | 1.5139 | 4.3894 | 4.9884 | 8.3778   | 9.1991  | 11.7845 |
| 0.05 | 0.5 | Xiang [28] | 1.9096 | 4.7706 | 5.5548 | 8.2757   | 8.6289  | 9.3885  |
|      |     | Present    | 1.9176 | 4.7864 | 5.5798 | 8.3149   | 8.7340  | 9.2446  |
|      | 0.7 | Xiang [28] | 2.7372 | 4.1510 | 5.7939 | 6.7020   | 9.6786  | 10.4900 |
|      |     | Present    | 2.7483 | 4.1773 | 5.8055 | 6.7903   | 9.7329  | 10.5111 |
|      | 0.3 | Xiang [28] | 1.4513 | 4.0970 | 4.4535 | 7.1458   | 8.1058  | 9.8480  |
|      |     | Present    | 1.4618 | 4.1296 | 4.6117 | 7.1443   | 8.1027  | 9.8616  |
| 0.10 | 0.5 | Xiang [28] | 1.8341 | 4.4564 | 5.1450 | 7.7497   | 7.5883  | 8.4083  |
|      |     | Present    | 1.8394 | 4.4704 | 5.1732 | 7.5049   | 7.7306  | 8.4389  |
|      | 0.7 | Xiang [28] | 2.6251 | 3.8364 | 5.3805 | 6.0288   | 8.5772  | 9.3278  |
|      |     | Present    | 2.6283 | 3.8777 | 5.3867 | 6.1355   | 8.6594  | 9.3490  |

**Table 12.** Comparison studies of frequency parameters  $\lambda = \beta/(\eta^2 \pi^2)$  of square Mindlin plate with an internal line support for SSSF boundary condition (case 4).

**Table 13.** Comparison studies of frequency parameters  $\lambda = \beta/(\eta^2 \pi^2)$  of square Mindlin plate with an internal line support for SCSF boundary condition (case 6).

| δ    | a'  | Method     |        |        | Mode   | Sequence |         |         |
|------|-----|------------|--------|--------|--------|----------|---------|---------|
|      |     |            | 1      | 2      | 3      | 4        | 5       | 6       |
|      | 0.3 | Xiang [28] | 1.5363 | 4.4554 | 5.1510 | 8.3541   | 9.3817  | 12.3440 |
|      |     | Present    | 1.5616 | 4.4870 | 5.3321 | 8.8142   | 9.4487  | 13.1446 |
| 0.01 | 0.5 | Xiang [28] | 1.9811 | 4.9168 | 7.2938 | 9.8321   | 9.8642  | 10.1340 |
|      |     | Present    | 2.0063 | 4.9407 | 7.4099 | 9.8719   | 9.9404  | 10.2143 |
|      | 0.7 | Xiang [28] | 3.1117 | 5.1104 | 6.2351 | 7.5397   | 11.2270 | 12.1080 |
|      |     | Present    | 3.1531 | 5.1242 | 6.2817 | 7.5824   | 11.2761 | 12.9105 |
|      | 0.3 | Xiang [28] | 1.5116 | 4.3514 | 4.9743 | 7.9734   | 8.9956  | 11.6410 |
|      |     | Present    | 1.5220 | 4.3861 | 5.0326 | 8.2854   | 9.2099  | 12.0673 |
| 0.05 | 0.5 | Xiang [28] | 1.9411 | 4.7782 | 6.9994 | 9.2334   | 9.3904  | 9.5773  |
|      |     | Present    | 1.9463 | 4.7918 | 7.0133 | 9.4242   | 9.4242  | 9.6064  |
|      | 0.7 | Xiang [28] | 3.0339 | 4.9150 | 6.0097 | 7.1704   | 10.6420 | 11.3590 |
|      |     | Present    | 3.0420 | 4.9346 | 6.0271 | 7.2203   | 10.6751 | 11.4123 |
|      | 0.3 | Xiang [28] | 1.4578 | 4.0985 | 4.5769 | 7.1595   | 8.1061  | 10.1410 |
|      |     | Present    | 1.4680 | 4.1276 | 4.6395 | 7.3967   | 8.2519  | 9.9506  |
| 0.10 | 0.5 | Xiang [28] | 1.8566 | 4.4603 | 6.3020 | 7.9088   | 8.3530  | 8.4089  |
|      |     | Present    | 1.8629 | 4.4743 | 6.3128 | 8.0886   | 8.3976  | 8.4388  |
|      | 0.7 | Xiang [28] | 2.8680 | 4.4463 | 5.5194 | 6.3685   | 9.3958  | 9.6938  |
|      |     | Present    | 2.8749 | 4.4576 | 5.5340 | 6.4433   | 9.4324  | 9.7695  |



Figure 5. Mode shapes of SSSS and CCCC rectangular Mindlin plate with two equal spans in  $X_1$ -direction and two equal spans in  $X_2$ -direction.

| δ    | a'       | ${f Method}$ |        |        | Mode    | Sequence |         |         |
|------|----------|--------------|--------|--------|---------|----------|---------|---------|
|      |          |              | 1      | 2      | 3       | 4        | 5       | 6       |
|      | 0.3      | Xiang [28]   | 3.5944 | 6.3860 | 10.0140 | 11.2560  | 12.8600 | 17.697  |
|      |          | Present      | 3.7437 | 6.5575 | 10.077  | 11.2788  | 12.8711 | 17.634  |
| 0.01 | 0.01 0.5 | Xiang [28]   | 5.5739 | 8.2407 | 8.7081  | 10.9560  | 13.2920 | 15.230  |
|      |          | Present      | 6.1077 | 8.8694 | 9.1853  | 11.4361  | 13.6450 | 15.262  |
|      | 0.7      | Xiang [28]   | 4.5939 | 7.1024 | 11.4080 | 11.7610  | 14.1560 | 15.6420 |
|      |          | Present      | 4.8438 | 7.3323 | 12.1342 | 12.2010  | 15.1674 | 16.885  |
|      | 0.3      | Xiang [28]   | 3.5119 | 6.1887 | 9.5403  | 10.7200  | 12.1330 | 16.423  |
|      |          | Present      | 3.5365 | 6.2490 | 9.7451  | 10.7702  | 12.2389 | 16.442  |
| 0.05 | 0.5      | Xiang [28]   | 5.4171 | 8.0994 | 8.1958  | 10.2190  | 12.5600 | 14.037  |
|      |          | Present      | 5.6595 | 8.1475 | 8.2554  | 10.3180  | 12.6104 | 14.265  |
|      | 0.7      | Xiang [28]   | 4.4487 | 6.8211 | 10.7800 | 11.1280  | 13.2330 | 14.343  |
|      |          | Present      | 4.4668 | 6.8436 | 10.8232 | 11.1550  | 13.2812 | 14.519  |
|      | 0.3      | Xiang [28]   | 3.2973 | 5.6959 | 8.4551  | 9.4984   | 10.5510 | 13.862  |
|      |          | Present      | 3.3242 | 5.7513 | 8.4564  | 9.4756   | 10.7739 | 13.939  |
| 0.10 | 0.5      | Xiang [28]   | 5.0135 | 7.0519 | 7.3241  | 8.6832   | 10.9540 | 11.741  |
|      |          | Present      | 5.0377 | 7.1502 | 7.3550  | 8.8243   | 10.9825 | 11.904  |
|      | 0.7      | Xiang [28]   | 4.0783 | 6.1534 | 9.3656  | 9.7448   | 11.2830 | 11.809  |
|      |          | Present      | 4.0946 | 6.1798 | 9.3847  | 9.7805   | 11.3208 | 12.0894 |

**Table 14.** Comparison studies of frequency parameters  $\lambda = \beta/(\eta^2 \pi^2)$  of square Mindlin plate with an internal line support for SSSF boundary condition (case 2).

**Table 15.** Comparison studies of frequency parameters  $\lambda = \beta/(\eta^2)$  of square Mindlin plate with an internal line support for SSSS boundary condition (case 1) with an internal line support in  $X_1$ -direction and an internal line support in  $X_2$ -direction.

| a' = b' | Method    | δ     | Mode Sequence |         |         |          |          |          |  |  |  |
|---------|-----------|-------|---------------|---------|---------|----------|----------|----------|--|--|--|
|         |           |       | 1             | 2       | 3       | 4        | 5        | 6        |  |  |  |
| 0.5     | Zhou [26] |       | 78.956        | 94.590  | 94.590  | 108.24   | 197.39   | 197.39   |  |  |  |
|         | Present   | 0.001 | 78.9547       | 94.5882 | 94.5882 | 108.2375 | 197.3860 | 197.3861 |  |  |  |

| ${f Mode}$ | Boundary Condition |        |        |        |        |        |  |  |  |  |
|------------|--------------------|--------|--------|--------|--------|--------|--|--|--|--|
| Sequence   | SSSS               | SFSF   | SCSC   | SSSF   | SCSF   | SCSS   |  |  |  |  |
| 1          | 1.9323             | 1.1529 | 2.6513 | 1.1957 | 1.1931 | 2.0481 |  |  |  |  |
| 2          | 2.2948             | 1.2563 | 2.8230 | 2.0874 | 2.5976 | 2.7287 |  |  |  |  |
| 3          | 4.6045             | 2.6528 | 5.0543 | 2.9247 | 2.9770 | 4.6708 |  |  |  |  |
| 4          | 4.6474             | 3.1562 | 5.0711 | 3.9045 | 3.9031 | 4.9037 |  |  |  |  |
| 5          | 4.8254             | 3.8838 | 5.9807 | 4.7212 | 4.9926 | 5.0255 |  |  |  |  |
| 6          | 5.5062             | 3.9323 | 6.6160 | 4.9333 | 5.6005 | 6.1570 |  |  |  |  |
| 7          | 7.1420             | 5.4106 | 8.5816 | 5.5888 | 5.7243 | 7.3292 |  |  |  |  |
| 8          | 7.8483             | 5.6629 | 8.6107 | 6.3269 | 6.5187 | 8.3318 |  |  |  |  |
| 9          | 8.6378             | 5.8337 | 8.8731 | 7.4613 | 7.9669 | 8.6780 |  |  |  |  |
| 10         | 8.7919             | 6.8378 | 8.9342 | 7.9668 | 8.0729 | 8.8754 |  |  |  |  |

**Table 16.** Frequency parameters of the SSSS, SFSF, SCSC, SSSF, SCSF and SCSS rectangular Mindlin plate with two equal spans (a' = 0.5, b' = 0) for geometry parameters  $(\delta = 0.1, \eta = 2)$ .

**Table 17.** Frequency parameters of the CCCC, CSCC, CFCC, CCSS, FSCC and rectangular Mindlin plates with two equal spans (a' = 0.5, b' = 0) for geometry parameters  $(\delta = 0.1, \eta = 2)$ .

| Mode     |        | Bou     | ndary Condi | tion   |        |
|----------|--------|---------|-------------|--------|--------|
| Sequence | CCCC   | CSCC    | CFCC        | CCSS   | FSCC   |
| 1        | 3.3124 | 2.7951  | 2.2156      | 2.5289 | 1.6509 |
| 2        | 3.3713 | 3.3218  | 3.2114      | 3.1133 | 2.8633 |
| 3        | 6.2768 | 5.2668  | 3.5282      | 5.4491 | 3.2188 |
| 4        | 6.3641 | 6.0573  | 5.4911      | 5.4827 | 4.6848 |
| 5        | 6.5377 | 6.3655  | 6.0338      | 5.7552 | 5.6353 |
| 6        | 6.7758 | 6.5225  | 6.3049      | 6.7175 | 5.8808 |
| 7        | 8.6143 | 8.2725  | 6.7627      | 8.2366 | 6.1702 |
| 8        | 8.6143 | 9.2605  | 6.8369      | 9.1915 | 6.6955 |
| 9        | 8.6885 | 9.5185  | 8.8632      | 9.5636 | 8.4797 |
| 10       | 9.3670 | 10.3611 | 10.4389     | 9.7401 | 8.8808 |

**Table 18.** Frequency parameters of the FFCC, CFCS, SCFS, CFFS, CFCF, rectangular Mindlin plates with two equal spans (a' = 0.5, b' = 0) for geometry parameters  $(\delta = 0.1, \eta = 2)$ .

| Mode     |        | Bou    | ndary Cond | ition  |        |
|----------|--------|--------|------------|--------|--------|
| Sequence | FFCC   | CFCS   | SCFS       | CFFS   | CFCF   |
| 1        | 0.6002 | 2.2176 | 1.6510     | 0.5968 | 2.1932 |
| 2        | 1.9409 | 2.8176 | 2.4015     | 1.1474 | 2.2444 |
| 3        | 2.3071 | 3.4825 | 3.1734     | 2.1366 | 3.2550 |
| 4        | 2.4468 | 5.2998 | 4.6833     | 2.4074 | 3.6780 |
| 5        | 3.6232 | 5.4917 | 5.1137     | 3.2157 | 5.4768 |
| 6        | 4.1819 | 6.0856 | 5.3908     | 4.1404 | 5.5081 |
| 7        | 5.0660 | 6.6137 | 6.1765     | 4.2478 | 5.9532 |
| 8        | 5.6836 | 6.7519 | 6.4794     | 5.5458 | 6.6031 |
| 9        | 5.9873 | 8.3103 | 7.9230     | 5.7728 | 6.9437 |
| 10       | 6.6796 | 9.5331 | 8.8816     | 6.0177 | 7.1050 |

| $\mathbf{Mode}$ |        | Bou    | ndary Condi | ition  |        |
|-----------------|--------|--------|-------------|--------|--------|
| Sequence        | CFSF   | CFFF   | SSFF        | SFFF   | FFFF   |
| 1               | 1.6206 | 0.4812 | 0.4349      | 0.2274 | 0.3498 |
| 2               | 1.6898 | 0.6464 | 1.1766      | 0.7275 | 0.6457 |
| 3               | 2.9205 | 1.2193 | 1.4178      | 1.1301 | 0.8245 |
| 4               | 3.3840 | 1.8743 | 2.0988      | 1.7439 | 1.4671 |
| 5               | 4.6660 | 2.2774 | 2.6687      | 1.8693 | 2.0726 |
| 6               | 4.7081 | 2.5244 | 2.9468      | 2.5438 | 2.4103 |
| 7               | 5.7969 | 2.2576 | 3.5601      | 2.6921 | 2.4929 |
| 8               | 5.9835 | 3.5371 | 4.3677      | 3.5928 | 2.6137 |
| 9               | 6.3732 | 4.3720 | 5.4012      | 4.0054 | 2.9279 |
| 10              | 6.9666 | 5.0284 | 5.5982      | 4.7070 | 4.4603 |

**Table 19.** Frequency parameters of the CFSF, CFFF, SSFF, SFFF and FFFF rectangular Mindlin plate with two equal spans (a' = 0.5, b' = 0) for geometry parameters  $(\delta = 0.1, \eta = 2)$ .

**Table 20.** Frequency parameters  $\lambda = \beta/(\eta^2 \pi^2)$  for CFSF square Mindlin plate with an internal line support.

| δ    | a'  | Mode Sequence |          |        |        |        |         |  |  |  |
|------|-----|---------------|----------|--------|--------|--------|---------|--|--|--|
|      |     | 1             | <b>2</b> | 3      | 4      | 5      | 6       |  |  |  |
|      | 0.1 | 1.7531        | 3.5948   | 5.2641 | 7.3755 | 7.6998 | 10.7398 |  |  |  |
| 0.01 | 0.3 | 1.9043        | 3.6234   | 5.4386 | 5.8555 | 7.4098 | 9.7045  |  |  |  |
|      | 0.5 | 2.0847        | 2.6673   | 5.6966 | 6.0792 | 7.8217 | 10.5219 |  |  |  |
|      | 0.1 | 1.7272        | 3.4937   | 5.1058 | 7.0729 | 7.3358 | 10.1886 |  |  |  |
| 0.05 | 0.3 | 1.8747        | 3.5357   | 5.2755 | 5.6948 | 7.1667 | 9.7902  |  |  |  |
|      | 0.5 | 2.0419        | 2.5967   | 5.5007 | 5.8285 | 7.5037 | 9.7889  |  |  |  |
|      | 0.1 | 1.6620        | 3.2791   | 4.7099 | 5.2708 | 6.6723 | 8.9120  |  |  |  |
| 0.10 | 0.3 | 1.7973        | 3.3074   | 4.8514 | 5.1641 | 6.4245 | 8.3814  |  |  |  |
|      | 0.5 | 1.9495        | 2.4516   | 5.0417 | 5.3008 | 6.8157 | 8.5180  |  |  |  |

**Table 21.** Frequency parameters  $\lambda = \beta/(\eta^2 \pi^2)$  for SSCC square Mindlin plate with an internal line support.

| $\boldsymbol{\delta}$ | a'  | Mode Sequence |        |         |         |         |         |  |  |
|-----------------------|-----|---------------|--------|---------|---------|---------|---------|--|--|
|                       |     | 1             | 2      | 3       | 4       | 5       | 6       |  |  |
|                       | 0.3 | 5.2217        | 8.2761 | 12.8703 | 13.4343 | 13.9534 | 16.1474 |  |  |
| 0.01                  | 0.5 | 6.0277        | 8.8868 | 9.5415  | 11.5396 | 14.9569 | 15.4820 |  |  |
|                       | 0.7 | 3.9734        | 7.2688 | 10.5730 | 12.7203 | 13.7753 | 19.5108 |  |  |
|                       | 0.3 | 4.6984        | 7.6108 | 10.1882 | 12.2748 | 12.9447 | 14.5447 |  |  |
| 0.05                  | 0.5 | 5.6446        | 8.3722 | 8.7444  | 10.7574 | 13.6007 | 15.1016 |  |  |
|                       | 0.7 | 3.7772        | 6.9303 | 9.7069  | 11.8450 | 12.5638 | 13.7899 |  |  |
|                       | 0.3 | 4.2796        | 5.8378 | 6.7317  | 9.6316  | 10.7632 | 11.8953 |  |  |
| 0.10                  | 0.5 | 5.1868        | 7.2577 | 7.7783  | 9.1934  | 11.5940 | 12.5396 |  |  |
|                       | 0.7 | 3.5287        | 6.2691 | 8.5768  | 10.2609 | 10.8898 | 12.7524 |  |  |

for SSSS plates, the frequency parameters for the first and second modes increase monotonically as the location parameter, a', moves from the plate edge to the plate center (a' = 0.5). As the results are shown in figure 6, the frequency parameters for the third and fourth modes of the SSSS and SCSC plates increase monotonically as the location parameter, a', changes from a' = 0.1 to a' = 0.3 and, after that, decreases monotonically as the location parameter a' changes

from a' = 0.3 to a' = 0.5 (center of the plate). From the results presented in these figures, it shows that the SCSC boundary conditions of the moderately thick rectangular plate have a similar tendency to the SSSS boundary conditions of the moderately thick rectangular plate. As shown in Figure 6, it is observed that the behaviors of the SSCC, SCSS and CFSF are similar, and that the behaviors of the SSSS, SCSC and SCSF are also similar.

| $\kappa$                  | Boundary        |        |        | Mode S | equence |        |        |
|---------------------------|-----------------|--------|--------|--------|---------|--------|--------|
|                           | Conditions      | 1      | 2      | 3      | 4       | 5      | 6      |
|                           | SSSS            | 1.9323 | 2.2948 | 4.6045 | 4.6474  | 4.8254 | 5.5062 |
| $\sqrt{\frac{5}{6}}$      | $\mathbf{SFSF}$ | 1.1529 | 1.2463 | 2.6528 | 3.1562  | 3.8838 | 3.9323 |
| v                         | SCSS            | 2.0481 | 2.7287 | 4.6708 | 4.9037  | 5.0255 | 6.1570 |
|                           | SSSS            | 1.9311 | 2.2935 | 4.6005 | 4.6428  | 4.8210 | 5.4996 |
| $\sqrt{\frac{\pi^2}{12}}$ | SFSF            | 1.1526 | 1.2460 | 2.6515 | 3.1540  | 3.8812 | 3.9296 |
|                           | SCSS            | 2.0464 | 2.7259 | 4.6664 | 4.8975  | 5.0209 | 6.1478 |
|                           | SSSS            | 1.9355 | 2.2987 | 4.6164 | 4.6613  | 4.8381 | 5.5254 |
| $\sqrt{0.86667}$          | SFSF            | 1.1537 | 1.2475 | 2.6566 | 3.1627  | 3.8914 | 3.9404 |
|                           | SCSS            | 2.0533 | 2.7369 | 4.6838 | 4.9222  | 5.0427 | 6.1888 |

**Table 22.** Frequency parameters  $\lambda = \beta/(\eta^2 \pi^2)$  for square Mindlin plate with two equal spans (a' = 0.5, b' = 0) for common shear correction factors.

As shown in Figures 6 and 7 and Tables 16 and 21, it can be seen that, between two plates having identical geometry parameters and location of internal line support, the frequency parameters of the one having more clamp boundary conditions is greater than the one having more simply supported or free boundary conditions, and the one which has more simply supported boundary conditions is greater than the one which has more free edge boundary conditions.

In order to study the effect of thickness to length ratios on the frequency parameters of the plates, consider Figure 8 and Tables 20-21. From the results in these illustrations, it is observed that, with increasing thickness to length ratios, the frequency parameters are decreasing.

The results is shown in Table 23 for a moderately thick rectangular plate, for the thickness to length ratio,  $\delta = 0.1$ , and for the aspect ratio,  $\eta = 2$ , with two equal spans in an  $X_1$ -direction and two equal spans in an  $X_2$ -direction. In this table, the boundary conditions of the plate are SSSS and CCCC.

In Table 23, the effect of the locations of the internal line supports on the first eight frequency parameters of simply supported and fully clamped square Mindlin plates, with an internal line support in an  $X_1$ -direction and an internal line support in an  $X_2$ , were studied for geometry parameters thickness to length ratio:  $\delta = 0.05$  and aspect ratio  $\eta = 2$ . It can be seen that, for all cases, the fundamental frequency parameters increase when the internal line support approaches the respective center line of the plate (a' = b' = 0.5). However, for simply supported plates, mode sequence 4 starts to decrease when a' >0.3. For fully clamped plates, mode sequence 1 monotonically increases when the internal line support approaches the respective center line of the plate. Also, Figure 5 illustrated the fourth mode shape of the SSSS plate and the sixth mode shape of the CCCC plate.

| Boundary   | a' = b' |        | Mode Sequence |        |        |        |        |         |         |  |  |
|------------|---------|--------|---------------|--------|--------|--------|--------|---------|---------|--|--|
| Conditions |         | 1      | 2             | 3      | 4      | 5      | 6      | 7       | 8       |  |  |
|            | 0.1     | 1.9403 | 2.7796        | 4.2916 | 5.3677 | 6.0211 | 6.1352 | 7.9037  | 8.6797  |  |  |
| SSSS       | 0.3     | 2.9701 | 4.2861        | 5.2843 | 6.6484 | 8.0510 | 9.4053 | 10.1796 | 10.9368 |  |  |
|            | 0.5     | 4.6387 | 4.8446        | 6.1018 | 6.2982 | 7.1666 | 7.8359 | 8.2475  | 9.2885  |  |  |
|            | 0.1     | 2.6838 | 3.5432        | 3.9319 | 4.8857 | 6.2760 | 6.5175 | 6.9689  | 8.0161  |  |  |
| CCCC       | 0.3     | 2.2926 | 2.8158        | 3.9688 | 5.1509 | 5.4860 | 6.6053 | 8.7806  | 9.4201  |  |  |
|            | 0.5     | 6.1620 | 6.3442        | 7.7915 | 8.0274 | 8.1135 | 8.4663 | 9.4377  | 9.9418  |  |  |

**Table 23.** Vibration frequency parameters  $\lambda = \beta/(\eta^2 \pi^2)$  for rectangular Mindlin plate with an internal line support in  $X_1$ -direction and an internal line support in  $X_2$ -direction for geometry parameters ( $\delta = 0.05$ ,  $\eta = 2$ ).



Figure 6. Frequency parameters  $\lambda = \beta/(\eta^2 \pi^2)$  versus line support location a' for square Mindlin plate with an internal line support ( $\delta = 0.1$ ).



Figure 7. Frequency parameters  $\lambda = \beta/(\eta^2 \pi^2)$  versus line support location a' = b' for square Mindlin plate with one internal line support in  $X_1$ -direction and one internal line support in  $X_2$ -direction, for geometry parameters ( $\delta = 0.05$ ,  $\eta = 2$ ).



Figure 8. Frequency parameters  $\lambda = \beta/(\eta^2 \pi^2)$  versus thickness to length ratio  $\delta$  for square Mindlin plate with an internal line support (a' = 0.5).

## CONCLUSION

This paper presents an energy method for the vibration analysis of multi-span moderately thick rectangular plates. A rectangular plate was divided into two spans in an  $X_1$ -direction and two spans in an  $X_2$ -direction. The Rayleigh-Ritz method was employed to obtain the frequency parameters and mode shapes of the plates. The conclusions of this approach are follows:

• The frequency parameters decrease as the plate thickness to length ratios increase, due to the influence of transverse shear deformation and rotary inertia.

Vibration Analysis of Moderately Thick Rectangular Plates

- It can be seen that rapid convergency and good accuracy is achieved with a small number of terms of the two dimensional complete polynomial functions.
- The present method is especially suitable for the moderately thick rectangular plate problem, with a large amount of internal line support in both  $X_1$  and  $X_2$ -directions.
- Finally, based on comparison with results available in the literature, the validity of the present results were established.

#### REFERENCES

- Leissa, A.W. "Vibration of plates", NASA SP-160 (1969).
- Leissa, A.W. "Recent research in plate vibrations: classical theory", *The Shock and Vibration Digest*, 9(10), pp. 13-24 (1977).
- Leissa, A.W. "Recent research in plate vibrations, 1973-1976: complicating effects", The Shock and Vibration Digest, 10(12), pp. 21-35 (1977).
- Leissa, A.W. "Plate vibration research, 1976-1980: classical theory", *The Shock and Vibration Digest*, 13(9), pp. 11-22 (1981).
- Leissa, A.W. "Plate vibration research, 1976-1980: complicating effects", *The Shock and Vibration Digest*, 13(10), pp. 17-36 (1981).
- Leissa, A.W. "Recent studies in plate vibrations, 1981-1985. Part I: Classical theory", *The Shock and Vibration Digest*, 19(2), pp. 11-18 (1987).
- Leissa, A.W. "Recent studies in plate vibrations, 1981-1985. Part II: Complicating effects", *The Shock and Vibration Digest*, 19(3), pp. 10-24 (1987).
- Leissa, A.W. "The free vibration of rectangular plates", J. of Sound and Vibration, 31(3), pp. 257-293 (1973).
- Mindlin, R.D. "Influence rotatory inertia and shear in flexural motion of isotropic, elastic plates", ASME J. of Applied Mechanics, 18(1), pp. 31-38 (1951).
- Mindlin, R.D. et al. "Flexural vibration of rectangular plates", ASME J. of Applied Mechanics, 23, pp. 430-436 (1956).
- Dawe, D.J. and Roufaeil, O.L. "Rayleigh-Ritz vibration analysis of Mindlin plates", J. of Sound and Vibration, 69(3), pp. 345-359 (1980).
- Liew, K.M. et al. "Transverse vibration of thick rectangular plates - I. Comprehensive sets of boundary conditions", *Computers and Structures*, 49(1), pp. 1-29 (1993).
- Liew, K.M. et al. "Vibration of Mindlin plates using boundary characteristic orthogonal polynomials", J. of Sound and Vibration, 182(1), pp. 77-90 (1995).
- Cheung, Y.K. and Zhou, D. "Vibrations of moderately thick rectangular plates in terms of a set of static Timoshenko beam functions", *Computers and Structures*, 78(6), pp. 757-768 (2000).

- Al Janabi, B.S. et al. "Free vibration of Mindlin plates using the finite element methods, Part I: Square plates with various edge conditions", *Engineering Computers*, 6(2), pp. 90-96 (1978).
- Dawe, D.J. "Finite strip models for vibration of Mindlin plates", J. of Sound and Vibration, 59, pp. 441-452 (1987).
- Cheung, Y.K. and Chakrabarti, S. "Free vibration of thick layered rectangular plates by a finite layer method", *J. of Sound and Vibration*, **21**(3), pp. 277-284 (1972).
- Mikami, T. and Yoshimura, J. "Application of the collocation method to vibration analysis of rectangular Mindlin plates", *Computers and Structures*, 18(3), pp. 425-431 (1984).
- Gorman, D.J. "Accurate free vibration analysis of clamped Mindlin plates using the method of superposition", J. of Sound and Vibration, 189(3), pp. 341-353 (1996).
- Srinvas, S. "An exact analysis for vibration of simplysupported homogeneous and laminated thick rectangular plates", J. of Sound and Vibration, 12(2), pp. 187-199 (1970).
- Wittrick, W.H. "Analytical three-dimensional elasticity solutions to some plate problems, and some observations on Mindlin's plate theory", *Int. J. of Solids and Structures*, 23(4), pp. 441-464 (1987).
- Liew, K.M. et al. "A continuum three-dimensional vibration analysis of thick rectangular plate", Int. J. of Solids and Structures, 30(24), pp. 3357-3379 (1993).
- Liew, K.M. et al. "Three-dimensional vibration of rectangular plates: Variance of simply support conditions and influence of in-plane inertia", Int. J. of Solids and Structures, **31**(23), pp. 3233-3247 (1994).
- Liew, K.M. et al. "Three-dimensional vibration of rectangular plates: Effects of thickness and edge constraints", J. of Sound and Vibration, 182(5), pp. 709-727 (1995).
- Liew, K.M. and Teo, T.M. "Three-dimensional vibration analysis of rectangular plates based on differential quadrature method", J. of Sound and Vibration, 220(4), pp. 577-599 (1999).
- Zhou, D. and Cheung, Y.K. "Free vibration analysis of line supported rectangular plates using a set of static beam functions", J. of Sound and Vibration, 223(2), pp. 231-245 (1999).
- Xiang, Y. et al. "Levy solutions for vibration of multi-span rectangular plates", Int. J. of Mechanical Sciences, 44(6), pp. 1195-1218 (2002).
- Xiang, Y. and Wei, G.W. "Exact solutions for vibration of multi-span rectangular Mindlin plates", J. of Vibration and Acoustics, 124(4), pp. 545-551 (2002).