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Research Note

Formulating Depth Information in an Image

A. Saadat!

In conventional imaging systems, the depth difference of two visible points appears as the defocus
difference of their images. A monotonic relation between the depth of a set of points and the
amount of defocus of their images may be obtained by focusing the camera on closer sets.
Measuring depth may lead to measuring defocus at each image point. Generally, a defocusing
operator can be modeled as a linear, circular symmetric, low pass, positive and space variant
filter. In the approach, proposed here, for solving the depth finding problem, the spatial scope of
the defocusing filter is used as a measure of depth, without imposing any restriction on its shape.
Through an analytic procedure for finding the scope of the filter at each region of interest, a
general criterion for depth will be obtained. Due to the simple relation with the scope of the
defocusing filter, the criterion has a mathematically tractable performance. The given relation
provides an effective sense of depth information hidden in a simple image of a scene. The problem

formulation is such that it points to the conditions which validate the relation.

INTRODUCTION

In conventional imaging systems, the depth difference
of two visible points appears as the defocus difference of
their images. In a simple analysis, the defocusing effect
changes the image of a point to the well-known blur
circle with radius proportional to depth [1]. Measuring
depth may lead to measuring defocus at each image
point. A one to one monotonic relation between the
scope of the defocusing filter and depth can be obtained
by focusing the camera either on the nearest or the
farthest points of a scene. In this paper, it is always
assumed that the camera is focused on a point closer
than the nearest point of the scene under consideration.
The main purpose of this section is to measure the
scope of the defocusing filter, as a value proportional
to depth, at each image point.

A defocusing operator or blurring function gener-
ally can be modeled as a linear, circular symmetric,
positive and space variant filter. This model is in
harmony with both diffraction and geometric optics.
Imposing some certain shapes to the defocusing filter
has led to various solutions. A Gaussian filter with
spatial variance proportional to depth has been used
extensively in the literature. This model, deduced from
diffraction optics [2], has not been satisfied generally
3] and is not observed as a proper model [4]. Based
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on geometric optics, blur circle or Circ function, with
radius proportional to depth, has been used in the
spatial domain [5]. Analysing defocused step edge has
been investigated previously in [2,6,7]. In [2,6], depth
parameter has been obtained from a double differen-
tiation of the intensity image in the neighborhood of
vertical edges. Based on the selected model for the
defocusing operator, variance in [2,7] or second central
moment in [6] have been used as the depth parameter.
Through an optimal procedure in [7], inclined step
edges, convolved by Gaussian defocus operator, have
been used to obtain the model’s variance.

In order to distinguish subjective blurring of a
scene from that of the defocus effect, at least two
images of the scene, corresponding to different oper-
ators, will be required. If the scene characteristics are
known or all local areas of the scene have the same
texture, only a single image will be enough. Each
image of a scene contains its own information of depth.
This paper is interested in the quality and quantity
of depth information in an image. Therefore, it is
more concerned about the information contained in a
single image. In spite of the simplicity obtained by the
models, current methods have led mostly to complex
and non-forward heavy optimal calculations. This
complexity has not permitted researchers to analyze
their own methods. Experimental results have also
been expressed mostly in statistical mean forms.

The purpose of this paper is not to introduce
a new method and present some simulation results.
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What is being sought, however, is the establishment of
solid foundation for the problem of extracting the depth
of an image, which itself leads to further basic new
methods. The analytic approach to the problem will
be based on the most general model of the defocusing
filter and will not impose any restriction on its shape.
Furthermore, any result obtained by implementing a
certain model will not be considered. This paper
is organized as follows. First, some definitions and
theorems, which simplify the later section, will be
presented. Then, the problem is formulated. The main
idea in the proposed approach is to use the spatial scope
of the defocusing filter at each point as a value directly
related to depth. Through an analytic procedure, a
monotonic relation between the scope of the windowed
image in the regions, considered for depth finding, and
the scope of the corresponding defocus filter will be
derived. Finally, experimental results will be given
followed by the conclusion.

DEFINITIONS AND THEOREMS

Let (r,8) and (p, ¢) be the polar coordinates in the spa-
tial and frequency domains, respectively. The Fourier
transform of function f(r,#) is denoted by F(p, ), in
which0 < r,p <00 and 0 < 8,¢ < 2x. These functions
are related by the following Equation [8]:

27 <)
F(p,¢) = / / f(r,0)e=72mrPeos(0=d)rdrdy .
0 0 (1)

When f(r,0) = f(r), f is circularly symmetric. Then,
F will be also circularly symmetric or F{p, ¢) = F(p).
In this case, f and F' are Hankel transform pair related
by [8]:

F(p) = /000 Jo(2nrp) f(r)2nrdr . (2)

Jo is the zero order Bessel function of the first kind.
Two-dimensional convolution among the circular sym-
metric functions fi(r) and fo(r), which have Hankel
transforms Fi(p) and F;(p), respectively, is given by

(8}:

o0 27
()% falr) = /0 /0  f1(r") fo( R) O,

R? =r? 4+ 1'% = 2r' cos(f). (3)

The symbol * denotes two dimensional convolution.
The Hankel transform of the resulting function is

Fi(p)Fa(p).
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Definition 1

Circular Symmetric Form (CSF) and
Normalized Circular Symmetric Form (NCSF)
The CSF of f(r,0) is defined as its mean over the range
of 0 € 0 < 27 at any r. The resulting function may be
denoted by f(+) for simplicity:

1 27
J0) =5z [ 0,000 @
Furthermore, the CSF of F(p,$) may be shown by
F(p). The NCSF of a 2-D function is obtained by
dividing the CSF of that function by its value at the
origin. The NCSF is usually used in the frequency
domain. Suppose F(p) be the Hankel transform of a
positive value function f(r), normalizing F(p) means
dividing it by its maximum value. This is the result of
the following procedure:

FoI=1 [ " Jo(zmre) f(r)2mrdr]
< /0~oo |Jo(2mrp)| f(r)2nrdr

< /oo f(r)2xrdr = F(0). (5)
0

The relation |Jo(z) |< 1, for any positive real value z,
has been used to derive Relation 5.

Definition 2

Mean of a Circular Symmetric Function with
the Density of Another Function

The mean of a circular symmetric function g(r) with
the density of another function f(r), denoted by
E{g}s, is defined as:

" / " o) f(ryrdr
Blgy =0 o (©)
! / f(r)rar

0

When f(r) is positive, normalizing it through division
by its infinite integral produces a probability density
function. Note that the integrations in Equation 6 are
two dimensional and weighing r is the result of the
surface element 27rdr in (r,8) plane.

Definition 3

Scope of a Positive Circular Symmetric
Function (PCSF)

The scope of a PCSF f(r) is defined as:
ds = [E{r?};]'/2. (7)

Note that E{r2}; > 0 guarantees real roots and pro-
vides a positive value for dy. d?f can be interpreted as
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the power of the signal having density f(r). Although
the CSF of the Fourier transform of an image may not
be a positive real value function, it will be seen that
under certain conditions, this definition can also be
used for that function.

Definition 4
Function’s Family (FF)
Functions with a free parameter and independent
variable(s) that have similar closed form constitute an
FF. Each value of the parameter represents a certain
member of the corresponding family. Generally, the
Fourier transform of members of an FF is another FF.
Gaussian FF is one of the few exceptions here. Variance
is the well-known parameter of the Gaussian FF.

The proofs of the following theorems are stated
in [9].

Theorem 1

Let F(p,¢) be the Fourier transform of f(r,8). The
CSFs of F(p,¢) and f(r,0) are Hankel transform pair.

Theorem 2
Suppose f(r) and F(p) are Hankel transform pair; i)
If f(0) is positive and a local maxima of f(r), then
E{p*}r will be positive, ii) If f(0) is positive but
not a local minima of f(r), then E{p?}r will be non-
negative.

The property of a function being Positive And
Not having local Minima At the Origin is simply called
PANMAO.

Theorem 3
Consider PCSFs fi(r), fo(r) and f3(r) with the cor-
responding scopes dy,, ds, and dy,, respectively. If
fi(r) = fa(r) * f3(r), then the following relation is
maintained:

d}l = d22 + d?‘(} . (8)

Theorem 4

Let the certain functions f(r) and F(p) be Hankel
transform pair. If f(r) is a member of FF denoted
by g(r) = f(ar), having Hankel transform G(p) and
family’s parameter a, the product E{r2},E{p?}¢ will
be a certain value independent of a.

Comment

This value is called Family’s Constant (FC) for g(r) or
G(p) FF. f"(0) = 0 or F"(0) = 0 causes E{p?’}g =0
or E{r?}, = 0, respectively, resulting in an FC equal
to zero.

PROBLEM FORMULATION

The main purpose of this section is to measure the
scope of the defocusing filter, as a value proportional
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to depth, at each image point. The defocusing process
is analyzed in a local area of the scene with a fixed
depth or, equally, in a small selected region of the
captured image on which the filter can be assumed
space invariant. Using the functions:

s(r,9) focused image of the scene
i(r,0) defocused or captured image
h(r,8) = h(r) defocusing operator

in the selected region gives:
i(r,8) = s(r,8) = h(r). 9)

The corresponding Fourier transforms of the functions
are related by:

I(p,¢) = S(p, $)H(p). (10)
The CSF of Equation 10 can be written as:
I(p) = S(p)H(p), (11)

where the same symbols were used for simplicity. The
Hankel transforms of the functions in Equation 11 are
given by:

i(r) = s(r) * h(r). (12)

In accordance with Theorem 1 and since I(p) and S(p)
are the CSFs of I(p,#) and S(p, ¢), respectively, i(r)
and s(r) are also the corresponding CSFs of ¢(r,§) and
s(r,0).

Applying Equation 9 to the other regions of
s(r,8), using the h(r) of the selected region, gives a 2-D
function i(r, ) in the entire domain of (r,6) with the
CSF of i(r). The function obtained in this way will be
equal to the captured image i(r,8) only in the regions
having the same depth as that of the selected one. This
is a simple and useful way to deal with Equation 12
in order to extend it over the entire domain of s(r).
This reveals the abilities and outlines the applications
of the criterion of depth introduced later. Considering
this and taking the Hankel transform of both sides of
Equation 12 leads to:

I(p) = S(p)H (p)- (13)

According to Theorem 3, the scopes of the functions
i{r), s(r) and h(r) are related by the following Equa-
tion:

df =dl +di. (14)
Considering Definitions 2 and 3, d; will be given by:

” r3i(r)dr
d? ———/0 (15)

- /000 ri(r)dr -
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Using s(r) or h(r) instead of i(r) in Equation 15,
ds or dj can be obtained in a similar way. Since s(r)
and h(r) are positive real value functions, d2, d? and
d? give positive scopes for the corresponding functions.
Equation 14 demonstrates that the squared scope of
the captured image is equal to the sum of the scopes
for the defocusing filter (desired value) and the focused
image (additive noise component). In analysis the
presence of the desired value and noise component in
an additive form makes using the appreciable classic
knowledge in linear stochastic systems theory possible.
Consequently, the problem of finding d? would have a
mathematically tractable solution. Noting that d? has
a fixed value for the image, d; can be used as a value
proportional to depth, which is true for d;, as well.

Using d; requires integration of i(r) over its entire
domain. However, ¢ is equal to the captured image
i only in the regions having the same depth as that
of the selected region. In order to use the captured
image, windowing it in each region is necessary. For
windowing the captured image, a circle with radius
T, contained in the selected region is considered. The
origin of coordinates system is chosen as the center of
the circle, therefore, the accessible parameter D;,

/00 r3i(r)w(r)dr

0

/oo ri{r)w(r)dr
0

can be used instead of d;. This requires the windowing
function w(r) to be zero outside the selected circle or
forr > rp,.

Through windowing, it is not likely to have a
simple relation, such as Equation 14, among D; and d,.
This violates the additive form of the true relation (be-
tween D; and d;) and compromises the mathematical
tractability of D,;. However, considering the non-zero
amount of information saved after any process, such
as windowing, D; provides useful information about
d; and certainly dj. The following section derives the
general relation between D; and dj.

D? =

1

, (16)

RELATION AMONG D; AND d,

The scope of PCSF f(r) was defined as dy. Consider
F(p) as the Hankel transform of f(r). Furthermore, it
is necessary to define the scope of F(p). As stated in
Theorem 2, if f(r) has local maxima at the origin, then
the expression:

/ N p’F(p)dp
E{p’}r = LT—, (17)
| oPe

will be positive and, based on Definition 3, can be
assumed as d%. Here, dr can be called the scope of
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f({r) in the frequency domain, as dy in the spatial
domain. According to Theorem 2, when f(r) has
the PANMAO property, dr will be valid because of
the non-negative value. Relation 5 and the fact that
f(r) is a positive real value function show that (Fp)
has PANMAO property. This implies that a function
has valid scopes, both in the spatial and frequency
domains, provided that the function together with its
Hankel transform have PANMAOQO property. This is a
unified approach for using the scope of a function both
in the spatial and frequency domains.

The greater the scope of a function in the spatial
or frequency domain, the smaller the scope of its
Hankel transform in the frequency or spatial domain.
Generally, for the members of an FF f(r), the scopes
ds and dp can be related by:

&% = Ty(d3). (18)

Ty is a monotonically decreasing function (MDF) and,
therefore, invertible on spatial scopes of the members
in the FF. Inversion of T or T is also an MDF. In the
limit case when df (or dr) is zero, the graph of Ty (or
'y 1) approaches the positive part of the vertical (or
horizontal) coordinate in the rectangular coordinates
system.
Windowing requires use of the function ,,(r),

iw('r) = g'('r)-w(r), (19)

instead of i(r), in each region. Taking Hankel trans-
form of both sides of Equation 19 results in:

L,(p) = L(p) x W (p). (20)

If i(r) and w(r) have the PANMAO property, i,(r)
will also have it. Then, the scope of the functions I(p),
W(p) and I,,(p) will be valid. According to Theorem 3
and Equation 20, corresponding scopes of the functions
are related by:

di, =dj +diy. (21)

Like Equation 18, each of the three parts in the above
equation is an MDF of the corresponding part in the
spatial domain. Therefore, Equation 21 can be written
as:

T.,(d7,) = Ty(d?) + Tw(d2), (22)

where T;,, T; and T, are MDF's of the corresponding
scopes of the FFs 1,,, i and w, respectively. Taking the
inversion of T;,, or Ti;l of both sides of Equation 22
vields:

di, = T [T3(d) + T (d3,)]- (23)

T
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However, d;,, or the scope of {(r)w(r) is equal to D;
(Equation 16). Using this and substituting Equation 14
in the above statement gives the following equation:

D? = T Ty(d? + d},) + Tw(d2)], (24)

T;, Ty, and Ti;I are MDFs of their arguments. Thus,
dn relates to Dy through a monotonically increasing
function (MIF) in Equation 24. Since w(r) is fixed
and T, is bound limited, choosing any windowing
function w(r) will not scratch the monotonical form
of Equation 24.

In many cases, Equation 24 can be expressed
more explicitly, including a case in which the family’s
parameter (FP) appears as a multiplicand factor for the
independent variable. In that case, Relation 18 changes
to the following relation in accordance with Theorem

dr = 5= (25)

where ky is the FC. The validity of d; and dr causes ky
to be positive. Considering Equation 25, Relation 14
can be written as:

ki ks kh

= = =+ —, 26

- ata, (26)
where d;, ds and dy are the scopes of the functions
I(p), S(p) and H(p), respectively. k;, ks and kj are
also the corresponding FCs.

Situations where some of the FCs are zero should
be taken into account. The FC of an FF becomes
zero when the scope of the family in the spatial or
frequency domain is zero. If the scope is zero only
in the frequency domain, some parts of Equation 26
will experience % ambiguity. If the scope is zero only
in the spatial domain, concluding Equation 26 from
Equation 14 will not be possible as, by omitting a
zero part of Equation 14, it is not possible to get
the corresponding non-zero part in Equation 26. If
both scopes of the family, in the frequency and spatial
domains, are zero, the two problems described above
will arise together. These types of functions are called
singular points of Equation 26. Therefore, FFs with
zero FC are singular points of the relation.

The purpose of using Equation 26 is to find a
general rule among the scope of a function and the
scopes of its multiplicand factors. There is no reason for
singular points to violate a general solution. However,
the impossibility of using them, in the middle stages
of the process of finding the general solution, is clear.
The best way to find the solution to the singular points
is direct calculation based on the definitions presented
previously. A comprehensive research in [9] indicates
conventional ‘cases in which singular points do not
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violate the format of the general solution obtained
later. Neglecting singular points and dividing both
sides of Equation 26 by k; leads to:

1_ kb Kk
i di  dy’

(27)
in which k1 = k,/k; and ky = ky /k;. Because k;, k; and
ky, all have positive values, k; and ko are also positive.
To remind and emphasize, I, S and H are related by:

I(p) = S(p)H (p). (28)

Equations 27 and 28 indicate a relation between the
scope of 4 function and the scopes of its multiplicand
factors, which can be extended easily to more than
two multiplicand factors. To summarize the conditions
for using Equation 28, it should be noted that: 1)
Each factor and its Hankel transform should have the
PANMAO property and 2) Factors which have zero
value FC are the single points of Equation 27.

Now, D; is the scope of the function %,,(r) with
the multiplicand factors i(r) and w(r). As explained
previously, the PANMAO property is the only require-
ment for i(r) and w(r) to hold the following relation:

1 C [&)]
D_? = E + 'd—g, (29)
where ¢; = ki/ki, and c2 = ky/ki, are positive

value constants. k;,, k; and k, are FCs of i,(r),
i(r) and w(r), respectively. Because i(r) is the rame
as i(r) inside the window, the above requirement
should be provided by the captured image in each
region. Moreover, since i¢(r) and w(r) are, generally,
positive value functions, the PANMAO constraint can
be reduced to the property of “not having a local
minima at the origin of the coordinates system selected
in each region”. This is the only restriction imposed
on the image, and also on w(r), for using D; as a
mathematically tractable measure of depth. Single
points of Equation 29 are functions with zero value
FC. Because factors i(r) and w(r) are positive value
functions, this will happen if w”(0) = 0 or i"(0) = 0,
in accordance with the comment of Theorem 4. For
singular points, D; should be computed directly from
Equation 16.
Substituting Equation 14 in Equation 30 yields:

l__a o
DY d2+dZ 42

k3

(30)

This simple closed relation gives an effective sense of
depth information hidden in an image. The simple form
of the relation saves sufficient mathematical tractabil-
ity for D; to analyze its performance against noise and
various image textures. The curve shown in Figure 1
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dZ+dy,
2
) > dj,

Figure 1. General relationship between D? and d}.

depicts D2, normalized to d2,, versus df forc; = ¢ = 1.
It shows a monotonically increasing relation between
D; and depth. As shown in Figure 1 and followed in
Equation 30, the curve has an upward trend. This
allows lower depths to be resolved more accurately.
Also in turn, this is a reason for having low accurate
results with deeply defocused images. It should be
noted that the scope of s(r) is generally much greater
than that of w(r). This forces d2/(d? + d2,), or the
initial value, to be close to one. Therefore, normalized
D? will not have a wide range of variations.

EXPERIMENTAL RESULTS

Using edge texture, the ability of D; in resolving depth
was experimentally tested. The experimental equip-
ment used was a black-and-white CCD camera, a frame
grabber with 6 bits resolution and a commonly used
personal computer for data aquisition and computing
D,. The scene in the experiment composed of a black
stripe fixed to a white sheet of paper which was tilted
against the camera. The paper was placed in such a
manner that the distance from the camera increased
linearly from left to right. The camera was focused on
an object with a distance less than that of the nearest
point of the sheet.

Figure 2 shows the corresponding captured image
of the scene. The image has 300 pixels in length.
The gradual narrowing of the stripe and its increased
blurring from left to right indicate the increase in depth
along the edge. To compute D; along the stripe, «ll
centers of the integrations should be chosen in the
lighter part at a fixed distance from the edge. In
order to locate the edge, the fact has been utilized that
the second order directional derivative of the image,
in a direction intersected by the edge, is zero at the
intersecting point. For simplicity and for obtaining
results that are less dependent on 7,,, the performance
of M; = D?/(r2,/2), instead of D?, is considered for the
experiment. It should be noted that for images having
constant CSF, inside an integration circle with radius
rm, M; becomes one. Also, d2, is the same as r2, /2 for
the Circ windowing function with radius equal to 7.
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Figure 2. Image of the scene

Figure 3 shows M,, along the edge, with linear
variations in depth. Due to various sources of error
in the image, having a monotonically increasing form
with a local average of M; is a desired behavior for
resolving depth. The results shown in Figure 3 indicate
this capability. There is good agreement between the
experimental results and the behavior of normalized
D?, derived generally in the previous section, which is
shown in Figure 1.

In Figure 3, the curve with a smaller r,, is above
the other one. Furthermore, it is illustrated that two
curves with various r,, do not intersect each other
and that the initial point of the curve with a smaller
Tm, at dn = 0, will be over that of the curve with
a larger r,,. Therefore, normalized D? or M; is a
decreasing function of d,, or 7, at each dp or depth.
As shown in Figure 3, M; has values near one with a
low range of variations. This can also be seen from
the theoretical results shown in Figure 1 and discussed
previously. Another common feature of theoretical and
experimental results is the slightly upward trend for
M; at smaller r,,. This has been shown clearly in
Figure 1, which is in agreement with the curve with
a smaller r,, in Figure 3. The trend reduces the
capability of M; in resolving depth. Increasing v,

0.98

M,

0.96

0 100 200 300
[Pixel]

Figure 3. Experimental M; by linear variations in depth.
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improves this capability as the experimental results
corresponding to larger r, are in accordance with
reality.

CONCLUSION

Extracting depth information from a scene contained
in a simple image was the main aim of the pa-
per. The spatial scope of the defocusing filter has a
monotonic relation with depth. Through an analytic
procedure, a simple relation between the scope of the
captured image and the scope of the defocusing filter,
in each region of interest, was obtained. Despite
simplicity, the relation exhibits a clear concept of
depth information, hidden in a simple image, through
embodying it in a closed form. A simple form of the
relation encourages sufficient mathematical tractability
for the given criterion to analyze its performance.
In addition to the mathematically tractable perfor-
mance of the criterion, it does not require Fourier
transform calculations, differentiation, or complex op-
timal procedures. Error analysis in [9] indicates the
high capability of the proposed criterion in resolving
depth in a single image. Describing this is beyond
the scope of this paper. Furthermore, experimental
results were in good agreement with the theoretical
ones.
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