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Research Note

Coordination of Large-Scale Systems with
Fuzzy Interaction Prediction Principle

N. Sadatil

Coordination is one of the fundamental issues in multi-level large-scale systems. In this paper,
a new approach for coordination by fuzzy set theory based on interaction prediction principle is
developed. Infimal control problems are solved within the framework of fuzzy optimal control
problems (FOC). Fuzzy coordinator simulates a fuzzy prediction, namely &, of the interface
inputs. The infimal control units receive the fuzzy prediction and solve an FOC problem to
obtain the value of the prediction, i.e., &. Error €, between & and actual interface inputs u(&),
and also the rate of change of interface inputs are considered as the input fuzzy sets for the

coordinator.

INTRODUCTION

The concept of coordination is introduced within the
framework of a two-level system shown in Figure 1. The
system consists of n infimal (i.e., first-level) controllers
denoted by Cy,...,C, involved in the direct control
of the process and one supremal (i.e., second-level)
controller denoted by Cq whose decision affects the
infimal controllers. The supremal controller objective
is to influence the infimal controllers so that a given
overall objective, an objective specified for the entire
system as a unit, is achieved. This is referred to as
coordination [1,2].

Let an overall process P M — Y and a
performance function G : M xY — V be given with
M, the set of controls, Y, the set of outputs and V, the
set of performance values. Let g be defined on M by
the following equation:

g(m) = Glm, P(m)]. (1)

Now, the goal of the overall control problem, denoted
by D, is to find a control action m in M which
minimizes g over M ; such a control action will be
referred to as the overall optimum.

Let M = M;x---xM,andY =Y, x---xY,,. For
each i = 1,... ,n, the subprocesses P; : M; x U; = Y,
are given, with U, the set of interface inputs, such
that when intercoupled, as shown in Figure 2, they
form the overall process. For each ¢ = 1,...,n, the
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Figure 1. A two level system with n first level controller.

mapping H; : M x Y — U; demonstrates the interface
input appearing at the ¢th subprocess in the coupled
system. The ¢th infimal control problem is formulated
based on an objective function g¢; given on M; x U;
in terms of the ¢th subprocess and a performance
function G; : M; x U; x Y; — V by the following
equation:

gi(mi, u;) = Gi[mi, uq, Pi(mi, u;)]. (2)

As stated in [2], one case that arises regarding
how coordination might be affected and the infimal
control problems can be defined is model coordina-
tion.

Let U =U; x---xU,. Each a = (a1,... ,an)
inU for ¢ = 1,... ,n provides the subprocesses model
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Figure 2. Decomposition of the overall process P.

P;o(m;) = Pi(m;, ;). Subsequently, for each a in U,
the infimal control problem D;(«) is to find a control
h; in M; such that

gi(rhi, @) = min gi(ms, o). (3)

Interaction Prediction Principle

Let @ = (ay,... ,an) be the predicted interface inputs
and ui(a),... ,un(a) the actual interface inputs oc-
curring when the control m(a) = [i(a),... ,Mn(a)]
is implemented. The overall optimum is then
achieved if the predicted interface inputs are correct,
ie.,
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a; =ui(a) foralli=1,...,n. 4)

If the interaction prediction principle applies, it im-
mediately yields that the supremal control problem
Do is to find & = (&1,...,4n) in U such that
g = & —-ui(&) = 0 for each ¢ = 1,...,n. Al-
ternatively, if ¢; can not be made zero, the supre-
mal control problem can be defined as minimiza-
tion of an appropriate function f of the errors
€1y.++4En.

FUZZY COORDINATION

The basic concept of fuzzy coordination is shown in
Figure 3. The fuzzy coordinator consists of fuzzy rules
which perform functions on incoming input fuzzy sets,
namely error signals, as well as the rate of change of
interface inputs. The output fuzzy sets, &;, are fuzzy
interaction predictions. Hence, the goal of the supremal
control problem Dy is to find fuzzy sets that are good
approximations for u;(&).

The infimal control problems can be considered
as FOC (Fuzzy Optimal Control) problems that are
introduced in [3|. Hence, the infimal control problems,
D;{a), are formulated in the following way.

Find a control action, ; in M;, such that:

gi(rhi, &) = FOCgi(mi, &) (5)
Mi,a;
Note that &; is a fuzzy set near to crisp whose member-

ship function, p(&;), is chosen to have a configuration
of Figure 4.
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Figure 3. Fuzzy coordination diagram.
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Figure 4. Membership function of &;.

In most cases there are uncertainties on con-
straints, final conditions, dynamic equations, system
parameters and so on. These problems are solved
by considering the uncertainties under fuzzy sets,
whose membership functions are p; for j = 1,... ,¢
[4]. Therefore, the crisp equivalent problem can be
formulated as:

max A
M;,a;

subject to:

crisp constraints, A < p(e;), A <py; j=1,...,q

The above optimization problem can be solved to
uniquely determine 7;(&;) and &;. It should be noted
that the value of &; is the best member of prediction of
fuzzy sets @&; that gives local optimization. Hence, the
following principle is proposed.

Fuzzy Interaction Prediction Principle

Let & = (@j,... ,dy,) be the fuzzy predicted interface
inputs and & = (&i,...,G&,) the solution of the
FOC problems. Also, let ui(a),...,un(a) be the
actual interface inputs occurring when the control
m(a) = [fi(a),...,Mmn(a)] is implemented. The
overall optimum is then achieved if & = wui(a) for
t1=1,...,n.

SPECIFICATION OF FUZZY RULES AND
FUZZY SETS

In order to illustrate how fuzzy inference can be used by
the coordinator to compute the proper control actions,
at any given sampling instance, consider the incoming
fuzzy signals of the following form:

ri = u;(nT) — u;(nT - T),
(6)

where ¢; and 7; represent the instantaneous values of
the error and the rate of change at the nth sampling
instants, respectively. It is also assumed that ¢; and
i, © = 1,...,n, take their values on their respective
domains of definition E and R. Moreover, let E = {E;}
and R = {R;}, where j = —k,—k+1,...,0,1,... ,k,is

€ — u,-(nT) - d,-(nT),
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defined on E and R such that a total number of 2k + 1
members fo, fuzzy sets ; and r; of each subprocess is
formed. Furthermore, Ey and Ry are centered at the
origin of E and R. The membership functions defined
on a universe of discourse X, corresponding to E and
R, are expressed as:

{u—k(x), L vﬂ—l(x)7N0(z)7ﬂl(x), R ,,ltk(x)} ’ (7)

A; is the center value of u;(z), where the linguistic
term that it represents fully achieves its meaning, i.e.,
pi(r) = 1. Also, let Ay = —L, Ap = 0 and A = L.
Assuming that the space, s, between the central values
of two adjacent members is equal, it is easy to see that
s = L/K and )\; = i.s. Furthermore, it is obvious
that the base of each member is 2s. It should be noted
that the equality of the bases does not imply loss of
generality because through scaling the inputs, €; and
i, the equality of the bases can be achieved. The
membership function, u;(z), of the associated input
fuzzy sets is chosen to be triangular shaped (see Figure
5). In a similar manner, 2J + 1 identical members are
assumed, A4;, in the output fuzzy set, “Ac;”, where
j=-J,...,0,1,...,J. Ag is centered at the origin of
X; furthermore A; is positive for j > 0 and negative
otherwise. For each “Aq;”, the members of the output
fuzzy set and corresponding membership functions are
defined as follows:

{p_s(@),. .. uo(@), ... iy (@)}
{A_s,... Ao, As}. (8)

Now, choosing +; as the central value of the
members (y; = H and 7y = —H) and v = H/J
as the space between the central values of two adjacent
members, the ith central value can be written as v; =
1.0,

Membership functions of the associated output
fuzzy set are identical to the inputs and can also be
shown by Figure 5.

Assuming the rate of change to be approximately
linear, as shown in Figure 6, and using points A and
B, point C can be depicted as a good prediction of u;.
To demonstrate this, let A =r — e, then the predicted
value of u;(nT + T) can be given by o;(nT + T) =
A + a;(nT).

Hp—1 Hk

Ak A_k4+1 A-2 A-3 O M Az Al A
Figure 5. Membership functions.
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Figure 6. Linear prediction of u;.

Structure of Fuzzy Rules

The input quantities of interest are the error and
rate of change of interface inputs. Therefore, a two-
premise and one-consequence structure is proposed.
Consequently, the general form of the rules can be
represented as follows:

If “error” is E; and “rate” is R;, Then “Aw;” is 4;_;.

The index of the members of output fuzzy set is
obtained by subtracting the index of the members of
the “error” from that of the “rate”. For covering the
total states which may occur, J = 2k is required [5].

FUZZY INFERENCE

Assuming e and r as the input signals (the indexes
are ignored for convenience), the inference for one
subprocess can be formulated as follows.

Case I- Both e and r Are Within the Interval
[ 'L’L]

It is obvious that any e (or r) intersects with two fuzzy
sets E; and E;y1 (or R; and Rj41). Therefore, only the
following four fuzzy coordination rules are executed:

i. If “error” is E;y; and “rate” is Rj;1, Then, “Ag”
is Aj_,'.
ii. If “error” is E;;1 and “rate” is R;, Then, “Aqa” is
Aj—i—l-
iii. If “error” is E; and “rate” is Rj;1, Then, “Aa” is
Aj—it1.
iv. If “error” is E; and “rate” is R;, Then, “Aa” is
Aj_i.

The truth value or the degree of satisfaction of these
rules is calculated by using the min-operator [6], i.e.,

(i, 5) = min(p;(e), pi(r)). (9)

If more than one output membership results, say
p1 and po, from executing two different fuzzy rules,
Lukasiewicz fuzzy logic OR is used to get the combined
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membership function, g, that is u = min(g; + po,1).
It should be noted that, in this problem, the combined
membership is always the sum of the memberships,
because the sum of the memberships being ORed is
less than one.

Recall that the shapes of the membership func-
tions of “Aa” were required to be the same. Therefore,
in the defuzzification process, the contribution from the
members of “Aa” in the THEN side of the fuzzy rules
should be weighted by their memberships calculated
from the IF side. Consequently, the crisp incremental
output, Aa, can be calculated by the following defuzzi-
fication algorithm:

Ag = 2P 5) V-
Cu(g)
Figure 7 shows the input and output fuzzy sets for four
coordination rules.

To determine the results of rules 1 to 4, consider
eight possible regions as shown in Figure 8.

The outcomes of evaluating the min-operation for
each premise of the fuzzy coordination rules, are illus-
trated in Table 1. After defuzzification, the following
are obtained:

p(i, j) # 0. (10)

i. In regions R1, R2;
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Figure 7. Output of execution rules 1 to 4.
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Figure 8. The eight possible regions (Case I).
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Table 1. Result of evaluating the min-operations in rules 1 to 4.

Region Rule 1 Rule 2 Rule 3 Rule 4
min(piy1(e), pj+1(r)) | min(piti(e), p;i(r)) | min(pi(e), pit1(r)) | min(ui(e), pi(r))

R1,R2 pi+1(r) wi(r) pie) ui(e)

R3,R4 #i+1(e) pi(r) pife) p; (r)

R5,R6 pi+1(e) Hi+1(€) mi+1(r) #i(r)

R7,R8 #i+1(r) pit1(e) #i+1(r) pile)

iii. In regions R5, R6;

Aa= [ (r)+pipr(e)vj—itpipi(e)vi—i—1+pit1(r)vj—it2
- i (M) +ai+1{r)+2ui1(e) )

iv. In regions R7, R8;

Aq = it (OFpie))vi—ituis1(r) vimigrdpigr(e)yizizt
- pit1(e}+pi(e)+2p;41(r) )

Case II - Either e or r Is Outside the Interval
[ 'L’L]

In this case, as shown in Figure 9, 12 possible regions
exist. By using the same method described above,
Aa can be analytically derived for each region. In R9
to R16 regions, only two fuzzy coordination rules are
executed:

i. In regions R9, R10;
If “error” is Ej and “rate” is R;y1, Then “Aa” is
Aji1-k-

If “error” is E; and “rate” is R;, Then “Aa” is
Aj k.
It is obvious that p;(r) + p;41(r) = 1. Hence,
Aa = pig1(r) - Vivi—k + 15 (1) - Vick
ii. In regions R11, R12;
Aa = pit1(€) - Ye—it1 + pile) - Yo—i-
iii. In regions R13, R14,

A = pjp1(r) - Vitk+1 + i(T) - Vitk

4
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Figure 9. The 12 possible regions (Case II).

iv. In regions R15, R16;
Aa = piyi(e) - Yop—i-1 + pi(€) - Y—k—i.

In R17 to R20 regions, only one fuzzy coordination rule
is executed:

i. in R17;
If “error” is Ex and “rate” is Ry, Then “Aa” is
Ap, hence; Aa=0.

ii. In R18;, Aa =9 =5 = H.
iii. In R19; - Aa=0.
iv. In R20; Aa=7v_9xr =7v-5=—H.

Finally, the crisp output of the fuzzy coordinator
for the ith infimal controller, at sampling time nT, is
calculated as:

o;(nT) = &i(nT —T) + Aay, (11)

where Aq; is the incremental output for ith controller,
as given above. Since each infimal control problem
is an FOC problem, the coordinator can send fuzzy
coordination set &; to the ith infimal control unit.
The uncertainties on the crisp value of prediction,
o;(nT), can be included in the membership func-
tion, u(d&;), as shown in Figure 4. ¢ and 5 are
the parameters which. can be chosen by the experts,
such that &; would be near crisp and also cover
the uncertainties. Finally, infimal control units solve
an FOC problem and calculate &;(nT) and h;(a);
control m(a) = [y (a),... ,Mmn,(a)] is implemented to
the process and u;(a),...,un(a) will be the actual
interface inputs.

CONCLUSIONS

Given the applicability of the interaction prediction
principle, the supremal controller has the problem of
predicting the interactions, comparing them with the
actual one and updating the prediction to get an overall
optimum.

It should be noted that the coordinator can also
send the crisp value a;(nT) rather than the fuzzy set
&;(nT). Therefore, the infimal control problem can be
considered as an FOC or a conventional optimal control
problem.
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As demonstrated, the prediction is based on the
interaction information of the present and last sample
time. However, for better prediction, more information
can be incorporated into the prediction algorithm using
the previous data points. The analytical results can be
obtained in an off-line form and are used in an on-line
manner.

The described method may apply to every large
scale systern as well as truly complex phenomena, such
as those founded predominantly in the social,economics
and biological sciences. Actually, many hierarchical
control systems with cohesive type interactions can be
coordinated by the above scheme.
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