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Direct Discrete Method (DDM) and its

Application to Neutron Transport Problems

N. Vosoughi�, A.A. Salehi1, M. Shahriari2 and M. Heshmatzadeh1

The objective of this paper is to introduce a new direct method for neutronic calculations.
This method, called Direct Discrete Method (DDM), is simpler than the Neutron Transport
Equation and more compatible with the physical meanings of the problem. The method, based
on the physics of the problem, initially runs through meshing of the desired geometry. Next,
the balance equation for each mesh interval is written. Considering the connection between the
mesh intervals, the �nal discrete equation series are directly obtained without the need to �rst
pass through the set-up of the neutron transport di�erential equation. In this paper, a single and
multigroup neutron transport discrete equation has been produced for a cylindrical shape fuel
element with and without the associated clad and the coolant regions, each with two di�erent
external boundary conditions. The validity of the results from this new method are tested against
the results obtained by the MCNP-4B and the ANISN codes.

INTRODUCTION

A control volume is usually chosen for solving the phys-
ical problems on hand and the production, absorption,
input and output terms are written for it. Then,
if the control volume approaches zero, the relevant
di�erential equation can be derived. This equation,
with its initial and boundary conditions, expresses
the mentioned physical phenomena in a mathematical
formulation. The derived di�erential equation is not
usually easy to solve, except for simple and symmetrical
geometries. Therefore, numerical methods are bound
to be used. In this regard, the continuous parameters
must be converted to discrete parameters to produce
an algebraic equation series .

RESTRICTIONS IN APPLYING
DIFFERENTIAL EQUATION

Some intricacies in applying the di�erential equations
have already been stated. Here, some more restrictions
in applying this equation are listed [1]:
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1. Physical variables can be classi�ed into two main
categories: Global quantities and �eld functions.
Global quantities are directly measurable in the
laboratory; therefore, they must be physical and
realizable parameters, such as mass, internal energy
and neutron population. The corresponding �eld
functions are derived from these global variables
by a limiting process and are called mass density,
energy density and neutron population density. The
di�erential formulation of physical laws requires the
conversion of global variables into �eld functions by
the limiting process applied to the line, surface and
volume to get the densities and to the time interval
to get the rates;

2. The analytical solutions of di�erential equations are
normally possible for smooth boundaries. This con-
dition is not commonly met in practice. Therefore,
the numerical method is usually used;

3. Usually, sources are concentrated in small regions,
like the heat spot of a laser beam or a point neutron
source. The di�erential formulation leads to con-
sidering pointwise concentrated sources, which are
unphysical, instead of sources with given intensity
concentrated in a small but �nite area. In order
to overcome this problem, the Dirac generalized
function is introduced [2,3];

4. In addition to a few of the mentioned shortcomings
attributable to di�erential formulations, there is
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one other major drawback and that is its infrequent
adaptability to analytical solutions. As a result,
one should resort to numerical methods, such as
the �nite di�erence method, the �nite element
method, the weighted residual method and/or the
least squares method [4] etc, in order to be able
to discretize the di�erential equations and, thus,
produce a �nite set of algebraic equations.

With these introductory remarks, one is now in a
position to pose the following questions [5]:

A. Why does one use di�erential formulation against
all these restrictions and complications?

B. Is di�erential formulation the only way to formu-
late a physical phenomenon?

C. Is it possible to directly obtain a discrete form of
the physical laws without a compulsory passage
into the di�erential formulation?

The answer to all of these questions, with the notable
advance in speed of calculations and the volume of
the memory of today's computers, may be given by
introducing the new Direct Discrete Method (DDM).
This method is much simpler and more compatible with
the meanings of physical laws when compared with
the customary and widespread di�erential formulation
method.

GENERAL REMARKS ON DDM
FORMULATION

Three major steps are envisioned to transform the
physical problem into the DDM model:

1. Identi�cation of global variable(s) of the speci�c
problem at hand: Di�erential formulation uses
�eld functions, which are spurious and unphysical
parameters. DDM uses global variables, which are
real and physical parameters. First, the global vari-
able(s) should be identi�ed for the de�ned physical
�eld. Neutron population is a global variable in a
neutronic �eld;

2. Adoption of a suitable meshing scheme for the
speci�ed geometry: Coordinate systems are the
essential tools required to derive and solve dif-
ferential equations. In di�erential formulation, a
coordinate system is usually chosen and, then,
the integrals and derivatives are discretized with
notice to the chosen coordinate system. As a
result, the di�erential equations change to a set
of algebraic equations. In the DDM method, a
suitable meshing scheme should be adopted, such
as triangular, rectangular, cylindrical or spherical
mesh, depending on the given geometry and its
dimensions. For instance, in pin-cell calculations,

it is better to use a cylindrical meshing scheme,
considering the fact that fuel elements are usually
cylindrical in shape;

3. Formulation of the balance equation for each mesh
interval: The balance equation should be written
for each of the generated mesh intervals, considering
the physics of the problem. Due to the dependence
of each mesh interval equation on its neighboring
mesh interval equation, the set of the generated
DDM equations must, therefore, be solved simul-
taneously.

APPLICATION OF DDM TO NEUTRONIC
FIELDS

Neutron population (N) is de�ned as a global variable
in a neutronic �eld. Let one consider a cylindrical
mesh element with volume V and surface S. Next,
assume a time interval, t, selected under some special
conditions. The neutron balance equation can now be
written for the existing neutrons in this position-time
element, based on the events which might happen to
these neutrons inside the mesh element.

The following essential assumptions have been
made in deriving the neutron discrete equations:

1. One-group energy;

2. Uniform distribution of the materials occupying the
regions of the various mesh intervals of the volume
element; The dimensions of the mesh intervals are
normally so small that this assumption is made
acceptable;

3. Uniform distribution of neutron population in each
mesh interval;

4. The rates of the entering and exiting neutrons
across the various surfaces of the mesh intervals are
assumed to be constant;

5. Limit the time interval, t, so as to allow only one
neutron interaction;

6. The static-state case is considered.

Finally, let one write down the general balance
equation, independent of the shape, dimension and
material make up of the element under study:

P (V; t)�A(V; t) + I(S; t)�O(S; t) = 0; (1)

one has, in the above equation:

P : neutron production,
A: neutron absorption,
I : neutron input,
O: neutron output,
V : the volume of the element,
S: the peripheral surface of the element,
t: the observation time interval.
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Each of the above identi�ed terms will later be explic-
itly construed, using the neutronic global variable (N).

DISCRETE FORM OF NEUTRON
TRANSPORT EQUATION IN ONE-GROUP
ENERGY (USING PROBABILITIES)

The above balance equation will be adopted to neu-
tronic calculation in this section. To start out, the
neutron population shall be divided into two sepa-
rate entities, the primary (already available) neutrons
within the di�erent mesh regions and the secondary
(Entrant) neutrons that enter into di�erent meshes
through their corresponding surfaces. It will be seen,
later, that there are, in fact, no substantial di�erences
between these two groups of neutrons and this division
simply becomes handy when deriving the discrete
equations.

Primary Neutrons

A cylindrical shape fuel element is assumed, with a
population of neutrons already inside it. Next, the
fate of these neutrons will be investigated during the
observation time interval, t. Also, it is assumed that
no neutrons enter the volume through the boundaries
at this stage. On the other hand, neutrons set out to
move in a certain direction with a �nite speed and, by
experiencing no interactions, do not necessarily all get
the chance to leave the volume element in the �nite
observation time interval, t. Only neutrons that are
close to the boundary of the element can escape from
the volume element. If the speed of neutrons is assigned
to be v and the time interval, as already introduced,
is assumed to be t, then, the furthest distance that a
wandering neutron can travel is:

d = v � t: (2)

The region realized by this distance, which is adjacent
to the surface of every mesh interval, is named the
boundary layer thickness (Figure 1). It is obvious
that neutrons lying within this boundary layer have
the chance of escaping the region. Considering the
de�nition of this boundary layer, the Primary neutrons
may be categorized into two di�erent groups:

1. Neutrons in the internal zone with an escape prob-
ability equal to zero;

2. Neutrons in the boundary layer that have the
chance of escaping the region;

Since the neutron population distribution in each mesh
interval has already been assumed as uniform, the ratio
of neutron population in each of the above mentioned
two regions to the total number of neutrons are equal
to the ratio of the volume of the respective regions to

Figure 1. Cylindrical element and its boundary layer.

the total volume of the element. Two new parameters,
a (neutrons' internal zone fraction) and b (neutrons'
boundary layer fraction) are de�ned as:
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where:

Nb: number of neutrons in the boundary layer,
Vb: volume of the boundary layer,
Ni: number of neutrons in the internal zone,
Vi: volume of internal zone,
N : number of total neutrons in the volume element,
V : total volume of the volume element.

d2 is neglected against 2rd in the above equation.
Consequently, the number of neutrons in the internal
zone will be equal to aN and the number of neutrons
in the boundary layer will be bN . Since the boundary
layer neutrons may escape while in their random
movement, the average time period available to them is
considered as t�, which will be discussed in more detail
in the next section. The following results are obtained
for the primary neutrons:
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Calculation of the Neutron Escape Probability
(P )

A uniform distribution of neutron populations in each
volume element and isotropic scattering is assumed.
With these remarks in mind, one can imagine that a
neutron is located at half distance from the surface of
the mesh interval. The fact that the maximum distance
that the neutrons can move until they escape from the
region is d, which is the radius of a sphere centered at
the point where the escape calculation is to be made
(for further clari�cation refer to Figure 2), then, the
escape probability is calculated to be:

P =

2�
60R
0

sin �d�

4�
=

1

4
: (8)

Calculation of the Time Interval (t�) for the
Boundary Layer Neutrons

Since the average time period available to the boundary
layer neutrons which do not escape the volume element
is t, and the average time period available to the bound-
ary layer neutrons which escape the volume element

Figure 2. Escape probability calculation for boundary
layer neutrons.

is t
2 , then, one can easily calculate the average time

available to the entire population in that layer, using
the above obtained result for the escape probability, as
follows:

t� =
1

4
�

t

2
+

3

4
� t =

7t

8
: (9)

Considering the above result, one can, without any
severe approximation and for simplicity, assume t� as
equal to t.

Secondary (Entrant) Neutrons

While this group of neutrons and the primary neutrons
hold a lot of similarities, they do, however, di�er in two
distinct aspects:

1. The primary neutrons have a spatial angle dis-
tribution between 0 � 4� steradian, whereas the
entering neutrons have a direction towards the vol-
ume element; therefore, a spatial angle distribution
between 0� 2� steradian;

2. The average time period available to these neutrons
to participate in any reaction within the boundary
layer is equal to half of the average time period
available to primary neutrons.

Let one identify the entering neutrons into the volume
element by the parameter I . Using this parameter,
one can now write down the relevant production,
absorption and leakage terms arising from this group
of neutrons, as follows:
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X
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t

2
)

�
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where the index, i, corresponds to the above de�ned
parameter, I .

Now, for the calculation of the leakage term, Oi,
two groups of neutrons should be considered:

1. The input neutrons, which do not participate in any
reaction after entering the volume element. This
group of neutrons can travel the maximum distance
of d and then escape the volume element (Figure 3).
Therefore, a fraction of the neutrons that enter from
the top of line d and do not participate in any
reaction can escape from the element. Leakage of
this group of neutrons would be equal to:

Oi1
�= 0:1979� 10�13I: (12)

2. The entrant neutrons, which participate in a scat-
tering reaction after entering the volume element
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Figure 3. Escape probability of neutrons without any
reactions.

and then escape from it. If the leakage term for
this category of neutrons is shown by Oi2; then, by
hindsight and intuition, one can conclude that Oi2

is much smaller than Oi1.

Here, one notes that the contribution of this group
of neutrons to the leakage term is very small. It is,
therefore, to be deduced that this group of neutrons
have only the opportunity to enter the element in the
observation time interval t only and that their later
escape can be ignored. However, the �nal equation can
be written as:

P + Pi � (A+Ai)� (O +Oi1 +Oi2) + I = 0: (13)

Simpli�cation of the Derived Equation

As noted before, the boundary layer thickness is about
10�7 meters. Therefore, the derived exponential terms
can be approximated using the Taylor expansion, as
follows:

exp(�
X

t
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X
t
vt: (14)

Utilizing this approximation and applying it to the
previously derived expressions, the �nal equation may
be written as:
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In the above equation, �
P

f and
P

a can be ignored

against the 1
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term in the �rst parenthesis and,
likewise, all of the terms in the second bracket against
the 1

vt
term. With these approximations implemented,

the �nal equation becomes:
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By recalling the expressions obtained for b and P and
substituting them in Pb

vt
, one gets:
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1
4 �
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R
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It is interesting to note that the dimension of the
above term is the inverse of the unit of length and
shall, henceforth, be de�ned as Leakage Cross Section
(
P

L). With this new nomenclature, the �nal equation
becomes:

N
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f
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�
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�
+

I

vt
= 0: (18)

There are few important observations worth noting
in relation to coe�cient b. The �rst observation is
that this coe�cient is sensitive to the type of external
boundary conditions applied; i.e, it depends on using
the net current as equal to zero or on putting the
incoming current equal to zero. The other important
point is that the DDM equation in static-state form
for other geometries, such as Slab, Sphere, Square
and Triangular [6], are exactly identical, except for
their di�erences in the coe�cient, b, indicating its
dependence on the geometry of the volume element.

Some Notes on the Input Term (I)

As seen in Figure 4, the input from mesh volume (i+1)
to mesh volume (i), is the same as the output from
mesh (i + 1) to mesh (i). As a result, by using the
output term, which was calculated earlier, one obtains
the following results:

Ii+1;i = Oi+1;i = Ni+1

X
Li+1;i

vt: (19)

It is also known that
P

Li+1;i is de�ned as:

X
Li+1;i

=
Pb0i + 1

vt
=

1
4 �

2dRi

(R2
i+1
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)
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=
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2(R2
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; (20)

Figure 4. Input sentence calculation.
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where, b0i+1 is the inner boundary layer fraction of the
mesh interval (i + 1). Similarly, the input from mesh
volume (i � 1) to mesh volume (i) will be the output
from mesh (i� 1) to mesh (i).

It is to be noted that the production, absorption,
input and output terms are all stated in terms of the
neutronic global variable (N). Deriving the discrete
equations for each of the mesh intervals and linking
them together give rise to a series of algebraic equa-
tions, which will have to be solved simultaneously. The
derived matrix equation is AN = 0, where A is a (n�n)
coe�cient matrix and N is the unknown (n�1) matrix.
Neutron population distribution, the eigenvalue and
the corresponding multiplication factor (k) can all be
obtained by solving the matrix equation.

APPLICATION OF THE DDM TO
MULTIGROUP NEUTRON TRANSPORT
EQUATIONS

A cylindrical mesh element with volume V and surface
S is assumed as a position element, and a time interval,
t, is selected the same as one group investigations. All
of the assumed assumptions in one group energy are
valid except the neutron population, which depends
on energy. However, rather than treat the neutron
energy variable, E, as a continuous variable, it will
immediately be discretized into energy intervals or
groups. The neutron energy range may be broken
into G energy groups, as shown, schematically, in
Figure 5. Notice that a backward indexing scheme
was used for energy intervals. Due to the fact that
a neutron usually loses energy during its lifetime,
neutron up-scattering will be ignored in the pro-
cess of neutron multigroup discrete equation produc-
tion.

Neutrons in mesh interval (i) and energy group
(g) are assumed and the production and loss of them
will be investigated. These neutrons may be produced
by �ssion or scattering from other energy groups in
mesh interval (i), or, by the escaping of the neutrons
in energy group g from mesh interval (i + 1) and
(i � 1) to the desired mesh interval (i). It should be
mentioned that leakage macroscopic cross section does
not depend on neutron energy and can be stated by the
one-group energy theory. Neutron loss may occur due
to absorption, escape or by scattering to other energy
groups.

Figure 5. Energy discretizing.

Therefore, the �nal neutron discrete equation in
multigroup energy for mesh interval (i) and energy
group g, for a cylindrical geometry, becomes:

�Ni�1; gVi�1; g�Li�1;i

+ Vi;gNi;g(�ai;g +�Si;g +�Li)

�Ni+1; gVi+1; g�Li+1;i �

X
g0�g

�Si;g0!gNi;g0Vi;g0

=
1

k
�i;g

 
GX

g0=1

�i;g0Ni;g0Vi;g0�fi;g0

!
; (21)

where �Sig is the total scattering cross section and k is
the multiplication factor of the desired medium. The
derived discrete equation can be written in a matrix
form, AN = 1

k
BN , where A and B are ((n�g)�(n�g))

coe�cient matrices. N is the unknown ((n � g) � 1)
matrix.

RESULTS AND DISCUSSION

To evaluate the DDM method in one-group energy, two
typical problems have been solved using the following
data (see Table 1). First, a fuel element made up of
uranium-235 with a 1 cm radius is considered. Next,
a fuel element with the associated clad and coolant
regions are considered. The clad and the coolant
thicknesses are, respectively, taken as 0.1 cm and
0.3 cm. The type of material assumed for the clad
is Zr and that of the coolant is H2O. These examples
are solved for two widespread external boundary con-
ditions, namely, J = 0 and Jnet = 0. The same
problems have also been solved with the MCNP-4B [8]
and the ANISN codes [9]. Figures 6 to 8 show the
results for comparison. To evaluate the validity of
the DDM method in multigroup energy, two criticality
search problems have been solved in the two-group
energy. Njoy-97 [10] has been applied to extract
required data from ENDF/B-VI [11] in the two-group
energy. The generated data for required elements are
presented in Tables 2 and 3. Using the produced two
group energy libraries, �rst, a fuel element made up of
uranium-235 with a 4.8 cm radius (critical radius) is
considered. Next, a fuel element with the associated
coolant region is considered. The critical radius of the

Table 1. The data used in the one-group energy test
examples [7].

Elements �

P
a

(1/cm)

P
f

(1/cm)

P
S

(1/cm)

U-235 2.5 3.3e+01 2.8e+01 4.81e-01

Zr 0.00 7.7e-03 0.00 3.03e-01

H2O 0.00 2.26e-02 0.00 2.069
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Figure 6. Neutron 
ux versus distance for one fuel
element with radius of 1 cm in one-group theory (input
current into the last mesh is zero).

Figure 7. Neutron 
ux versus distance for one fuel
element associated with clad and coolant in one-group
theory (input current into the last mesh is zero).

Figure 8. Neutron 
ux versus distance for one fuel
element associated with clad and coolant in one-group
theory (net current into the last mesh is zero).

fuel element, which is surrounded by a 6.25 cm coolant,
changes to 3.75 cm for the external boundary condition,
J = 0. The same problems have also been solved with
the ANISN code. Figures 9 and 10 show the results
for comparison. It should be noticed that the neutron

uxes were normalized between 0 and 1. In reality, the
thermal 
ux is in the order of 10�14, in comparison to
order 1 of the fast 
ux.

CONCLUSION

The DDM method is very simple to set up and obviates
the need to go through the di�erential formulation
process �rst. DDM starts from the basic and funda-
mental meaning of neutron physics, then, passes to the
desired meshing scheme of the geometry at hand and,
by writing the balance equation for each mesh interval
and combining them, one is �nally led to the sought
algebraic matrix equation. This method, used for one-

Figure 9. Neutron 
ux versus distance for one fuel
element with critical radius in two-group theory (input
current into the last mesh is zero).

Figure 10. Neutron 
ux versus distance for a fuel element
surrounded by coolant with critical radius in two-group
theory (input current into the last mesh is zero).
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Table 2. The fast data used in two-group energy test problems.

Elements �a1 (Barn) �f1 (Barn) �S1 (Barn) �S1! 1 (Barn) �S1! 2 (Barn) �

U-235 1.1865 1.1845 6.386 6.460 1.2E-9 2.85

H-1 3.63E-5 00.00 2.534 2.534 1.3E-6 0.00

O-16 4.00E-2 00.00 2.245 2.245 1.3E-15 0.00

Table 3. The thermal data used in two-group energy test problems.

Elements �a2 (Barn) �f2 (Barn) �S2 (Barn) �S2! 2 (Barn) �S2! 1 (Barn) �

U-235 119.19 102.68 14.287 14.287 00.00 2.41

H-1 7.96E-2 00.00 21.236 21.236 00.00 00.00

O-16 4.57E-5 00.00 3.898 3.898 00.00 00.00

group and two-group energy, produces excellent results,
which are comparable with those obtained from the
MCNP-4B and the ANISN codes.
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