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Vibration Analysis of Moderately Thick
Rectangular Plates with Internal Line

Support Using the Rayleigh-Ritz Approach

Sh. Hosseini-Hashemi1, K. Khorshidi1;� and H. Payandeh1

Abstract. In this study, the free vibration of moderately thick rectangular plates with several
internal line supports was analyzed; the plates having twenty one possible boundary conditions (a
combination of clamped, simply supported and free classical boundary conditions). The dimensionless
equations of the strain (potential) and kinetic energy were derived, based on the Mindlin plate theory,
to study the transverse vibration of moderately thick rectangular plates (in terms of the resultant stress,
with consideration of transverse shear deformation and rotatory inertia). The Rayleigh-Ritz method,
assuming two dimensional polynomial functions as admissible displacement functions, was applied.
Numerical results were presented for a wide range of aspect ratios and thickness to length ratios. The
inuence of line support location and thickness to length ratio on the frequency parameters was shown
graphically.
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INTRODUCTION

Moderately thick plates are extensively used in mod-
ern structures. Analysis of these plates is of great
importance for design engineers. The solution of the
exural vibration depends on the boundary conditions
of the plate. Rectangular plates are commonly used
as structural components in many branches of modern
technology, namely, mechanical, aerospace, electronic,
marine, optical, nuclear and structural engineering.
Thus, the study of their free vibration behavior is
very important to the structural designers. In recent
years, many researchers have worked on the vibration
of plates.

The published work concerning the vibration of
such plates is abundant; however, the vast majority
is based on the thin plate theory. An excellent refer-
ence source may be found in the well-known work of
Leissa [1] and his subsequent articles [2-7] published in
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the Vibration Digest from time to time. His remarkable
work on the free vibration of thin rectangular plates [8]
also presents comprehensive and accurate analytical
results for twenty one distinct cases, which involve all
possible combinations of classical boundary conditions.

The thin plate theory neglects the e�ect of shear
deformation and rotatory inertia, which result in the
over-estimation of vibration frequencies. This error
increases with increasing plate thickness. Improving
on the thin plate theory, Mindlin and coworkers [9,10]
proposed the so-called �rst order shear deformation
theory for moderately thick plates and incorporated
the e�ect of rotatory inertia. The �rst order shear
deformation plate theory of Mindlin, however, requires
a shear correction factor to compensate for the error
resulting from the approximation made on the non-
uniform shear strain distribution.

Over the years, solutions for eigenvalue problems
of thick plates have been represented, using several
di�erent approximate methods. Dawe and Roufaeil [11]
treated the free vibration of Mindlin rectangular plates
using the Rayliegh-Ritz method. They used the Tim-
oshenko beam functions as the admissible functions of
the plate. Liew et al. [12,13] investigated the free vibra-
tion of Mindlin rectangular plates, respectively, by us-
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ing two dimensional polynomials and one-dimensional
Gram-Schmidt polynomials as the admissible functions
of the plate in the Rayliegh-Ritz method. Cheung
and Zhou [14] developed a set of static Timoshenko
beam functions as the admissible functions to study
the vibration of moderately thick rectangular plates
by the Rayliegh-Ritz method. The �nite element,
�nite strip, �nite layer, collocation and superposition
methods have also been used, respectively, by Al Janabi
et al. [15], Dawe [16], Cheung and Chakrabarti [17],
Mikami and Yoshimura [18] and Gorman [19], to study
the eigenvalue problems of thick plates. Moreover,
some investigations on the three-dimensional vibrations
of rectangular plates have been reported by Srinvas et
al. [20], Wittrick [21], Liew et al. [22-24] and Liew
and Teo [25]. Zhou and Cheung [26] presented the
free vibration of line supported thin rectangular plates
using a set of static beam functions. In their work,
the eigenfrequency equation for the plate is derived
by minimizing the functional energy, by applying the
Rayleigh-Ritz method. Xiang e al. obtained an exact
solution for the vibration of multi-span moderately
thick rectangular plates. They employed the Levy
type solution method and the state-space technique
to develop an analytical and exact approach for the
free vibration of thin plates [27] and moderately thick
plates [28]. In their work, the plates, having two
opposite edges, have simply supported boundary con-
ditions, namely SSSS, SCSS, SCSC, SSSF, SFSF and
SCSF.

The study of the vibration behavior of multi
span rectangular plates, having classical boundary
conditions, can be found in [26] for thin plates and
in [28] for six cases of moderately thick plates. No
data concerning the vibration behavior of multi-span
moderately thick rectangular plates for the rest of
the �fteen boundary conditions are available in the
literature. To �ll this apparent void, the present work
was carried out to provide the vibration analysis for
all twenty-one possible classical boundary conditions.
In the present work, a new set of two dimensional
complete polynomial functions were developed for the
vibration behavior of multi-span moderately thick rect-
angular plates, considering Mindlin's plate theory. The
internal line support is set in one or two directions. The
nondimensional equations of strain and kinetic energy
were derived and the frequency parameters and mode
shapes were obtained by applying the Rayleigh-Ritz
method. Finally, some numerical results were given for
moderately thick rectangular plates with a number of
internal line supports in one or two directions. The
inuence of line support location and thickness to
length ratio on the frequency parameters was studied
graphically. Numerical results were compared with
known values in the literature for thin plates [26] and
a Levy type solution [28].

ASSUMPTIONS OF MINDLIN PLATE
THEORY

Consider a at, isotropic, rectangular Mindlin plate of
uniform thickness, h, length, a, width, b, modulus of
elasticity, E, Poisson's ratio, �, shear modulus, G =
E=2(1 + �), and density per unit volume, �, oriented
so that its mid-plane surface contains the x1 and x2
axis of a Cartesian Co-ordinate system, (x1; x2; x3), as
shown in Figure 1.

The displacements along the x1 and x2 axes
are denoted by W1 and W2, respectively, while the
displacement in the direction perpendicular to the
undeformed mid-plane surface is denoted by W3. In
the Mindlin plate theory, the displacement components
are assumed to be given by:

W1 = �x3 1(x1; x2; t); (1)

W2 = �x3 2(x1; x2; t); (2)

W3 =  3(x1; x2; t); (3)

where t is the time,  3 is the transverse displacement,
 1 and  2 are the slope, due to bending alone in the
respective planes.

Using the displacement �eld given in Equations 1
to 3, the components of the strains may be expressed
as:

"11 =
@W1

@x1
= �x3 1;1; (4)

"22 =
@W2

@x2
= �x3 2;2; (5)

"33 =
@W3

@x3
= 0; (6)

"12 =
1
2

�
@W1

@x2
+
@W2

@x1

�
= �1

2
( 1;2 +  2;1)x3; (7)

Figure 1. A Mindlin plate with co-ordinate convention.
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( 2 �  3;2): (9)

Using Hook's law, the components of the stress may be
expressed as:

�11 =
E

1� �2 ("11 + �"22); (10)

�22 =
E

1� �2 ("22 + �"11); (11)

�12 = 2G"12; (12)

�13 = 2G"13; (13)

�23 = 2G"23: (14)

FORMULATION OF RAYLEIGH-RITZ
APPROACH

From the vibration theory of moderately thick plates,
the strain and kinetic energies of an elastic isotropic
plate in the Cartesian coordinate are as follows:

T =
1
2
�
Z
V

 �
@W1

@t

�2

+
�
@W2

@t

�2

+
�
@W3

@t

�2
!
dV;

(15)

U =
1
2

Z
V

(�11"11 + �22"22 + �33"33 + 2�12"12

+ 2�13"13 + 2�23"23)dV; (16)

where V is the volume of the plate, T is the kinetic
energy and U is the strain energy. For generality and
convenience, the coordinates are normalized, with re-
spect to the plate planar dimensions, and the following
nondimensional terms are introduced:

X1 =
x1

a
; X2 =

x2

b
; � =

h
a
; � =

a
b
;

� = !a2

r
�h
D
; (17)

where � is the frequency parameter, ! is the natural
frequency, D = Eh3=12(1� �2) is the exural rigidity,
� is the thickness to length ratio and � is the aspect
ratio. By assumption of the free harmonic vibration
and using nondimensional parameters, the maximum
strain and kinetic energy of the rectangular plate is

given by:

Tmax =
�

2D
�2

0:5Z
�0:5

0:5Z
�0:5

�
�2

12
( ~ 2

1 + ~ 2
2) + ~ 2

3

�
dX1dX2;

(18)
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�0:5
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2;2�
2 + 2D� ~ 1;1 ~ 2;2

+
1�D

2
(� ~ 1;2 + ~ 2;1)2 +

6(1� �)�2

�2

h
( ~ 1 � ~ 3;1)2

+( ~ 2 � � ~ 3;2)2
io

dX1dX2; (19)

where � is the shear correction factor to account for
the fact that the transverse shear strains are not truly
independent of the thickness coordinate. Also, ~ 1, ~ 2
and ~ 3 are dimensionless parameters, chosen as below:

~ 1(X1; X2) =  1(x1; x2; t)e�i!t;

~ 2(X1; X2) =  2(x1; x2; t)e�i!t; (20)

~ 3(X1; X2) =  3(x1; x2; t)
e�i!t
a

; (21)

where � =
p�1. In view of nondimensional terms, the

energy functional for the Mindlin plate is given by:

L = Umax � Tmax =
�

2D
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2) + ~ 2

3

��
dX1dX2: (22)

After choosing a set of appropriate admissible func-
tions for ~ 1, ~ 2 and ~ 3, the eigenvalue equation can
be derived by applying the Rayleigh-Ritz method to
minimizing Equation 22, with respect to the unknown
coe�cients in these admissible functions. For Mindlin
plates, the transverse deection and bending slopes
may be parameterized by two dimensional complete
polynomial functions:

~ 1(X1; X2) =
N1X
i=0

iX
j=0

anXj
1X

i�j
2 G1(X1; X2); (23)



Vibration Analysis of Moderately Thick Rectangular Plates 25

~ 2(X1; X2) =
N2X
i=0

iX
j=0

bnXj
1X

i�j
2 G2(X1; X2); (24)

~ 3(X1; X2) =
N3X
i=0

iX
j=0

cnXj
1X

i�j
2 G3(X1; X2); (25)

where n = (i + 1)(i + 2)=2 � j and Ni(i = 1; 2; 3) is
the order of the two dimensional polynomial. an, bn
and cn are unknown coe�cients and G1, G2 and G3
are fundamental functions, which satisfy the geometric
boundary conditions of rectangular Mindlin plates.
The fundamental functions are written as follows:

Gi(X1; X2) =(X1 + 0:5)0OR1(X1 � 0:5)0OR1

(X2 + 0:5)0OR1(X2 � 0:5)0OR1;

i = 1; 2; 3: (26)

The geometric boundary conditions of the Mindlin
plates can be expressed as:

For simply supported edges:

~ 1 = 1; ~ 2 = 0; ~ 3 = 0 In X1 � direction;

~ 1 = 0; ~ 2 = 1; ~ 3 = 0 In X2 � direction:
(27)

For clamped edges:

~ 2 = 0; ~ 2 = 0; ~ 3 = 0 In X1 � direction;

~ 2 = 0; ~ 2 = 0; ~ 3 = 0 In X2 � direction:
(28)

For free edges:

~ 1 = 1; ~ 2 = 1; ~ 3 = 1 In X1 � direction;

~ 1 = 1; ~ 2 = 1; ~ 3 = 1 In X2 � direction:
(29)

For example, the fundamental functions for a SCFC
Mindlin rectangular plate without internal line support
(as shown in Figure 2, case 14), can be written as:

G1(X1; X2) =(X1 + 0:5)0(X1 � 0:5)0(X2 + 0:5)1

(X2 � 0:5)1;

G2(X1; X2) =(X1 + 0:5)1(X1 � 0:5)0(X2 + 0:5)0

(X2 � 0:5)1;

G3(X1; X2) =(X1 + 0:5)1(X1 � 0:5)0(X2 + 0:5)1

(X2 � 0:5)1: (30)

Figure 2. Boundary conditions of Mindlin plate analyzed.
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After minimizing Equation 22, the governing eigen-
value equation can be derived as:

([K]� �2[M ])

8<:fangfbngfcng

9=; = 0; (31)

where [K] is the sti�ness matrix and [M ] is
the mass matrix. Because not all elements of�fang fbng fcng�T are equal to zero, from Equa-
tion 31, one has:

det([K]� �2[M ]) = 0: (32)

The frequency parameter, �, is obtained by solving the
generalized eigenvalue problem de�ned by Equation 32.
The unknown coe�cients vector in Equation 31 is the
Null space of the ([K] � �2[M ]) matrix for any mode
sequence.

APPLYING THE RAYLEIGH-RITZ
APPROACH FOR VIBRATIONS OF
MULTI-SPAN MINDLIN RECTANGULAR
PLATES

It is considered that the plate, as shown in Figure 3,
consists of four spans that were divided at the locations
of an internal line support in the X1�direction and an
internal line support in the X2�direction. For analysis,
this plate was separated into four plates. The boundary
conditions of each span contain classical boundary con-
ditions along the edges and special boundary conditions
along the internal line supports.

Along the interface between the spans, for exam-
ple span (I) and span (II), the following essential and
natural boundary conditions must hold to ensure the
continuity of the plate and satisfaction of the internal
line support conditions:

Along the line support:

Figure 3. A Mindlin plate with four span in two
directions.

~ 3jI = 0; (33)

~ 3jII = 0; (34)

~ 3;3jI = ~ 3;1jII ; (35)

~ 2jI = ~ 2jII ; (36)

~ 1jI = ~ 1jII ; (37)

M11jI = M11jII : (38)

For free vibration analysis of the plate, the domain
of integration was separated. For example, for the
four-span plate, as shown in Figure 3, the domain of
integration is given by:

0:5Z
�0:5

0:5Z
�0:5

()dX1dX2 =
�0:5+a0Z
�0:5

�0:5+b0Z
�0:5

()dX1dX2

+
�0:5+a0Z
�0:5

0:5Z
�0:5+b0

()dX1dX2

+
0:5Z

�0:5+a0

�0:5+b0Z
�0:5

()dX1dX2

+
0:5Z

�0:5+a0

0:5Z
�0:5+b0

()dX1dX2: (39)

All the results presented hereafter are for a rectangular
Mindlin plate, having Poisson ratio � = 0:3, the shear
correction factor is � =

p
5=6 and N1 = N2 = N3 = N .

Convergence Studies

After having developed a method of analysis in the
preceding section, a primal question is: \How many
terms of a two dimensional complete polynomial (Equa-
tions 23-25) were required to obtain reasonably con-
vergent results?" This question was answered through
several numerical studies, as shown in Tables 1 to 6,
for some di�erent boundary conditions.

Tables 1 to 6 illustrate the accuracy, convergency
and usefulness of the approach described above. From
the results presented in these tables, it is observed that,
for the �rst ten frequency parameters of rectangular
Mindlin plates with two equal spans in an X1-direction,
the size of terms of the two dimensiondal polynomial is
N = 11.
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Table 1. Convergence studies of frequency parameters � = �=(�2�2) of rectangular Mindlin plate with two equal spans
(a0 = 0:5, b0 = 0) for SFSF boundary condition (case 5) and geometry parameters (� = 0:05, � = 2).

Mode
Sequence

N = 4 N = 5 N = 6 N = 7 N = 8 N = 9 N = 10

1 1.1566 1.1566 1.1555 1.1555 1.1540 1.1529 1.1529

2 1.4000 1.2617 1.2617 1.2544 1.2544 1.2463 1.2463

3 3.0187 3.0187 2.6646 2.6646 2.6587 2.6528 2.6528

4 4.5556 3.8591 3.8591 3.2165 6.3265 3.1562 3.1562

5 4.7648 3.9095 3.9095 3.8859 3.8859 3.8838 3.8838

6 6.5902 4.5556 3.9774 3.9774 3.9424 3.9424 3.9324

7 10.6650 6.4946 6.4946 5.4951 5.4951 5.4106 5.4106

8 11.2676 9.5555 6.6596 6.6596 5.6880 5.6880 5.6629

9 11.4672 10.6650 7.2034 7.2034 5.9790 5.8337 5.8337

10 12.5240 11.2676 8.0827 8.0827 7.9561 6.8379 6.8378

Table 2. Convergence studies of frequency parameters � = �=(�2�2) of rectangular Mindlin plate with two equal spans
(a0 = 0:5, b0 = 0) for SSSF boundary condition (case 4) and geometry parameters (� = 0:05, � = 2).

Mode
Sequence

N = 4 N = 5 N = 6 N = 7 N = 8 N = 9 N = 10

1 1.2340 1.2073 1.2036 1.2001 1.2000 1.1973 1.1957
2 2.3552 2.1925 2.1311 2.1111 2.0958 2.0900 2.0874
3 4.0878 3.1334 3.1194 2.9638 2.9579 2.9258 2.9247
4 4.4619 3.9732 3.9275 3.9122 3.9091 3.9076 3.9045
5 5.8913 5.5889 4.9408 4.7911 4.7653 4.7281 4.7212
6 9.6110 7.0022 5.7109 5.2212 5.0311 4.9620 4.9333
7 10.7125 7.6849 6.4289 5.8538 5.6695 5.6237 5.5888
8 10.9521 9.4502 8.1371 7.4678 6.9624 6.3506 6.3269
9 16.7501 11.5272 10.2920 8.0522 7.8457 7.5745 7.4613
10 18.5986 13.0911 10.5893 8.8053 7.9776 7.9707 7.9668

Table 3. Convergence studies of frequency parameters � = �=(�2�2) of rectangular Mindlin plate with two equal spans
(a0 = 0:5, b0 = 0) for SCSS boundary condition (case 2) and geometry parameters (� = 0:05, � = 2).

Mode
Sequence

N = 4 N = 5 N = 6 N = 7 N = 8 N = 9 N = 10

1 2.3108 2.1379 2.0990 2.0653 2.0541 2.0477 2.0481
2 3.1974 2.9671 2.8310 2.7785 2.7531 2.7311 2.7287
3 5.4532 5.1853 4.7826 4.7501 4.6883 4.6800 4.6708
4 7.3194 5.5081 5.2884 5.0198 4.9389 4.8961 4.9037
5 7.6125 5.7188 5.3533 5.1257 5.0896 5.0328 5.0255
6 12.6581 10.1995 6.8593 6.7650 6.2865 6.2350 6.1570
7 13.1905 10.2871 8.3432 8.1001 7.5032 7.4395 7.3292
8 13.4555 10.7083 9.4893 8.8533 8.8151 8.3440 8.3318
9 14.2582 12.3057 10.1669 9.1221 8.8966 8.6523 8.6780
10 18.4549 14.8508 11.9872 9.3214 9.0184 8.9318 8.8754
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Table 4. Convergence studies of frequency parameters � = �=(�2�2) of rectangular Mindlin plate with two equal spans
(a0 = 0:5, b0 = 0) for SSCC boundary condition (case 10) and geometry parameters (� = 0:05, � = 2).

Mode
Sequence

N = 4 N = 5 N = 6 N = 7 N = 8 N = 9 N = 10 N = 11

1 2.8679 2.7164 2.6327 2.5894 2.5637 2.5446 2.5424 2.5289
2 4.4599 3.5529 3.4209 3.2431 3.2041 3.1451 3.1313 3.1133
3 6.4961 5.7405 5.5955 5.5074 5.4704 5.4636 5.4527 5.4491
4 7.9128 6.7942 6.0899 5.9535 5.6737 5.5503 5.5375 5.4827
5 8.7816 7.3894 6.3197 5.9535 5.8085 5.7949 5.7501 5.7552
6 12.3833 10.5217 8.6831 7.6553 7.3615 6.8523 6.8485 6.7175
7 12.7345 10.8626 9.8252 8.8404 8.4895 8.3433 8.2450 8.2366
8 13.4848 11.5294 9.9600 9.7693 9.6106 9.5239 9.1348 9.1915
9 15.1323 12.2180 10.8022 10.0807 9.7124 9.5827 9.5805 9.5636
10 16.4597 14.4955 12.2997 10.7195 9.9395 9.7809 9.7838 9.7401

Table 5. Convergence studies of frequency parameters � = �=(�2�2) of rectangular Mindlin plate with two equal spans
(a0 = 0:5, b0 = 0) for CFSF boundary condition (case 18) and geometry parameters (� = 0:05, � = 2).

Mode
Sequence

N = 4 N = 5 N = 6 N = 7 N = 8 N = 9 N = 10

1 1.6307 1.6265 1.6249 1.6235 1.6221 1.6215 1.6206
2 1.7705 1.7236 1.7042 1.6972 1.6959 1.6907 1.6898
3 3.5757 3.1925 2.9911 2.9296 2.9258 2.9242 2.9205
4 4.7480 4.2740 3.9861 3.5418 3.4441 3.3902 3.3840
5 5.8437 4.7157 4.6819 4.6733 4.6701 4.6676 4.6660
6 6.4246 4.8571 4.7877 4.7320 4.7180 4.7115 4.7081
7 10.4410 7.8102 6.2957 6.1677 5.9410 5.8232 5.7969
8 11.4837 9.1497 7.0777 6.6838 6.0138 5.9890 5.9835
9 11.6112 10.3245 8.1198 7.1609 6.7004 6.4150 6.3732
10 12.8013 11.1113 9.0680 8.5869 8.3989 7.0742 6.9666

Table 6. Convergence studies of frequency parameters � = �=(�2�2) of rectangular Mindlin plate with two equal spans
(a0 = 0:5, b0 = 0) for SCFS boundary condition (case 14) and geometry parameters (� = 0:05, � = 2).

Mode
Sequence

N = 4 N = 5 N = 6 N = 7 N = 8 N = 9 N = 10 N = 11

1 1.7155 1.6830 1.6690 1.6621 1.6560 1.6519 1.6510 1.6508
2 2.9813 2.6525 2.5135 2.4543 1.4293 2.4125 2.4015 2.4007
3 4.5902 3.6581 3.4884 3.2598 3.2224 3.1866 3.1734 3.1674
4 4.9628 4.7857 4.7346 4.7073 4.6955 4.6887 4.6833 4.6788
5 7.6167 6.3851 5.6753 6.6198 5.2868 5.1559 5.1137 5.1025
6 8.8693 7.7765 6.0204 7.5434 5.4571 5.4174 5.3908 5.3823
7 9.4622 8.0651 6.9218 8.9564 6.3208 6.2261 6.1765 6.1681
8 10.7970 9.3896 9.0640 9.3443 7.2000 6.5273 6.4794 6.4052
9 15.7370 12.0571 10.5515 9.9701 8.5045 8.2273 7.9230 7.9174
10 16.7031 12.8721 10.8349 11.2708 8.9094 8.8923 8.8816 8.8770
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Comparing Studies

Numerical results were compared with known re-
sults that are available in the literature. In or-
der to validate the accuracy of the present predic-
tion, a comparison has been carried out for both
thin (� = 0:001) and moderately thick rectangu-
lar plates, with di�erent boundary conditions (Fig-
ure 2) and di�erent locations of internal line sup-
port.

The frequency parameters, � = �=(�2�2), given
by the authors, were compared with the available
results in Zhou's work [26], using the Rayleigh-
Ritz method for thin rectangular plates and Xiang's
work [27], using the Levy type solution for moderately
thick rectangular plates.

From the results, as shown in Tables 7 to 15, there
is excellent agreement between the present work and
results in the literature.

NUMERICAL RESULTS

In this paper, the frequency parameters were obtained
from the free vibration analysis of a multi-span moder-
ately thick rectangular plate in dimensionless form, � =
�=(�2�2), by using the Rayleigh-Ritz energy method.
Numerical calculations have been performed for each of
the twenty-one possible classical boundary conditions,
with arrangement of the boundary conditions as shown
in Figure 2.

The results were given in Tables 16 to 19 for
the thickness to length ratio, � = 0:1, and the aspect
ratio, � = 2. In each table, the frequency parameters
were presented for the �rst ten mode sequences of
a moderately thick rectangular plate with two equal
spans in an X1-direction.

As shown in Figures 4 and 5, it is observed that
the behavior of the internal line support is close to a
simply supported edge.

Table 7. Comparison studies of frequency parameters � = �=(�2�2) of rectangular Mindlin plate with two equal spans in
X1�direction for geometry parameters (� = 0:1, � = 2).

Mode SSSS Plate SFSF Plate SCSC Plate
Sequence Xiang [28] Present Xiang [28] Present Xiang [28] Present

1 1.9317 1.9323 1.1523 1.1529 2.2684 2.6513

2 2.2663 2.2948 1.2406 1.2463 2.6992 2.8230

3 4.6084 4.6045 2.6500 2.6528 4.7726 5.0543

4 4.6084 4.6474 3.0780 3.1562 4.9693 5.0711

5 4.7671 4.8254 3.8792 3.8838 5.2839 5.9807

6 5.2781 5.5062 3.9134 3.9323 5.9928 6.6160

7 7.0716 7.1420 5.3950 5.4106 7.5084 8.5816

8 7.4914 7.8483 5.6358 5.6629 7.9604 8.6107

9 8.6162 8.6378 5.6448 5.8337 8.7010 8.8731

10 8.6162 8.7919 6.3488 6.8378 8.7906 8.9342

Table 8. Comparison studies of frequency parameters � = �=(�2�2) of rectangular Mindlin plate with two equal spans in
X2�direction for geometry parameters (� = 0:1, � = 2).

Mode SSSS Plate SFSF Plate SCSC Plate
Sequence Xiang [28] Present Xiang [28] Present Xiang [28] Present

1 1.1927 1.1957 1.1946 1.1931 2.0248 2.0481

2 2.0689 2.0874 2.3943 2.5976 2.5548 2.7287

3 2.8892 2.9247 2.9544 2.9770 4.6528 4.6708

4 3.8954 3.9045 3.8956 3.9031 4.8153 4.9037

5 4.6804 4.7212 4.8564 4.9926 4.9054 5.0255

6 4.8667 4.9333 5.4232 5.6005 5.7650 6.1570

7 5.5230 5.5888 5.5330 5.7243 7.1971 7.3292

8 6.0679 6.3269 6.2076 6.5187 7.8210 8.3318

9 7.2563 7.4613 7.6775 7.9669 8.6389 8.6780

10 7.9474 7.9668 7.9474 8.0729 8.7618 8.8754
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Table 9. Comparison studies of frequency parameters � = �=(�2�2) of square Mindlin plate with an internal line support
for SSSS boundary condition (case 1).

� a0 Method Mode Sequence
1 2 3 4 5 6

0.1 Xiang [28] 2.6392 5.4604 6.7781 9.5650 10.3620 13.5290
Present 2.7071 5.5960 6.9793 9.7684 10.4629 13.5769

0.01 0.3 Xiang [28] 3.5328 6.3571 9.6807 11.2430 12.6200 14.8980
Present 3.8739 6.4669 9.3245 11.6000 12.1222 14.2023

0.5 Xiang [28] 4.9955 7.0108 7.9884 9.5607 12.9690 14.1610
Present 4.9907 7.4812 8.6132 10.0759 13.4899 13.9791

0.1 Xiang [28] 2.5843 5.1324 6.5118 9.1169 9.9078 12.4250
Present 2.5982 5.3745 6.5507 9.5783 10.1859 13.1340

0.05 0.3 Xiang [28] 3.4630 6.1682 9.2836 10.7130 11.9640 13.8330
Present 3.5113 6.2988 9.3556 11.2127 11.5998 13.8050

0.5 Xiang [28] 4.8907 6.7106 7.7267 9.0653 12.3050 13.2290
Present 4.9313 6.7857 7.7416 9.1842 12.2853 13.2692

0.1 Xiang [28] 2.4416 4.9380 5.8821 8.1036 8.8524 10.6750
Present 2.4582 4.9807 5.9313 8.3533 9.0149 10.8019

0.10 0.3 Xiang [28] 3.2732 5.6883 8.3308 9.4966 10.4850 11.6130
Present 3.3045 5.6591 8.7895 9.9055 10.4761 11.2523

0.5 Xiang [28] 4.6084 5.9863 7.0716 7.9475 10.8090 11.3000
Present 4.5691 6.0985 6.9653 8.1135 10.691 11.5734

Figure 4. First nine mode shapes of CFSF rectangular Mindlin plates with two equal spans (a0 = 0:5, b0 = 0) for
geometry parameters (� = 0:1, � = 2).

The results were given in Tables 20, and 21 for
the thickness to length ratios, � = 0:01, 0.05 and 0.1,
over a range of location of internal line supports in an
X1-direction, a0 = 0:1, 0.3, 0.5 and 0.7. In each table,
the frequency parameters are presented for the �rst six
mode sequence for a moderately thick square plate.

The results are given in Table 22 for a moderately

thick square plate with two equal spans in an X1-
direction for common shear correction factors, � =p

5=6,
p
�2=12 and

p
0:86667.

In order to study the e�ect of line support location
on the �rst four frequency parameters of the plates,
consideration may now be paid to Figures 6 and 7.
From the results in these �gures, it is observed that,
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Table 10. Comparison studies of frequency parameters � = �=(�2�2) of square Mindlin plate with an internal line
support for SFSF boundary condition (case 5).

� a0 Method Mode Sequence

1 2 3 4 5 6

0.1 Xiang [28] 1.2456 3.2596 4.2351 6.5319 7.4051 9.1903

Present 1.2470 3.2706 4.2402 6.5855 7.5085 9.2204

0.01 0.3 Xiang [28] 1.4263 3.2920 4.4249 5.4786 6.4685 8.5657

Present 1.4290 3.3070 4.4355 5.5920 6.6058 9.1578

0.5 Xiang [28] 1.6309 2.3050 4.7253 5.1271 7.6042 9.7036

Present 1.6332 2.3122 4.7297 5.1583 7.6132 9.7036

0.1 Xiang [28] 1.2324 3.1863 4.1481 6.3087 7.1414 8.8283

Present 1.2357 3.1979 4.1554 6.3746 7.1530 8.9323

0.05 0.3 Xiang [28] 1.4082 3.2051 4.3260 5.2780 6.2026 8.1429

Present 1.4139 3.2232 4.3414 5.2114 6.1532 8.3649

0.5 Xiang [28] 1.6067 2.2520 4.6094 4.9625 7.3277 9.2886

Present 1.6078 2.2617 4.6166 4.9910 7.3318 9.3015

0.1 Xiang [28] 1.2046 3.0298 3.9283 5.8065 6.5417 7.9786

Present 1.2072 3.0380 3.9354 5.8708 6.5570 8.0462

0.10 0.3 Xiang [28] 1.3707 3.0266 4.0825 4.8245 5.6518 7.2601

Present 1.3752 3.0281 3.8952 4.8007 5.0274 7.2050

0.5 Xiang [28] 1.5593 2.1387 4.3358 4.5951 6.7071 8.1537

Present 1.5593 2.1526 4.3386 4.6358 6.7074 8.3569

Table 11. Comparison studies of frequency parameters � = �=(�2�2) of square Mindlin plate with an internal line
support for SCSC boundary condition (case 3).

� a0 Method Mode Sequence

1 2 3 4 5 6

0.1 Xiang [28] 3.3169 5.8735 8.1316 10.6280 10.6670 15.2300

Present 3.3396 5.9375 8.1986 10.3577 10.7797 15.4488

0.01 0.3 Xiang [28] 4.6841 7.1453 11.7790 12.0230 14.6140 18.5410

Present 4.8868 7.8217 12.1692 12.3386 14.9731 18.6906

0.5 Xiang [28] 7.0108 9.5608 9.6209 11.6900 14.1510 15.7750

Present 7.4218 9.6728 9.9063 11.7744 14.4464 15.9824

0.1 Xiang [28] 3.1958 5.6619 7.6536 9.9975 10.1140 13.9760

Present 3.2094 5.6802 7.6894 9.1155 10.2124 13.9334

0.05 0.3 Xiang [28] 4.5184 6.8505 11.1380 11.2380 13.5430 17.1470

Present 4.8831 7.3487 11.1867 11.2991 13.7515 16.6390

0.5 Xiang [28] 6.7130 8.9583 9.0738 10.7970 13.2440 14.4270

Present 6.7618 9.0162 9.1234 10.8949 13.2788 14.5781

0.1 Xiang [28] 2.9489 5.1901 6.7054 8.6714 8.9777 11.6060

Present 2.9696 5.2306 6.7635 8.7661 9.1216 11.5263

0.10 0.3 Xiang [28] 4.1108 6.1636 9.5728 9.7472 11.3940 14.2020

Present 4.1627 6.2729 9.8679 9.9255 12.1808 14.6765

0.5 Xiang [28] 5.9992 7.5511 7.9854 9.0159 11.3540 11.9280

Present 6.0244 7.6832 8.0103 9.1964 11.3708 12.1525
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Table 12. Comparison studies of frequency parameters � = �=(�2�2) of square Mindlin plate with an internal line
support for SSSF boundary condition (case 4).

� a0 Method Mode Sequence
1 2 3 4 5 6

0.3 Xiang [28] 1.5211 4.4498 5.0600 8.2985 9.3796 11.6760
Present 1.5988 4.5239 5.6179 9.1252 9.7252 11.4575

0.01 0.5 Xiang [28] 1.9456 4.9069 5.7162 8.6236 9.1039 9.8289
Present 2.0469 4.9813 5.9851 8.8918 9.5790 9.9238

0.7 Xiang [28] 2.7881 4.2836 5.9685 7.0169 10.1550 11.0050
Present 2.9095 4.3437 6.0560 7.1178 10.2627 11.0766

0.3 Xiang [28] 1.4993 4.3475 4.9037 7.9353 8.9944 11.1120
Present 1.5139 4.3894 4.9884 8.3778 9.1991 11.7845

0.05 0.5 Xiang [28] 1.9096 4.7706 5.5548 8.2757 8.6289 9.3885
Present 1.9176 4.7864 5.5798 8.3149 8.7340 9.2446

0.7 Xiang [28] 2.7372 4.1510 5.7939 6.7020 9.6786 10.4900
Present 2.7483 4.1773 5.8055 6.7903 9.7329 10.5111

0.3 Xiang [28] 1.4513 4.0970 4.4535 7.1458 8.1058 9.8480
Present 1.4618 4.1296 4.6117 7.1443 8.1027 9.8616

0.10 0.5 Xiang [28] 1.8341 4.4564 5.1450 7.7497 7.5883 8.4083
Present 1.8394 4.4704 5.1732 7.5049 7.7306 8.4389

0.7 Xiang [28] 2.6251 3.8364 5.3805 6.0288 8.5772 9.3278
Present 2.6283 3.8777 5.3867 6.1355 8.6594 9.3490

Table 13. Comparison studies of frequency parameters � = �=(�2�2) of square Mindlin plate with an internal line
support for SCSF boundary condition (case 6).

� a0 Method Mode Sequence
1 2 3 4 5 6

0.3 Xiang [28] 1.5363 4.4554 5.1510 8.3541 9.3817 12.3440
Present 1.5616 4.4870 5.3321 8.8142 9.4487 13.1446

0.01 0.5 Xiang [28] 1.9811 4.9168 7.2938 9.8321 9.8642 10.1340
Present 2.0063 4.9407 7.4099 9.8719 9.9404 10.2143

0.7 Xiang [28] 3.1117 5.1104 6.2351 7.5397 11.2270 12.1080
Present 3.1531 5.1242 6.2817 7.5824 11.2761 12.9105

0.3 Xiang [28] 1.5116 4.3514 4.9743 7.9734 8.9956 11.6410
Present 1.5220 4.3861 5.0326 8.2854 9.2099 12.0673

0.05 0.5 Xiang [28] 1.9411 4.7782 6.9994 9.2334 9.3904 9.5773
Present 1.9463 4.7918 7.0133 9.4242 9.4242 9.6064

0.7 Xiang [28] 3.0339 4.9150 6.0097 7.1704 10.6420 11.3590
Present 3.0420 4.9346 6.0271 7.2203 10.6751 11.4123

0.3 Xiang [28] 1.4578 4.0985 4.5769 7.1595 8.1061 10.1410
Present 1.4680 4.1276 4.6395 7.3967 8.2519 9.9506

0.10 0.5 Xiang [28] 1.8566 4.4603 6.3020 7.9088 8.3530 8.4089
Present 1.8629 4.4743 6.3128 8.0886 8.3976 8.4388

0.7 Xiang [28] 2.8680 4.4463 5.5194 6.3685 9.3958 9.6938
Present 2.8749 4.4576 5.5340 6.4433 9.4324 9.7695
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Figure 5. Mode shapes of SSSS and CCCC rectangular Mindlin plate with two equal spans in X1-direction and two equal
spans in X2-direction.

Table 14. Comparison studies of frequency parameters � = �=(�2�2) of square Mindlin plate with an internal line
support for SSSF boundary condition (case 2).

� a0 Method Mode Sequence
1 2 3 4 5 6

0.3 Xiang [28] 3.5944 6.3860 10.0140 11.2560 12.8600 17.6970
Present 3.7437 6.5575 10.077 11.2788 12.8711 17.6341

0.01 0.5 Xiang [28] 5.5739 8.2407 8.7081 10.9560 13.2920 15.2300
Present 6.1077 8.8694 9.1853 11.4361 13.6450 15.2626

0.7 Xiang [28] 4.5939 7.1024 11.4080 11.7610 14.1560 15.6420
Present 4.8438 7.3323 12.1342 12.2010 15.1674 16.8852

0.3 Xiang [28] 3.5119 6.1887 9.5403 10.7200 12.1330 16.4230
Present 3.5365 6.2490 9.7451 10.7702 12.2389 16.4423

0.05 0.5 Xiang [28] 5.4171 8.0994 8.1958 10.2190 12.5600 14.0370
Present 5.6595 8.1475 8.2554 10.3180 12.6104 14.2651

0.7 Xiang [28] 4.4487 6.8211 10.7800 11.1280 13.2330 14.3430
Present 4.4668 6.8436 10.8232 11.1550 13.2812 14.5194

0.3 Xiang [28] 3.2973 5.6959 8.4551 9.4984 10.5510 13.8620
Present 3.3242 5.7513 8.4564 9.4756 10.7739 13.9399

0.10 0.5 Xiang [28] 5.0135 7.0519 7.3241 8.6832 10.9540 11.7410
Present 5.0377 7.1502 7.3550 8.8243 10.9825 11.9049

0.7 Xiang [28] 4.0783 6.1534 9.3656 9.7448 11.2830 11.8090
Present 4.0946 6.1798 9.3847 9.7805 11.3208 12.0894

Table 15. Comparison studies of frequency parameters � = �=(�2) of square Mindlin plate with an internal line support
for SSSS boundary condition (case 1) with an internal line support in X1-direction and an internal line support in
X2-direction.

a0 = b0 Method � Mode Sequence
1 2 3 4 5 6

0.5 Zhou [26] | 78.956 94.590 94.590 108.24 197.39 197.39
Present 0.001 78.9547 94.5882 94.5882 108.2375 197.3860 197.3861
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Table 16. Frequency parameters of the SSSS, SFSF, SCSC, SSSF, SCSF and SCSS rectangular Mindlin plate with two
equal spans (a0 = 0:5, b0 = 0) for geometry parameters (� = 0:1, � = 2).

Mode Boundary Condition

Sequence SSSS SFSF SCSC SSSF SCSF SCSS

1 1.9323 1.1529 2.6513 1.1957 1.1931 2.0481

2 2.2948 1.2563 2.8230 2.0874 2.5976 2.7287

3 4.6045 2.6528 5.0543 2.9247 2.9770 4.6708

4 4.6474 3.1562 5.0711 3.9045 3.9031 4.9037

5 4.8254 3.8838 5.9807 4.7212 4.9926 5.0255

6 5.5062 3.9323 6.6160 4.9333 5.6005 6.1570

7 7.1420 5.4106 8.5816 5.5888 5.7243 7.3292

8 7.8483 5.6629 8.6107 6.3269 6.5187 8.3318

9 8.6378 5.8337 8.8731 7.4613 7.9669 8.6780

10 8.7919 6.8378 8.9342 7.9668 8.0729 8.8754

Table 17. Frequency parameters of the CCCC, CSCC, CFCC, CCSS, FSCC and rectangular Mindlin plates with two
equal spans (a0 = 0:5, b0 = 0) for geometry parameters (� = 0:1, � = 2).

Mode Boundary Condition

Sequence CCCC CSCC CFCC CCSS FSCC

1 3.3124 2.7951 2.2156 2.5289 1.6509

2 3.3713 3.3218 3.2114 3.1133 2.8633

3 6.2768 5.2668 3.5282 5.4491 3.2188

4 6.3641 6.0573 5.4911 5.4827 4.6848

5 6.5377 6.3655 6.0338 5.7552 5.6353

6 6.7758 6.5225 6.3049 6.7175 5.8808

7 8.6143 8.2725 6.7627 8.2366 6.1702

8 8.6143 9.2605 6.8369 9.1915 6.6955

9 8.6885 9.5185 8.8632 9.5636 8.4797

10 9.3670 10.3611 10.4389 9.7401 8.8808

Table 18. Frequency parameters of the FFCC, CFCS, SCFS, CFFS, CFCF, rectangular Mindlin plates with two equal
spans (a0 = 0:5, b0 = 0) for geometry parameters (� = 0:1, � = 2).

Mode Boundary Condition

Sequence FFCC CFCS SCFS CFFS CFCF

1 0.6002 2.2176 1.6510 0.5968 2.1932

2 1.9409 2.8176 2.4015 1.1474 2.2444

3 2.3071 3.4825 3.1734 2.1366 3.2550

4 2.4468 5.2998 4.6833 2.4074 3.6780

5 3.6232 5.4917 5.1137 3.2157 5.4768

6 4.1819 6.0856 5.3908 4.1404 5.5081

7 5.0660 6.6137 6.1765 4.2478 5.9532

8 5.6836 6.7519 6.4794 5.5458 6.6031

9 5.9873 8.3103 7.9230 5.7728 6.9437

10 6.6796 9.5331 8.8816 6.0177 7.1050
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Table 19. Frequency parameters of the CFSF, CFFF, SSFF, SFFF and FFFF rectangular Mindlin plate with two equal
spans (a0 = 0:5, b0 = 0) for geometry parameters (� = 0:1, � = 2).

Mode Boundary Condition
Sequence CFSF CFFF SSFF SFFF FFFF

1 1.6206 0.4812 0.4349 0.2274 0.3498
2 1.6898 0.6464 1.1766 0.7275 0.6457
3 2.9205 1.2193 1.4178 1.1301 0.8245
4 3.3840 1.8743 2.0988 1.7439 1.4671
5 4.6660 2.2774 2.6687 1.8693 2.0726
6 4.7081 2.5244 2.9468 2.5438 2.4103
7 5.7969 2.2576 3.5601 2.6921 2.4929
8 5.9835 3.5371 4.3677 3.5928 2.6137
9 6.3732 4.3720 5.4012 4.0054 2.9279
10 6.9666 5.0284 5.5982 4.7070 4.4603

Table 20. Frequency parameters � = �=(�2�2) for CFSF square Mindlin plate with an internal line support.

� a0 Mode Sequence
1 2 3 4 5 6

0.1 1.7531 3.5948 5.2641 7.3755 7.6998 10.7398
0.01 0.3 1.9043 3.6234 5.4386 5.8555 7.4098 9.7045

0.5 2.0847 2.6673 5.6966 6.0792 7.8217 10.5219
0.1 1.7272 3.4937 5.1058 7.0729 7.3358 10.1886

0.05 0.3 1.8747 3.5357 5.2755 5.6948 7.1667 9.7902
0.5 2.0419 2.5967 5.5007 5.8285 7.5037 9.7889
0.1 1.6620 3.2791 4.7099 5.2708 6.6723 8.9120

0.10 0.3 1.7973 3.3074 4.8514 5.1641 6.4245 8.3814
0.5 1.9495 2.4516 5.0417 5.3008 6.8157 8.5180

Table 21. Frequency parameters � = �=(�2�2) for SSCC square Mindlin plate with an internal line support.

� a0 Mode Sequence
1 2 3 4 5 6

0.3 5.2217 8.2761 12.8703 13.4343 13.9534 16.1474
0.01 0.5 6.0277 8.8868 9.5415 11.5396 14.9569 15.4820

0.7 3.9734 7.2688 10.5730 12.7203 13.7753 19.5108
0.3 4.6984 7.6108 10.1882 12.2748 12.9447 14.5447

0.05 0.5 5.6446 8.3722 8.7444 10.7574 13.6007 15.1016
0.7 3.7772 6.9303 9.7069 11.8450 12.5638 13.7899
0.3 4.2796 5.8378 6.7317 9.6316 10.7632 11.8953

0.10 0.5 5.1868 7.2577 7.7783 9.1934 11.5940 12.5396
0.7 3.5287 6.2691 8.5768 10.2609 10.8898 12.7524

for SSSS plates, the frequency parameters for the
�rst and second modes increase monotonically as the
location parameter, a0, moves from the plate edge to
the plate center (a0 = 0:5). As the results are shown
in �gure 6, the frequency parameters for the third and
fourth modes of the SSSS and SCSC plates increase
monotonically as the location parameter, a0, changes
from a0 = 0:1 to a0 = 0:3 and, after that, decreases
monotonically as the location parameter a0 changes

from a0 = 0:3 to a0 = 0:5 (center of the plate).
From the results presented in these �gures, it shows
that the SCSC boundary conditions of the moderately
thick rectangular plate have a similar tendency to
the SSSS boundary conditions of the moderately thick
rectangular plate. As shown in Figure 6, it is observed
that the behaviors of the SSCC, SCSS and CFSF are
similar, and that the behaviors of the SSSS, SCSC and
SCSF are also similar.
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Table 22. Frequency parameters � = �=(�2�2) for square Mindlin plate with two equal spans (a0 = 0:5, b0 = 0) for
common shear correction factors.

� Boundary Mode Sequence

Conditions 1 2 3 4 5 6

SSSS 1.9323 2.2948 4.6045 4.6474 4.8254 5.5062q
5
6 SFSF 1.1529 1.2463 2.6528 3.1562 3.8838 3.9323

SCSS 2.0481 2.7287 4.6708 4.9037 5.0255 6.1570

SSSS 1.9311 2.2935 4.6005 4.6428 4.8210 5.4996q
�2

12 SFSF 1.1526 1.2460 2.6515 3.1540 3.8812 3.9296

SCSS 2.0464 2.7259 4.6664 4.8975 5.0209 6.1478

SSSS 1.9355 2.2987 4.6164 4.6613 4.8381 5.5254p
0:86667 SFSF 1.1537 1.2475 2.6566 3.1627 3.8914 3.9404

SCSS 2.0533 2.7369 4.6838 4.9222 5.0427 6.1888

As shown in Figures 6 and 7 and Tables 16
and 21, it can be seen that, between two plates
having identical geometry parameters and location
of internal line support, the frequency parameters of
the one having more clamp boundary conditions is
greater than the one having more simply supported
or free boundary conditions, and the one which has
more simply supported boundary conditions is greater
than the one which has more free edge boundary
conditions.

In order to study the e�ect of thickness to length
ratios on the frequency parameters of the plates,
consider Figure 8 and Tables 20-21. From the results in
these illustrations, it is observed that, with increasing
thickness to length ratios, the frequency parameters are
decreasing.

The results is shown in Table 23 for a moderately
thick rectangular plate, for the thickness to length
ratio, � = 0:1, and for the aspect ratio, � = 2, with two
equal spans in an X1-direction and two equal spans in

an X2-direction. In this table, the boundary conditions
of the plate are SSSS and CCCC.

In Table 23, the e�ect of the locations of the
internal line supports on the �rst eight frequency
parameters of simply supported and fully clamped
square Mindlin plates, with an internal line support
in an X1-direction and an internal line support in an
X2, were studied for geometry parameters thickness
to length ratio: � = 0:05 and aspect ratio � = 2.
It can be seen that, for all cases, the fundamental
frequency parameters increase when the internal line
support approaches the respective center line of the
plate (a0 = b0 = 0:5). However, for simply supported
plates, mode sequence 4 starts to decrease when a0 >
0:3. For fully clamped plates, mode sequence 1
monotonically increases when the internal line support
approaches the respective center line of the plate. Also,
Figure 5 illustrated the fourth mode shape of the
SSSS plate and the sixth mode shape of the CCCC
plate.

Table 23. Vibration frequency parameters � = �=(�2�2) for rectangular Mindlin plate with an internal line support in
X1-direction and an internal line support in X2-direction for geometry parameters (� = 0:05, � = 2).

Boundary a0 = b0 Mode Sequence

Conditions 1 2 3 4 5 6 7 8

0.1 1.9403 2.7796 4.2916 5.3677 6.0211 6.1352 7.9037 8.6797

SSSS 0.3 2.9701 4.2861 5.2843 6.6484 8.0510 9.4053 10.1796 10.9368

0.5 4.6387 4.8446 6.1018 6.2982 7.1666 7.8359 8.2475 9.2885

0.1 2.6838 3.5432 3.9319 4.8857 6.2760 6.5175 6.9689 8.0161

CCCC 0.3 2.2926 2.8158 3.9688 5.1509 5.4860 6.6053 8.7806 9.4201

0.5 6.1620 6.3442 7.7915 8.0274 8.1135 8.4663 9.4377 9.9418
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Figure 6. Frequency parameters � = �=(�2�2) versus line support location a0 for square Mindlin plate with an internal
line support (� = 0:1).

Figure 7. Frequency parameters � = �=(�2�2) versus line support location a0 = b0 for square Mindlin plate with one
internal line support in X1-direction and one internal line support in X2-direction, for geometry parameters (� = 0:05,
� = 2).
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Figure 8. Frequency parameters � = �=(�2�2) versus thickness to length ratio � for square Mindlin plate with an internal
line support (a0 = 0:5).

CONCLUSION

This paper presents an energy method for the vibration
analysis of multi-span moderately thick rectangular
plates. A rectangular plate was divided into two spans
in an X1-direction and two spans in an X2-direction.
The Rayleigh-Ritz method was employed to obtain the

frequency parameters and mode shapes of the plates.
The conclusions of this approach are follows:

� The frequency parameters decrease as the plate
thickness to length ratios increase, due to the
inuence of transverse shear deformation and rotary
inertia.
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� It can be seen that rapid convergency and good
accuracy is achieved with a small number of terms of
the two dimensional complete polynomial functions.

� The present method is especially suitable for the
moderately thick rectangular plate problem, with a
large amount of internal line support in both X1 and
X2-directions.

� Finally, based on comparison with results available
in the literature, the validity of the present results
were established.
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