Research Note

On Domination and its Forcing in Mycielski's Graphs

D.A. Mojdeh^{*} and N. Jafari Rad¹

In this paper, for a given graph, G, some domination parameters and the forcing domination number of the graph, M(G), obtained from G arising in Mycielski's construction, are studied.

INTRODUCTION

A vertex in a graph, G, dominates itself and its neighbors. A set of vertices, S, in a graph, G, is a dominating set, if each vertex of G is dominated by some vertex of S. The minimum cardinality of a dominating set of G is the domination number, $\gamma(G)$, of G and the maximum cardinality of a minimal dominating set of G is the upper domination number, $\Gamma(G)$. A dominating set that is independent is called an independent dominating set of G. The independent domination number, i(G), of G is the minimum cardinality of an independent dominating set of G. A dominating set that is connected is called a connected dominating set of G. The connected domination number, $\gamma_c(G)$, of G is the minimum cardinality of a connected dominating set of G. A dominating set, S, is called a total dominating set, if each vertex of G is dominated by some vertices of S. The total domination number, $\gamma_t(G)$, of G is the minimum cardinality of a total dominating set of G. A dominating set, S, of G is called a strong dominating set, if each vertex, x, of $V(G) \setminus S$ is dominated by some vertices, y, of S, with $\deg(y) \geq \deg(x)$. The strong domination number, $\gamma_s(G)$, of G is the minimum cardinality of a strong dominating set of G, [2-6]. A $\gamma(G)$ -set is referred to as a dominating set for G of size $\gamma(G)$, a i(G)-set to an independent dominating set for G of size i(G), a $\gamma_t(G)$ -set to a total dominating set for G of size $\gamma_t(G)$ and a $\gamma_c(G)$ -set to a connected dominating set for G of size $\gamma_c(G)$.

A subset, F, of a minimum dominating set, S, is a forcing subset for S, if S is the unique minimum dominating set containing F. The forcing domination number, $f(S, \gamma)$, of S is the minimum cardinality among the forcing subsets of S and the forcing domination number, $f(G, \gamma)$, of G is the minimum forcing domination number to be found among the minimum dominating sets of G [1].

The open neighborhood of a vertex, v, in a graph, G, denoted by $N_G(v)$, is the set of all vertices of G, which are adjacent to v. Also, $N_G[v] = N_G(v) \cup \{v\}$ is called the closed neighborhood of v in the graph, G.

In this paper, by G, one means a connected graph. From a graph, G, by Mycielski's construction, one can get a graph, M(G), with $V(M(G)) = V \cup U \cup \{w\}$, where:

$$V = V(G) = \{v_1, \cdots, v_n\}, \quad U = \{u_1, \cdots, u_n\},\$$

and:

$$E(M(G)) = E(G) \cup \{u_i v : v \in N_G(v_i) \cup \{w\},\$$
$$i = 1, \cdots, n\}.$$

For each $0 \leq i \leq n$, v_i and u_i are called the corresponding vertices of M(G) and denote $C(v_i) = u_i$, $C(u_i) = v_i$. Moreover, for subsets $A \subseteq U$, $B \subseteq V$, one denotes:

$$C(A) = \{C(u_i) : u_i \in A\},\$$

 $C(B) = \{C(v_i) : v_i \in B\}.$

Also, $x \leftrightarrow y$ is denoted, when $\{x, y\}$ is an edge. The following is made use of.

Theorem A [3]

For any graph, G, $\gamma(M(G)) = 1 + \gamma(G)$, $\gamma_t(M(G)) = 1 + \gamma_t(G)$.

^{*.} Corresponding Author, Department of Mathematics, University of Mazandaran, P.O. Box 47416-1467, Babolsar, I.R. Iran.

^{1.} Department of Mathematics, University of Mazandaran, P.O. Box 47416-1467, Babolsar, I.R. Iran.

On Domination and its Forcing in Mycielski's Graphs

Some domination parameters are studied with respect to M(G) and some properties of $\gamma(M(G))$ -sets. Then, the forcing domination number of M(G) is studied, with respect to some given properties of $\gamma(G)$ -sets.

SOME DOMINATION PARAMETERS, WITH RESPECT TO M(G)

In this section, i(M(G)), $\gamma_s(M(G))$, $\gamma_c(M(G))$, $\Gamma(M(G))$ and $\beta_0(M(G))$ are studied. It is well known that, for any graph, G, $\gamma(G) \leq i(G)$. Also, for $K_{m,n}$, with min $\{m, n\} > 1$, this inequality is strict. In the following, the relation between the independent domination number of M(G) and the independent domination number of G is obtained.

Theorem 1

For any graph, G, i(M(G)) = 1 + i(G).

Proof

For any i(G)-set D, $D \cup \{w\}$ is an independent dominating set of M(G), hence, $i(M(G)) \leq 1 + i(G)$.

If $|V(G)| \leq 2$, the equality, i(M(G)) = 1 + i(G), is obvious. So, suppose that |V(G)| > 2. Assume that $i(M(G)) \leq i(G)$ and S is a i(M(G))-set of M(G). Clearly, $w \notin S$, so, $S \cap U \neq \emptyset$. It is easily seen that $S \cap V \neq \emptyset$ and, also, for each $v_t \in S \cap V$, one has $u_t \in S \cap U$. If, for each $u_{k'} \in S \cap U$, one has $v_{k'} \in S$, then, $S \cap V$ is an independent dominating set of G, which is a contradiction. So, suppose that there is some vertex, $u_k \in S \cap U$, such that $v_k \notin S$; let then, $A = \{u_i \in S \cap U : v_i \notin S\}, A' = C(A)$ and $B = S \cap V$. Let u_{x_1} be a vertex of A, which has maximum neighbors in A', then, $D_1 = (A' \setminus \{v_{x_1}\}) \cup B$ is a dominating set of G. If D_1 is not independent, then, choose $u_{x_2} \in A \setminus \{u_{x_1}\}$, with maximum neighbors in $A' \setminus \{v_{x_1}\}$ and let $D_2 = (A' \setminus \{v_{x_1}, v_{x_2}\}) \cup B$. By continuing this method, there is an integer, m, such that D_m is an independent dominating set of G with size less than i(G), which is a contradiction. Hence, $i(M(G)) \geq 1 + i(G)$, which implies the equality.

Similarly, there is the following result, for which the proof is omitted.

Theorem 2

 $\gamma_s(M(G)) = 1 + \gamma_s(G).$

Now, the connected dominating sets can be studied. Clearly, $\gamma_c(K_n) = 1$ and no two vertices of $M(K_n)$ can be a connected dominating set. Also, by considering $\{w, u_1, v_2\}$, one can verify that:

$$\gamma_c(M(K_n)) = 3 = \gamma_c(K_n) + 2 \quad \text{for} \quad n \ge 2.$$

Also, it is easily seen that no m vertex of $M(P_8)$, with $m \leq 4$, can form a connected dominating set and by $\{w, u_2, v_3, u_7, v_6\}$, one obtains:

$$\gamma_c(M(P_8)) = 5 = \gamma_c(P_8) - 1.$$

But, for $\gamma_c(G) \geq 3$, let S be a minimum connected dominating set for G and $\{v_x, v_y, v_z\} \subseteq S$, with $v_x \leftrightarrow v_y, v_y \leftrightarrow v_z$. Then, $(S \setminus \{v_y\}) \cup \{u_y, w\}$ is a connected dominating set for M(G). So, one has the following bound, which is a strict of equality for many graphs, for example, $P_n, C_n, n \geq 7$.

Proposition 1

If $\gamma_c(G) \ge 3$, then, $\gamma_c(M(G)) \le 1 + \gamma_c(G)$.

It is clear that U is a minimal dominating set of M(G), so $\Gamma(M(G)) \ge |V(G)|$. Also, for many graphs, such as P_4 , the equality, $\Gamma(M(G)) = |V(G)|$, holds and for many graphs, such as the following example, $\Gamma(M(G)) > |V(G)|$.

Consider the graph, $K_{1,n}$ for $n \ge 2$. Let x be the vertex with $\deg(x) = n$ and connect x to any vertex of the graph, $K_m, m \ge 4$, to obtain a graph, G^* . Then, by considering the vertices of $K_{1,n} \setminus \{x\}$, together with $C(K_{1,n} \setminus \{x\})$ and also $C(K_m)$, it is concluded that $\Gamma(M(G^*)) > |V(G^*)|$.

If G has a maximum minimal independent dominating set, $D = \{v_{d_1}, \dots, v_{d_t}\}$, of size $\Gamma(G) = t$, then $D \cup \{u_{d_1}, \dots, u_{d_t}\}$ is a minimal dominating set of M(G) and, so $\Gamma(M(G)) \ge 2\Gamma(G)$. So, if G has a maximum minimal independent dominating set, then $\Gamma(M(G)) \ge \max\{2\Gamma(G), |V(G)|\}.$

The above bound can be strict. For example, see the above graph, G^* .

Similarly, one has $\beta_0(M(G)) \ge \max\{|V(G)|, 2\beta_0(G)\}$, whose bound can be strict.

SOME PROPERTIES OF $\gamma(M(G))$ -SETS

In this section, more conclusions of $\gamma(M(G))$ -sets and the relationship between them and $\gamma(G)$ -sets are studied. It is seen that, for many graphs, such as K_n , $K_{m,n}, K_{n_1,\dots,n_m}, P_n, C_n, K_2 \times P_n (n \ge 5), P_3 \times P_n (n \ge$ $5), P_4 \times P_{3n+1}$ and $P_5 \times P_{2n+1}$, every $\gamma(G)$ -set is either independent or has just two adjacent vertices.

Proposition 2

If $|V(G)| \neq 2$ and $\gamma(G) = 1$, then the $\gamma(M(G))$ -sets are precisely $\{w, v_k\}$ and $\{v_k, u_k\}$, where $\{v_k\}$ is a minimum dominating set of G.

Proof

For each $\gamma(G)$ -set $\{v_i\}$ of G, it is clear that both $\{w, v_i\}$ and $\{v_i, u_i\}$ are $\gamma(M(G))$ -sets. Now, let S be a $\gamma(M(G))$ -set. The following cases exist as follows:

- 1. If $w \in S$, then, $S = \{w, u_k\}$ for some k and, clearly, the vertex, v_k , is not dominated by S, so that $S = \{w, v_{k'}\}$ for some integer k', where $\{v_{k'}\}$ is a $\gamma(G)$ set;
- 2. If $w \notin S$, let $u_j \in S \cap U$ for some j. When |V(G)| = 1, clearly $v_j \in S$.

Suppose that $|V(G)| \geq 3$ and $v_j \notin S$, then, $N(v_j) \cap S \neq \emptyset$. If $v_t \in N(v_j) \cap S$ for some t, then, u_t is not dominated by S and, if $u_i \in N(v_j) \cap S$ for some i, then, $U \setminus S$ is not dominated by S. Hence, $v_j \in S$.

Note that, when $G \cong K_2$ and $V(G) = \{v_1, v_2\}$, then, the 2-sets are $\{w, v_1\}, \{v_1, u_1\}$ and $\{u_1, u_2\}$.

Proposition 3

If $\gamma(G) \geq 2$ and every $\gamma(G)$ -set is independent, then, every $\gamma(M(G))$ -set is also independent and contains w.

Proof

It may be assumed that $w \notin S$. Let S be a $\gamma(M(G))$ set, then, $S \cap U \neq \emptyset$ and $S \cap V \neq \emptyset$. Let $u_k \in S$ for some k, then the following cases exist:

- 1. If $v_k \in S$ and $t \neq k$ exists, such that $u_t \in S$, then, $C(S \setminus \{u_k, u_t\}) \cap U)$, together with $V \cap S$, form a dominating set of G, a contradiction;
- 2. If $v_k \in S$ and, for each $t \neq k$, $u_t \notin S$, then, $v_s \in V \cap S$ for some $s \neq k$, but $u_s \notin S$, so $N(v_s) \cap V \neq \emptyset$. Now $C(S \setminus \{u_k\})$ together with $S \cap V$ form a $\gamma(G)$ -set with two adjacent vertices, which is a contradiction;
- 3. If $v_k \notin S$ and $u_l \in N(v_k) \cap S$ exists for some l, then, one considers $v_{l'} \in S \cap V$ for some l'. If $u_{l'} \in S$, then, $C(S \cap U) \setminus \{u_k, u_{l'}\}$, together with $S \cap V$, form a dominating set of G with a size less than $\gamma(G)$, which is a contradiction. If $u_{l'} \notin S$, then, $C(S \cap U) \setminus \{u_k\}$, together with $S \cap V$, form a dominating set of G with two adjacent vertices, which is a contradiction;
- 4. If $v_k \notin S$ and $v_t \in S \cap N(v_k)$ exists for some t, then, $N[u_t] \cap S \neq \emptyset$. Now, by considering $C((S \cap V) \setminus \{u_k\})$ or $C((S \cap V) \setminus \{u_k, u_t\})$, one gets a contradiction (see above).

So, under the hypothesis, Proposition 3, the $\gamma(M(G))$ -sets have the following forms:

 $D \cup \{w\},\$

where D is a $\gamma(G)$ -set.

Proposition 4

I) If $\gamma(G) = 2$ and every $\gamma(G)$ -set contains just two adjacent vertices, then, the $\gamma(M(G))$ -sets have one

of the following forms:

where $\{v_x, v_y\}$ is a $\gamma(G)$ -set and $v_y \leftrightarrow u_t$;

- II) If $\gamma(G) = 3$ and every $\gamma(G)$ -set contains just two adjacent vertices, then, the $\gamma(M(G))$ -sets have one of the following forms:
 - 1) $\{v_x, v_y, v_z, w\}, \{v_x, u_y, v_z, w\}, \{v_x, u_y, u_z, w\}, \{v_x, v_y, v_z, u_x\},$
 - 2) $\{u_x, u_{x'}, v_y, v_z\}$ with $v_x \leftrightarrow u_{x'}$, when $|(N(v_x) \cap U) \setminus (N(v_y) \cup N(v_z))| \le 1$.

In both items 1 and 2, $\{v_x, v_y, v_z\}$ is a $\gamma(G)$ -set and $v_y \leftrightarrow v_z$.

Proof

- I) Clearly, for a $\gamma(G)$ -set $\{v_i, v_j\}$, all the sets, $\{v_i, v_j, w\}, \{u_i, u_j, w\}, \{v_i, u_j, w\}, \{v_i, v_j, u_l\}, \text{ are }$ $\gamma(M(G))$ -sets with $v_i \leftrightarrow u_l$. Suppose that S is a $\gamma(M(G))$ -set. If $w \in S$, then, by replacing the vertices of $U \cap S$ with $C(U \cap S)$, one gets a $\gamma(G)$ -set, hence, S is one of the sets, $\{v_x, v_y, w\}, \{u_x, u_y, w\}, \{u_x, u_y, w\}, \{u_x, u_y, w\}, \{u_x, u_y, w\}, \{u_y, u_y, w\}, \{u_y,$ $\{v_x, u_y, w\}$, where $\{v_x, v_y\}$ is a $\gamma(G)$ -set. If $w \notin S$, then, $S \cap U \neq \emptyset$ and, by Theorems A and 1, $S \cap V \neq \emptyset$. Let $v_k \in S$ for some k. If $u_k \in S$, then, it is easily seen that S has one of the above forms. If $u_k \notin S$, then, $N(v_k) \cap S \cap V \neq \emptyset$ and suppose that $v_{k+1} \in N(v_k) \cap S \cap V$. Also, let $u_{x'}$ be the third vertex of S. If $u_{x'}$ is adjacent neither to v_k nor to v_{k+1} , then, $v_{x'}$ is not dominated by S, which is a contradiction, so that $u_{x'}$ is adjacent to at least one of the vertices, v_k and v_{k+1} .
- II) Clearly, for a $\gamma(G)$ -set $\{v_i, v_j, v_k\}$ with $v_j \leftrightarrow v_k$, all of the above sets are $\gamma(M(G))$ -sets. Now, let S be a $\gamma(M(G))$ -set. If $w \in S$, then, by replacing the vertices of $S \cap U$ by $C(S \cap U)$, one obtains a $\gamma(G)$ -set $D = \{v_x, v_y, v_z\}$ with $v_y \leftrightarrow v_z$. Since the vertex, v_x , is dominated by some vertex in S, hence, $v_x \in S$. If $w \notin S$, then, $S \cap U \neq \emptyset$, so by Theorem A, $S \cap V \neq \emptyset$. Let $u_t \in S \cap U$. By deleting u_t and replacing the other vertices of $S \cap$ U by $C(S \cap U \setminus \{u_t\})$, one gets a $\gamma(G)$ -set D = $\{v_x, v_y, v_z\} G$ with $v_y \leftrightarrow v_z$. If $v_x \in S$, then, $u_x = u_t$ and it is easily seen that $\{v_y, v_z\} \subseteq S$. If $v_x \notin S$, then, $u_x \in S$ and $u_t \leftrightarrow v_x$, so that $|(N(v_x) \cap U) \setminus (N(v_y) \cup N(v_z))| \leq 1$. Now, it is easily seen that $\{v_y, v_z\} \subseteq S$.

Proposition 5

If $\gamma(G) \geq k+2$ for some k and every $\gamma(G)$ -set induces a $P_k + (\gamma(G) - k)K_1$, then, the $\gamma(M(G))$ -sets have one of the forms $(D \setminus M) \cup C(M) \cup \{w\}$, where D is a $\gamma(G)$ -set and $M \subseteq V(P_k)$.

On Domination and its Forcing in Mycielski's Graphs

Proof

Let *D* be a $\gamma(G)$ -set and *D* induces a $P_k + (\gamma(G) - 1)K_1$, in which $V(P_k) = \{v_1, v_2, \dots, v_k\}$. For any subset, $M \subseteq V(P_k), (D \setminus M) \cup C(M) \cup \{w\}$ is a dominating set of M(G), which is minimum by Theorem A. Now, suppose that *S* is a M(G)-set. There are two cases:

1. If $w \in S$, then, $D = C(S \cap U) \cup (S \cap V)$ is a dominating set for G, which is minimum by Theorem A. So, D induces a $P_k + (\gamma(G) - 1)K_1$ and one may let $V(P_k) = \{v_{i1}, v_{i2}, \cdots, v_{ik}\}$ and $D \setminus V(P_k) = \{v_{j1}, v_{j2}, \cdots, v_{j(\gamma(G)-1)}\}$. If there is an integer, t, such that $v_{jt} \in D \setminus S$, then, $u_{jt} \in S$. But, then, v_{jt} is not dominated by S and this contradicts the fact that S is a minimum dominating set of M(G). Hence, $\{v_{j1}, v_{j2}, \cdots, v_{j(\gamma(G)-1)}\} \subseteq S$. Now, since there is no integer, t', such that $\{u_{t'}, v_{t'}\} \subseteq S$, there is a subset, $M' \subseteq \{v_{i1}, v_{i2}, \cdots, v_{ik}\}$, such that:

 $(\{v_{i1}, v_{i2}, \cdots, v_{ik}\} \backslash M') \cup C(M') =$

 $S \setminus \{v_{j1}, v_{j2}, \cdots, v_{j(\gamma(G)-1)}\}.$

2. If $w \notin S$, then, $S \cap U \neq \emptyset$ and $S \cap V \neq \emptyset$. Moreover, $|S \cap U| \geq 2$ and there is no integer l, such that $\{u_l, v_l\} \subseteq S$. Let $w_i \in S \cap U$, then, $D = C((S \cap U) \setminus \{w_i\}) \cup (S \cap V)$ is a minimum dominating set for G, which induces a $P_k + (\gamma(G) - k)K_1$. Let $\{v_{t1}, v_{t2}\} \subseteq D \setminus V(P_k)$, then, $\{v_{t1}, v_{t2}, u_{t1}, u_{t2}\}$ is not dominated by S. This is a contradiction.

Corollary 1

If $\gamma(G) \ge 4$ and $\gamma(G)$ -set has just two adjacent vertices, then, the $\gamma(M(G))$ -sets have one of the following forms:

 $D \cup \{w\}, (D \setminus \{v_k\}) \cup \{u_k, w\},\$

and:

 $(D \setminus \{v_k, v_l\}) \cup \{w, u_k, u_l\},\$

where D is a $\gamma(G)$ -set and v_k and v_l are the two adjacent vertices of D.

FORCING DOMINATION NUMBER

In this section, the forcing domination number of M(G)is studied. It is well known that $f(K_n, \gamma = 1) = 1$ and, for $n \ge 2$, $f(K_{1,n}, \gamma = 1) = 0$. Also, for each $i = 1, \dots, n$, $\{u_i, v_i\}$ and $\{w, v_i\}$ are minimum dominating sets of $M(K_n)$, so $f(M(K_n)) \ge 1$ for n > 1. On the other hand, $\{u_1, v_1\}$ is the only dominating set of $M(K_n)$ containing $F = \{u_1\}$, hence:

$$f(M(K_n), \gamma(M(K_n)) = 1 = f(K_n, \gamma(K_n)).$$

Similarly:

$$f(M(K_{1,n}), \gamma(M(K_{1,n}))) = 1 = 1 + f(K_{1,n}, \gamma(K_{1,n})).$$

Theorem 3

Let $\gamma(G) \geq 2$, D be a $\gamma(G)$ -set and F be a minimum forcing set of D with $|F| = f(G, \gamma(G))$. If D is independent, then, $f(M(G), \gamma(M(G))) \leq f(G, \gamma(G))$.

Proof

It is clear that $S = D \cup \{w\}$ is a $\gamma(M(G))$ -set. It is shown that this is the unique $\gamma(M(G))$ -set containing F. Suppose that S' is another dominating set of M(G)containing F. There are two cases as follows:

- 1. If $w \in S'$, by replacing the vertices of $S' \cap U$ with $C(S' \cap U)$ one obtains a $\gamma(G)$ -set that is equal to D, so, there is a vertex, $v_k \in D$, such that $u_k \in S'$. If $v_k \notin S'$, then, $N(v_k) \cap S' \neq \emptyset$, which is a contradiction. If not, $C((S' \setminus \{w, u_k\}) \cap U)$ form a dominating set of G, which is a contradiction;
- 2. If $w \notin S'$, then, it is easily seen that $|S' \cap U| \ge 2$. If there exists an integer, j, such that $\{u_j, v_j\} \subseteq S'$, then, u_j and another vertex, $u_{j'}$ of $S' \cap U$ are omitted, so $C((S' \cap U) \setminus \{u_j, u_{j'}\})$, together with $S' \cap V$, form a dominating set of G, which is a contradiction. Otherwise, similarly, contradiction is obtained.

Corollary 2

If a graph, G, satisfies the conditions of Proposition 3, then:

 $f(M(G), \gamma(M(G))) = f(G, \gamma(G)).$

Similarly, for any graph:

G, f(M(G), i(M(G))) = f(G, i(G)).

As an example, for each $m \ge 3$:

$$f(M(K_2), 2) = f(M(M(K_2), 3))$$

$$=\cdots = f(M^{m-1}(K_2), m) = 2.$$

It is well known that every pair, a, b, of integers, with b positive and $0 \le a \le b$, can be realized as the forcing domination number and domination number, respectively, of some graph [1]. Now, for each pair of integers, a, b, with $0 \le a \le b$, if G is a graph satisfying the hypotheses of Proposition 3 and $\gamma(G) = m < b$, $f(G, \gamma(G)) = a$, then, using Mycielski's construction b - m times, one can obtain a graph, G', satisfying the above fact. The following can also be seen:

1. If $|V(G)| \neq 2$ and $\gamma(G) = 1$, then for each integer, m,

$$f(M(G), 2) = \dots = f(M^{m-1}(G), m) = 1;$$

2. If $\gamma(G) = 2$ and every $\gamma(G)$ -set contains just two adjacent vertices, then:

$$f(M(G), \gamma(M(G))) = 2.$$

Proposition 6

Let $\gamma(G) = 3$ and every minimum dominating set of G contains just two adjacent vertices. If G has a minimum dominating set $\{v_x, v_y, v_z\}$, where $v_y \leftrightarrow v_z$ and:

$$|(N(v_x) \cap U) \setminus (N(v_y) \cup N(v_z))| > 1,$$

then, $f(M(G), \gamma(M(G))) = 1$; otherwise, $f(M(G), \gamma(M(G))) = 2$.

Proof

By Proposition 4, one has:

 $f(M(G), \gamma(M(G))) \ge 1.$

Let $\{v_x, v_y, v_z\}$ be a $\gamma(G)$ -set with $v_y \leftrightarrow v_z$. If:

 $|(N(v_x) \cap U) \setminus (N(v_y) \cup N(v_z))| > 1,$

then, $F = \{u_x\}$ is a forcing dominating set for M(G). Otherwise, $F' = \{u_x, v_x\}$ is a forcing dominating set for M(G). Also, if, for any $\gamma(G)$ -set $\{v_i, v_j, v_k\}$ with $v_j \leftrightarrow v_k$, $|(N(v_i) \cap U) \setminus (N(v_j) \cup N(v_k))| \leq 1$, then, it is easily seen that no two vertices can uniquely determine a minimum dominating set.

Theorem 4

If the hypothesis of Corollary 1 holds for G, then;

$$f(G, \gamma(G)) \le f(M(G), \gamma(M(G))) \le 2 + f(G, \gamma(G)).$$

Proof

Let F be a minimum forcing dominating set of M(G)and S be the unique minimum dominating set containing it, then, by Corollary 1, S has the form $D \cup \{w\}$, $(D \setminus \{v_k\}) \cup \{u_k, w\}$ and $(D \setminus \{v_k, v_l\}) \cup \{w, u_k, u_l\}$, where D is a $\gamma(G)$ -set and $v_k \leftrightarrow v_l$ are the two adjacent vertices of D. Clearly, one of $\{u_k, u_l\}$, $\{v_k, v_l\}$ or $\{v_k, u_l\}$ is contained in F. If $\{u_k, u_l\} \subseteq F$, then, $(F \setminus \{u_k, u_l\}) \cup \{v_k, v_l\}$ is a minimum forcing dominating set of G. If $\{v_k, v_l\} \subseteq F$, then, F is a minimum forcing dominating set of G, and if $\{v_k, u_l\} \subseteq F$, then $(F \setminus \{u_l\}) \cup \{v_l\}$ is a minimum forcing dominating set of G. Hence:

 $f(G, \gamma(G)) \le f(M(G), \gamma(M(G))).$

On the other hand, let F' be a minimum forcing dominating set of G and S' be the unique minimum dominating set containing it with two adjacent vertices, v_i, v_j . If $\{v_i, v_j\} \subseteq F'$, then, F' is a minimum forcing dominating set of G. Hence:

 $f(M(G), \gamma(M(G))) \le f(G, \gamma(G)).$

If one of the two adjacent vertices, say v_i , belongs to F', then, $F' \cup \{u_j\}$ is a minimum forcing dominating set of M(G). Hence:

 $f(M(G), \gamma(M(G))) \le 1 + f(G, \gamma(G)).$

Finally, if none of the above two vertices belong to F', then, $F' \cup \{u_i, u_j\}$ is a minimum forcing dominating set of M(G). Hence:

$$f(M(G), \gamma(M(G))) \le 2 + f(G, \gamma(G)).$$

CONCLUSION

In this paper, the domination number and forcing domination number of M(G) is studied, with respet to some given properties of $\gamma(G)$ -sets. However, there are other properties of $\gamma(G)$ -sets and $\gamma(M(G))$ -sets which can be studied.

ACKNOWLEDGMENT

The authors would like to thank the referee for his (her) useful comments.

REFERENCES

- Chartrand, G., Gavlas, H., Vandell, R.C. and Harary, F. "The forcing domination number of a graph", J. Comb. Math. Comb. Comput., 25, pp 161-174 (1997).
- Cherifi, R., Gravier, S. and Zighem, I. "Bounds on domination number of complete grid graphs", Ars Combinatoria, 60, pp 307-311 (2001).
- Fisher, D.C., McKenna, P.A. and Boyer, E.D. "Hamiltonicity, diameter, domination, packing and biclique partitions of Myscielski's graphs", *Discrete Appl. Math.*, 84, pp 93-105 (1998).
- Gravier, S. and Mollard, M. "On domination numbers of Cartesian product of paths", *Discrete Math.*, 80, pp 247-250 (1997).
- Haynes, T.W., Hedetniemi, S.T. and Slater, P.J., Eds., *Domination in Graphs: Advanced Topics*, Marcel Dekker, Inc, New York, NY, USA (1997).
- Haynes, T.W., Hedetniemi, S.T. and Slater, P.J. Eds. Fundamental of Domination in Graph: Advanced Topics, Marcel Dekker, Inc, New York, NY, USA (1998).