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Research Note

Time-Domain Analysis of Sandwich Shells
with Passive Constrained Viscoelastic Layers

M. Salehi1;�, F. Bakhtiari-Nejad1 and A. Besharati2

Damping e�ects on THE vibration behavior of a sandwich cylindrical shell with a passive
constrained viscoelastic layer are investigated in the time-domain. Equations of motion in terms
of transverse modal coordinates in the frequency-domain are obtained by means of an energy
method and the Lagrange equation, and they are solved by the assumed-mode method. The
viscoelastic behavior is represented by the frequency complex modulus model. The equations of
motion are transferred from the frequency-domain to the time-domain by the Inverse Fast Fourier
Transform, (IFFT). Thickness e�ects of constrained and viscoelastic layers are investigated by a
transient external load response and evaluation of the damping factor and settling time.

INTRODUCTION

Constrained Layer Damping (CLD) treatments are
used to suppress noise and vibration in a complex
structural system. These treatments provide e�ective
suppression by the dissipation of energy in a soft,
heavily damped, viscoelastic core (VEC) sandwiched
between the two face sheets of a composite panel in

exure.

The use of constrained viscoelastic treatment for
improving the damping in structures is a very popular
method in cases of structures made of conventional
materials (such as steel) which possess little material
damping. The e�ect of the outer elastic layer (the
constraining layer) is to increase the deformation in
the VEC, thus, resulting in higher energy dissipation
in the viscoelastic material. There are two primary
methods for dissipating energy in the VEC of a con-
strained layer damping treatment: Shear deformation
and compressional deformation. Shear deformation
results when the constrained layer and base structure
move parallel to each other, acting to shear the vis-
coelastic core. Compression deformation results when
the upper and lower layers move perpendicular to each
other, acting to compress (or stretch) the viscoelastic
material.
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Kerwin and DiTaranto [1,2] focused on the mathe-
matical modeling of long, simply supported beams with
soft VEC and thin sti� constraining layers. Mead and
Markus [3] developed a sixth order di�erential equation
of motion, in terms of the transverse displacement
of the beam for arbitrary boundary conditions. The
analytical work presented in that paper used the fun-
damental assumption that shearing of the VEC is the
only cause of energy dissipation and that compressional
damping does not occur in this system. Douglas and
Yang [4] modi�ed or extended the model for di�erent
applications. Ramesh and Ganesan [5] used the �nite
element method to solve a cylindrical system with
thin axial strips, which bonded to the cylinder with
a viscoelastic material. Recently, Chen and Huang [6]
developed a generic theory for the CLD treated shell.
The time-domain behavior of a hysteretically damped
structure was obtained from the frequency-domain
response by Lunden and Dahlberg [7] and Karlsson [8],
using the Fourier Transform (FT) technique.

To the authors' knowledge, available literature,
regarding the time-domain analysis of the constrained
layer damping treatment of sandwich cylindrical shells
with core viscoelastic material, is limited. The objec-
tive of the present study is to obtain the transient exter-
nal load response of a constrained sandwich shell with
viscoelastic core material, in order to investigate the
damping e�ects of viscoelastic and constraint layers.

To obtain equations of motion in the frequency
domain, the Lagrange equation is applied and the
governing equation between the layers and boundary
condition is yielded. Then, the equations of motion
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are transferred from the frequency domain to the time
domain by an Inverse Fast Fourier Transform (IFFT).

ANALYTICAL MODEL FOR SANDWICH
CYLINDRICAL SHELLS

Kinematic Relations

The con�guration of a 3-layered sandwich shell is
illustrated in Figure 1. Layers 1 and 3 are assumed
to be thin, homogenous and isotropic; therefore, the
transverse shear deformation of the shell and Con-
strained Layer (CL) can be neglected. The core is of
linear viscoelastic material, with a frequency dependent
complex shear modulus, G(!).

Love's assumptions [9] are applied and corre-
sponding displacements for the three layers are given
by the following equation:

Ux = ux(x; �) + z�x(x; �);

U� = u�(x; �) + z��(x; �);

Uz = uz(x; �): (1)

The stress-strain relationship in the cylindrical shell
and in the constrained layer is described by:
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For the viscoelastic layer, the stress relation is [5] as
follows:

�vxz = Gv(!)"vxz;

�v�z = Gv(!)"v�z: (3)

Figure 1. Simply supported cylindrical shell with
viscoelastic core (VEC).

The cylinder is approximated by a thin shell, therefore,
the displacements in x and � directions are assumed
to vary linearly through the shell thickness. The
displacement in the transverse direction is independent
of z and the shear strains in the face layers are
negligible. Thus, the strain displacement relations are
given by:
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While its strain-displacement relations of the VEC are
given by:
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;
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The deformation pattern of three layers in the axial
direction is shown in Figure 2. Taking into considera-
tion Love's simpli�cation, the assumption of a no-slip
condition between layers yields the following:
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hs
2
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2
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Substituting Equation 6 into Equation 5 yields [6]:
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Figure 2. The deformation pattern of the layers in x
direction.
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Energy Expression

The kinetic energy of the layers with the in-plane iner-
tia neglected (Donell-Mushtari-Valso assumptions) [9]
are:
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The strain energy of the three layers is:
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Assuming an external transverse point load of F (x; �; t)
applied on the cylindrical surface, the work done by this
force can be expressed as:

QZ =
2�Z
0

LZ
0

rSF (x; �; t)w(x; �; t)dxd�: (15)

Equations of Motion

The governing equations of a sandwich shell with a
viscoelastic core excited by an external transverse load
are derived via the Lagrange equation.

d
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where qi represents the ith generalized coordinate and
Qi is the ith generalized force. T and U are the kinetic
and strain energies of the whole system, respectively,
which are expressed as:

T = Ts + Tv + Tc; U = Us + Uv + Uc: (17)

For a cylinder, the displacements can be approximated
by:

uZ(x; �; t) =
1X
j=1

Wj(x; �)�(t) = [W ]T f�g; (18)

usX(x; �; t) =
1X
j=1

Usj (x; �)�sj (t) = [Us]T f�Sg; (19)

us�(x; �; t) =
1X
j=1

V sj (x; �)�sj (t) = [V s]T f�Sg; (20)

ucX(x; �; t) =
1X
j=1

U cj (x; �)�cj(t) = [U c]T f�cg; (21)

uc�(x; �; t) =
1X
j=1

V cj (x; �)�cj (t) = [V c]T f�cg: (22)

The shell is assumed to be simply supported at two
ends, and a unit harmonic point load, applied at x� =
0:1 and �� = 0, is as follows:

Fz(t) = �(x� x�)�(� � ��)ei!t: (23)

The mode shape functions are selected to be as follows:
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By using the above shape functions and substituting
Equations 9 to 14 into the Lagrange Equation 16, the
equation of motion of the cylinder is yielded in the
following form:

[M ]f�&ig+ [K]f&ig = fQz(t)g; (25)

where [M ] = [Ms]+[Mv]+[M c] is the mass matrix and
[K] = [Ks] + [Kv] + [Kc] is the sti�ness matrix of the
sandwich cylinder. fQz(t)g is a column of generalized
force and vector f&ig = [�; �s; �s; �c; �c] is a column
vector containing the modal coe�cients. Note that the
in-plane inertia terms are neglected in the equations
of motion. Consequently, the in-plane equations are in
static equilibrium, such that the in-plane generalized
coordinates are eventually replaced by the following
transverse generalized coordinates:

[M ]f��g+ [K�(!)]f�g = fQz(tg): (26)
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TIME DOMAIN EQUATION

In the equation of motion (Equation 26) for the
vicoelastic material, a complex shear modulus model
is used. In this equation, K�(!) is a complex sti�ness
matrix and is de�ned by:

[K�(!)] = [Ks +Kc] + [K
0V (!) + iK

00V (!)]; (27)

where, Ks and Kc are sti�ness matrices for the shell
and CL layer. K

0V (!) is determined using the shear
modulus, G0(!), while K

00V (!) is found using the imag-
inary part of the complex modulus of the viscoelastic,
G00(!) = �G(!)G0(!), where �G(!) is the viscoelastic
loss factor in the shear and ! is the frequency. The
transient response of the system cannot be obtained
e�ectively by applying direct integration or by modal
methods, because, in this case, it is not possible to
determine the variation of the material properties,
G0(!), with respect to time. The time-domain behavior
of a structure may be obtained from the frequency-
domain response by the FT technique. Incidentally, it
is necessary to solve the following system of complex
linear equation:

f[K�(!j)]� !2
j [M ]gf�(!j)g = fQ(!j)g: (28)

Using the Fourier transform, the frequency spectra of
excitation can be de�ned as F (!j) = =[F (tk)], where
tk is a set of discrete time for the excitation, F (t), and
the displacement of the structure in the time domain
can be obtained from the inverse Fourier transform of
�(tk) = =�1f�(!j)g.

The discrete Fourier transform pair will be in the
following form:

F (!j) = =[F (tk)] =
�!
2�

N�1X
k=0

F (tk)e�i(2�jk=N);

�(tk) = =�1[�(!j)] = �t
N�1X
j=0

�(!j)ei(2�jk=N); (29)

where, N is the number of samples. Obviously, the
accuracy of the discrete Fourier transform depends on
the number of samples, N , and the sampling interval,
�t. The choice of �! and N depends on the frequency
response shape. The frequency interval, �!, for the
inverse transform must be the reciprocal of the total
time record length and computed from �! = 2�=N�t.
It is necessary to note that the value of function at a
discontinuity must be de�ned as the mid-value, if the
inverse Fourier transform is held. Moreover, using the
discrete Fourier transform, it is necessary to remember
that it is based on the assumption of periodicity of the
load applied. For a periodic function with a known
period, it is necessary to choose an N�t interval equal
to a period or an integer multiple of a period.

NUMERICAL RESULTS

Numerical examples are given to compare the three
treatments. The geometric and material properties for
the illustrated examples are as follows:

Shell : ES = 70 GPa; L = 0:35 m;

�S = 2710 Kg/m3; hS = 0:002 m;

rS = 0:1 m;

CL : EC = 49 GPa; �C = 7500 Kg/m3;

VEC : �V = 1104 Kg/m3:

The behavior of the viscoelastic material in this anal-
ysis is the complex modulus in the frequency domain
representation, given by Douglas [4], as:

G(!) = 0:142(!=2�)0:494(1 + 1:46i) MPa: (30)

The Frequency Response Function (FRF) approach has
been used in calculating the steady-state response of
viscoelastic material in the following form:

FRF = fQgT [K �M!2]�1fQg: (31)

Figure 3 shows the FRF diagram for the CLD (hv =
0:5, hc = 0:5) and bare shell. As expected, for the CLD,
the amplitude of FRF is decreased, due to the increase
of damping. In the numerical time treatment, N and
�t are chosen to be 10000 and 0.001 sec., respectively,
resulting in �! = 0:2�s�1. This time interval is
selected in order for the response of the system vanishes
at this time. The results of the transient response
analysis for one thickness of CL and one thickness of
VEC are shown in Figures 4 and 5.

Figure 3. FRF with CLD treatment (hv = 0:5, hc = 0:5)
and bare shell.
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Figure 4. Transient response of sandwich shell with two thicknesses of CL (hv = 0:2 mm).

Figure 5. Transient response of sandwich shell with two thicknesses of VEC (hc = 0:5 mm).

Figure 6. Thickness e�ect of CL on the settling time
(hv = 0:2 mm).

Figures 6 and 7 show settling times with a 5%
criterion for various thicknesses of CL and VEC. Both
�gures con�rm that the rate of the amplitude reduction
is decreased with an increasing thickness of CL and

Figure 7. Thickness e�ect of VEC on the settling time
(hc = 0:5 mm).

viscoelastic layer. Figures 8 and 9 show the structural
damping factor for di�erent thicknesses of CL and
VEC. Since polymer material is used as a damper
in this structure, the  function may be used for
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Figure 8. Structural damping factor with various
thickness ratios of VEC to shell.

Figure 9. Structural damping factor with various
thickness ratios of CL to shell.

calculation of the damping value. If the external
force on the structure is assumed to be harmonic, this
function is de�ned as:

tag( ) =
ImH(i!)
ReH(i!)

; (32)

where H(i!) =FRF is the frequency response function
of the structure. If the viscoelastic core is modeled with
a spring of constant sti�ness, k, and a linear dashpot
with a viscous damping coe�cient, c, and elements
combined in parallel, then one has:

tag( ) =
c!
k

= 2

!
!n

; (33)

where, !n is natural frequency and 
 is the damping
coe�cient of the structure. The value of 
 can be

calculated by the Peak-Picking method [10] for the �rst
vibration mode. Damping e�ects in a low thickness of
CL and VEC are greater, as is evident from the curves
in Figures 8 and 9. These results con�rm the results of
Figures 6 and 7.

CONCLUSION

In this paper, an approach to the vibration analysis
of a cylindrical shell with Constrained Layer Damping
(CLD) treatment is presented. Equations of motion, in
terms of transverse modal coordinates, are obtained by
means of an energy method, Love's assumptions and
the assumed-mode methods. Using the Inverse Fast
Fourier Transform (IFFT), the equations of motion
are transferred from the frequency domain to the time
domain. In the time-domain, the damping and settling
time at di�erent thicknesses of CL and viscoelastic
layers are computed. Also, the Structural Damping
Factor is calculated with various thicknesses of VEC
and CL. All results con�rm that sti�er CL with a
larger hc and thicker VEC with a given shear modulus
always yield better damping, and that damping e�ects
at smaller thicknesses of CL and VEC are greater.
Also, increasing the VEC thickness by more than a
speci�c value will not further a�ect the damping of
the structure. In this case, the damping e�ect can be
increased by increasing the thickness of CL.

NOMENCLATURE

s; c; v cylindrical shell, the Constraining
Layer (CL) and viscoelastic core
(VEC),

E;G Young's modulus and shear modulus,
Gv complex shear modulus for VEC,
�ixx; �

i
x�; �

i
�� in plane stresses of cylindrical shell

and CL,
"ixx; "

i
x�; "

i
�� in plane strains of cylindrical shell and

CL,
�Vxz; �

V
�z; "

V
xz; "

V
�ztransverse shear stresses and strains in

viscoelastic layer,
uix; u

i
�; uz displacement in x; � and transverse

directions,
rs; rv; rc radius of mid-plane in cylindrical shell,

VEC and CL,
hs; hv; hc thickness of cylindrical shell, VEC and

CL,
�vx; �

v
� angular displacement of VEC,

TS ; TV ; TC the kinetic energy of the layers,
US ; UV ; UC the strain energy of the layers,
�s; �v; �c density of layers,
�s; �s; �c; �c; � generalized coordinate of layers,
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Qz generalized force,
F transverse point load,
K�(!) complex sti�ness matrix,
Ks;Kv;Kc sti�ness matrix of layers,
�G(!); �E(!) material loss factor in the shear and

tension,
H(i!) frequency response function,
 damping value,

 damping coe�cient.
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