Scientia Iranica, Vol. 14, No. 6, pp 612-624 SC
© Sharif University of Technology, December 2007 | R

A New Approach to Resource Discovery
and Dissemination for Pervasive Computing
Environments Based on Mobile Agents

E. Bagheri* and M. Naghibzadeh!

Pervasive computing, as a new branch in the field of distributed computing, has received
wide contribution from different researchers. In this novel computing model, a vast range of
computational and communication resources, along with other types of service, are gathered
under a single system image based on certain predefined criteria. To create a transparent
environment and provide end-users with the illusion of the local availability of multiple resources,
some kind of manager is needed to coordinate the tasks and their required resources. The resource
management system is mainly responsible for a balanced distribution of available resources among
different tasks. Devising efficient resource discovery and dissemination algorithms is, hence, an
important step towards preparing the bases for a resource centric management package. In this
article, the aim is to provide two algorithms for this problem, using mobile agents. The proposed
resource discovery algorithms use two different hierarchical and flat approaches. The simulations
show a good performance for both of the proposed models; however, the hierarchical algorithm

shows better results, based on some of the introduced factors.

INTRODUCTION

The growth of computer network protocols and the
creation of a suitable infrastructure for international
communication on the one hand and the development
of great scientific research on the other hand, have
increasingly created the need for scientific and equip-
ment based synergy. Specialization, as the greatest
concept in the scientific arena of our century, forces
data transfer and group work to be used for solving
enormous problems. For this reason, scientists, re-
searchers and even industry-based teams have formed
groups with members of different capabilities, who
may not necessarily be located geographically close to
each other but cooperate in problem solving activities
through the collaborative environments created using
new technologies [1]. The need for knowledge sharing
and research cooperation is only one of the aspects of
complex scientific development. Today’s computation
intensive problems need rich resources, which may not

*. Corresponding Author, Faculty of Computer Science,
University of New Brunswick, Fredericton, NB, Canada.

1. Department of Computing, Ferdowsi University of Mash-
had, Mashhad, I.R. Iran.

be in the reach of every researcher. The first solution
is to use supercomputers to provide us with high
computational and processing power. Although these
computers enable us to solve complex problems and
access required resources, they have a great amount of
maintenance costs, which are, in most cases, infeasible.
To solve this problem, many supercomputers allow
remote access to their resources. This approach could,
to some extent, cover the prior mentioned problem,
but, would create new shortcomings, such as forming
a bottleneck at high traffic times. Devising a single
method to guarantee QoS (Quality of Service) in this
model is also very hard [2].

The approach taken in the last few years has
been to share available resources among interested
parties. In this way, resources could be shared, based
on different criteria and, hence, solve the resource
shortage problem. This concept is very much beyond
the peer to peer resource sharing models, where only
one type of resource, such as files, is being shared [3].
These collaborative resource sharing environments are
called pervasive environments. One of the well-known
models of such an environment is the Grid [4], which
can be formed based on different needs and can behave
according to defined requirements.

Resource Management in Pervasive Computing Environments 613

Plurality and the variety of resources available
in the grid, require an integrated management system
to provide users with appropriate services. Having
heterogeneous resources in the environment impedes
resource access and, hence, demands well defined and
standard interfaces to query resources. These interfaces
will pave the way for creating a transparent resource
access environment. In this environment, the tasks are
only run by the user and the management system will
transparently schedule and allocate suitable resources
without user intervention [4]. It is obvious that the
models used in the pervasive computing environment
must, to a great extent, have built-in intelligence and
the ability to learn, in order to show a better overall
performance. The two mentioned characteristics, social
behavior and intelligence, can be smartly implemented
using software agents. Agents can be used in two
different ways. In the first approach, agents are used
to create configurable and extendable software from
the software engineering aspects, while, in the latter
approach, they are autonomous entities, which help one
to solve the problem.

In this article, initially, the problem on hand will
be introduced and the opportunities and threats that
will be encountered will be analyzed. The following
parts will, then, review some of the existing models
and the authors’ algorithms, for resource discovery
and dissemination, will also be completely explained.
The simulation tools and environment will, then, be
introduced and the simulation results will be shown.
The article will then examine the obtained results and
the simulation correctness.

PROBLEM DEFINITION

Pervasive environments are mainly used to share a vast
range of different resources among their users. Each
user, which can be an organization, a university or
even a single person, can join the environment, based
on an agreement, share its resources or use the shared
resources [5].

Resource access conditions are agreements be-
tween resource providers and users, which are called
Service License Agreements (SLA). After joining the
environment, every single user should become aware of
all available resources or decide on the best suitable
resource available for its running task. Therefore, the
resource management systems, which handle all re-
source management tasks, are of great importance [6].
The resource management system is in charge of
resource scheduling, allocation and redemption, dis-
covery and dissemination, resource access control and
many other resource related functions [7]. Different
resource management packages have been prepared.
Two main approaches have been taken up for resource
discovery and dissemination. In the first approach,

both algorithms are thought of as a single and are
packaged inside the same module while, in the second
approach, the two algorithms are separately devised
and are only related through the resource information
store organization. What is obvious is that integrating
the two algorithms inside one module will enhance over-
all performance but, on the other hand, will degrade
system modularity.

A resource is only recognized by its host machine
once it has newly joined the environment. If the
resource owner is willing to share the resource in
the environment among different users, he/she should
advertise the resource availability through different
mechanisms. The mechanism used to introduce newly
joined resources to the environment is called resource
dissemination. Various algorithms have been proposed
for resource dissemination, which show dissimilar per-
formances being compared, based on different indica-
tors, such as the number of local and global messages
passed in the advertisement process. Choosing an
unsuitable resource dissemination algorithm may cause
severe network traffic inside the computing environ-
ment. Selecting the appropriate attributes of a resource
for advertisement is also very important [8].

On the other hand, a task being submitted to the
environment through the specified portals for execution
must identify its resource needs. In this step, the
resource management system should search for suitable
resources, conforming to the constraints introduced by
the task, and allocate the matching resources immedi-
ately to the task or reserve the resource if it is occupied.
The process of searching for an appropriate resource,
which can be done in both a central or distributed
manner, is called resource discovery [8]. Various
resource discovery models, based on information store
organizations, have been implemented. If all resource
information of an environment is gathered in a single
resource information store, resource discovery can be
simply done through enquiring this database. However,
the information and status of the available resources are
most of the time, scattered around the environment
in different repositories in a decentralized manner.
Although a decentralized resource information store
complicates the functionality of the resource discovery
algorithm, it avoids bottlenecks.

Resource discovery and dissemination also face
some other difficulties. As the shared resources inside
the pervasive environment are not only moderated
by the resource management system and are also
controlled by their own owners, accessing much vital
information is, at times, impossible. For this reason,
these algorithms should only cope with the information
retrieved from resource host interfaces. Available
algorithms in resource discovery and dissemination
problems have used certain methods, such as queries,
agents and pull/push message based models.

614

AVAILABLE RESOURCE DISCOVERY AND
DISSEMINATION MODELS

Resource discovery and dissemination protocols were
initially used in local networks to reduce the network
management burden. Protocols, such as LDAP and
X.500, were utilized as resource information store
organizations. The main disadvantage of such proto-
cols is their performance degradation in dynamically
changing network topologies [9]. Other models, based
on distributed objects, were formed to store resource
and service information. CORBA, which is well rec-
ognized, resembles such technology. In networks such
as Bluetooth, where resources and services rapidly join
or leave the network, a dynamic method for network
configuration seems to be essential. With this theory in
mind, devices with zero configurations (Plug and Play)
were produced. Different enterprises and many network
device producers released protocols such as HAVi, Jini,
SLP and UPnP [10-13].

The difference between the pervasive computing
environments, such as the Grid and the traditional
networks, can be looked at from different perspectives.
On the one hand, only very simple network devices are
known as resources in the traditional networks, while
any kind of device or service can be named as a resource
in the pervasive computing environment and, hence, be
shared. On the other hand, there is no heterogeneity,
or, it is kept at its minimum in the traditional network
by a moderated resource, device and service selection,
but, in the pervasive computing environment, lack of
central control over available resources will increase
heterogeneity. For these reasons, although many dif-
ferent resource discovery and dissemination protocols
have been devised for traditional networks, they cannot
be used for the authors purpose. However, the models
could be well applied to create novel algorithms.

PROBLEM SOLVING APPROACH

The presented approach in devising resource discov-
ery and dissemination algorithms is to create an in-
dependent module in such a way that it could be
further extended in the future to interact with existing
pervasive environment management systems, such as
Globus [14], use their base capabilities and build on
their functionality, although these features specifically
fall into the realm of future work. As resource
management functions are conceptually independent,
but have functional dependency, and each module
cannot re-implement all the required functions, such as
resource access control models, resource access models,
resource information based organizations and many
other packages, the planned module should be able
to exchange specific data with the base resource man-
agement system that has already implemented many

E. Bagheri and M. Naghibzadeh

of the required functionalities [15]. For this reason,
an attempt has been made to implement both of the
algorithms as an independent software package, which
only relies on the services provided from the lower
layers.

The other aspect that should be carefully consid-
ered, while designing the discovery and dissemination
algorithms, is domain management. Although shared
resources in the environment are, in the large-scale
view, moderated by the global management system,
each of these resources belong to a specific owner
with a more detailed perspective, therefore, resource
access models should be devised carefully from the
ownership point of view. For this reason, the concept
of virtual organizations has been shaped. Uniformly
managed domains that provide the environment with
a set of resources are named virtual organizations. Vir-
tual organizations can be geographically dispersed but
should be moderated in a logically integrated way [4].
Virtual Organizations can either conform to all the
set up regulations of the global resource management
system or create their own models and interact with
global resource management systems through defined
interfaces. The machine organization in the latter
approach is called the cell model. In the cell models, all
the internal complexities of a virtual organization are
hidden from an outside viewer and the resources inside
the virtual organization are only accessible through
defined interfaces. The remaining tasks in the cell
model are done similar to the hierarchical model.

One of the chief problems in using a cell machine
organization is the bottleneck that may be created at
the virtual organization boundaries. As all the internal
functionality of a grid has been concealed from the
overall environment management, a machine should
be introduced as the virtual organization attorney.
Referring to the fact that all virtual organization
communication with the outside world should be done
through this machine, information flow volume will cre-
ate a bottleneck and degrade the pervasive environment
performance [8]. In the authors’ model, a rotational
attorney selection model has been created where a
single machine does not always act as the virtual
organization representative, but is selected, based on
different criteria.

Software agents can be well suited for pervasive
environment management, regarding the fact that so-
cial behavior and intelligent decision making is of much
importance. In our approach, mobile agents have been
used for resource discovery. The advantage of using
numerous software agents in the environment is that
it increases fault tolerance and helps cooperative multi
agent problem solving. Lightweight mobile agents are
created when a resource is requested and are sent to
different virtual organizations, based on the internal
machine knowledge of the pervasive environment sta-

Resource Management in Pervasive Computing Environments 615

tus. Dispatched agents then negotiate with the re-
source (or with the corresponding virtual organization
attorney) and gather the required information. The
mobile agents will return to their base and, based upon
the gathered information, will decide on the suitable
resource. Using software agents allows one to create
a severe security policy in accessing the resources.
Fach agent is the delegate of a machine or a virtual
organization which have defined access levels, so, entry
to a certain machine or virtual organization is only
granted if the inherited access rights enable the agent to
do so. In the authors’ model, agent identity recognition
is performed by agent certificate authorities. If a user
agent tries to access restricted machines or virtual
organizations, it will automatically be destroyed using
the agent functional environment.

A quality of service guarantee is also another as-
pect that should be considered when designing different
parts of a resource management module. Many tasks
have strict resource requirements, which can only be
performed properly if the requirements were allocated
at the suitable time. Real time multimedia applications
are the best-known sample of these kinds of task.
Allocated resources should match the requested quality
and time, so, in the discovery process, all of the
defined parameters should be considered. Although the
provided QoS doesn’t have direct relations with the
resource discovery and dissemination algorithms and
is more based on the resource, network and operating
system execution models, the resource selected by these
algorithms should have the capability to support and
comply with the requested conditions [16].

Resources have two different classes of attribute,
which can be categorized into two dynamic and static
classes. The resource dissemination algorithm should
decide on the resource attributes that it will advertise
in its process. Some algorithms publish all of the
dynamic and static attributes of a resource [9]. As
the dynamic attributes of a resource (like the number
of processes queued in the CPU) actively change, this
information will quickly become out of date and useless.
Three models have been used to solve this problem. In
the first model, the resource advertises its attributes
on a regular basis or whenever a change has occurred.
This model is called the Push model. In the second
model, the resource management system requests the
resource attributes at defined periods of time, which
is called the Pull model. These two models create a
lot of system overload in the pervasive environment.
In the third model, only static attributes of a resource
are initially advertised and dynamic attributes are only
queried if the need arises [8]. The latter approach has
been used in the resource dissemination algorithm. In
the authors model, only the static attributes of the
resources are introduced. In the discovery process, the
mobile agents are responsible for specifying resource

dynamic attributes. Decreasing the number of mes-
sages passed in the pervasive environment and exact
resource attribute information advertising are one of
the algorithm’s major benefits.

PROPOSED MODEL

The proposed model, for resource dissemination and
discovery, consists of a resource dissemination algo-
rithm, along with two completely different structured
resource discovery algorithms. The resource discovery
algorithms use hierarchical and flat structures. The
hierarchical discovery model searches the source virtual
organization for suitable resources and introduces the
matching resources. In this approach, resources resid-
ing on the source virtual organization are preferred,
but if a suitable resource is not found, other virtual
organizations are also queried. On the contrary, the
flat resource discovery algorithm starts off searching
for the required resource in all of the available virtual
organizations.

In this section, the algorithm details and the
mathematical models for resource discovery time will
be thoroughly explained. The resource request model,
which has a great effect on the simulation results and
follows the Zipfian law, is also clarified.

Resource Request Model

Every user in the pervasive computing environment will
submit his tasks to the computing environment to use
the available resources. Referring to this fact, resources
would be requested when there is a demand for them.
According to the pervasive computing environment’s
essence, some resources would have more requests
compared with the others. This behavior is totally de-
pendant on user submitted tasks and cannot be exactly
formulated nor a precise probability distribution model
be devised beforehand [15]. In data grids, for example,
databases are of great interest; however, CPU is a more
valuable resource in the computational grid.

Many real world events have been shown to
follow an interesting routine, which is formulated as
the Zipfian law. Frequency of word usage in the
human language, keyword repetition in a programming
language, requests submitted to an operating system
and even colors in nature follow this rule. In our
experiments, the Zipfian law has been used to create
the request sequence. This model shows that the
probability of a request for resource R; would be, as
follows:

n

k=0 16" (1)

Jj=1

P(R;) = K/i°,

In Equation 1, n shows the number of available re-
sources of type R;. Suppose that the a constant is set

616

to a value very close to one (a =~ 1), then, Equation 1
can be rewritten as:

P(R;) = K/i. (2)

As the formula shows, the probability of a request for
a resource such as R; would be P(R;). The probability
is calculated separately for each resource and the
request occurrence probabilities are independent of
each other. The validity of this model is proved in
different research, such as [17,18].

Internal Machine Organization

A centralized resource information store organization
has always caused overall system performance degrada-
tion. The main reason for this is the bottleneck created
while accessing the centralized information store. In
the proposed algorithm for resource discovery and
dissemination, a distributed resource information store
has been used. In this approach, every existing machine
has a partial view of the existing resources in the
environment. This view varies for different machines,
based on their location. For example, each machine has
exact information about all of the resources residing in
the same virtual organization, but has a very high level
and vague information about the resources on other
virtual organizations. The accurate resource informa-
tion is only available to resources in the same virtual
organization, hence, a machine on virtual organization
Vo, is only aware of a resource, such as R;, available
on Voy, but is unaware of its physical attributes and
placement. This kind of resource dissemination causes
lower message passing inside the environment. The
information stores in the author model are called the
capability tables, which have been devised, based on
a similar concept in [19]. Each machine would make
decisions, based on the available information in its
capability table.

Resource Dissemination Algorithm

Algorithms proposed for resource dissemination must
be carefully examined for the traffic load they create
in the pervasive computing environment. As most of
the algorithms use message passing as the base concept,
an inefficient algorithm may cause loads of unnecessary
messages being passed through the network and cause
unwanted system overload. A hierarchical resource
dissemination algorithm has been proposed to avoid
system overload and redundant message passing.

A resource dissemination algorithm is started
when a resource is added to a machine located within
the pervasive environment and the owner decides to
share the resource, based on different criteria, with
the other users. The resource management system
initiates message passing at two simultaneous levels.

E. Bagheri and M. Naghibzadeh

In the first level, detailed information, including static
resource attributes, resource access models and the
resource physical location, is sent to every machine
in the same virtual organization. In this way, the
machines in the same virtual organization are aware
of the exact details of the resource. On the other
level and to introduce the resource to the machines in
other virtual organizations, only the static attributes
of the resource are sent. At this level, the message is
not directly sent to the destination machine to follow
the cellular environment structure. This structure
would hide the internal complexities of every virtual
organization from an outside viewer. To distribute
the messages between other virtual organizations, only
one message is sent to the destination’s virtual orga-
nization’s attorney, who is, itself, chosen, based on
parameters such as accessibility, accessibility speed,
message queue etc. Since the attorney is dynamically
selected, based on the introduced parameters, a single
machine would not act as the attorney throughout
the virtual organization’s lifetime and avoid bottleneck
creation. The attorney having received the message,
would, then, broadcast the message for all of the neigh-
boring machines in the virtual organization. There are
many advantages in using this model. On the one
hand, restricting direct message passing between vir-
tual organizations will enhance security issues, on the
other hand, broadcasting the advertisement messages
inside virtual organizations and only sending single
messages between virtual organizations alleviates the
message passing burden on the pervasive environment
network backbone and distributes the message passing
load inside the virtual organizations, which most often
use a LAN as their network infrastructure. For this
reason, the public environment infrastructure is not
occupied.

The pseudo code showing the dissemination algo-
rithm functionality is shown in Algorithm 1.

Function RMS.Resource Dissemination (Resource)

{
Source_VO = Resource->V0O;
Machine_identifier=HResource- > machine_identifier;
Broadcast (Source_VO, machine_identifier,

Resource- »static_attributes);
For (every other virtual organization as DVO)
Send(DVO, Source_VO,

Resource->static_attributes);

Algorithm 1. Proposed resource dissemination algorithm.

Resource Management in Pervasive Computing Environments 617

Resource Discovery

Many different tasks are forked when an application
is run on the pervasive computing environment. The
tasks will gradually introduce their resource require-
ments. At each step, the task would not be successfully
run until the resources are allocated to it. The resource
discovery algorithm should be able to spot the suitable
resources based on the task specified requirements.

The resource discovery algorithm is very much de-
pendant on the resource dissemination model used [8].
If resource dissemination is done according to a central-
ized resource information store, the discovery process
could easily be done with simple direct queries on this
database.

As the authors’ resource dissemination algorithm
uses distributed resource information stores called
capability tables, which are spread among all the
machines in the environment and, as each capability
table cannot provide an integrated view of the perva-
sive computing environment status, resource discovery
cannot be easily implemented. A resource discovery al-
gorithm needs to be designed based upon the pervasive
computing environment behavior and requires some
built in intelligence [20]. There are several factors that
should be considered before any design decisions are
made. The end platform and the type of applications
that have been targeted should be specifically clarified.
Real-time applications may compromise more than a
few of the performance parameters to gain benefit
from their punctuality. Hard real-time applications
may enforce even more strict restrictions, since “after
deadline solutions” are of no worth. However, other
applications that may focus more on the quality of
their services and tend to guarantee the QoS, seem
to be in favor of the methods that, although lacking
in speed, provide suitable functionality. Each of the
two approaches seem to be totally reasonable; however,
a clear distinction between the target applications at
design time should be made. The focus is mainly on
designing algorithms that favor QoS; hence, the main
spotlight is to provide the means of reliable service.
This intention may indeed affect time-to-deliver factors
in the algorithms, but they can be conceded to allow
QoS based applications like vital data-driven applica-
tions. To preserve fault tolerance and quality of service
in the algorithm, software agents were chosen as one of
the base elements of the proposed resource discovery
methods [21]. Using lots of lightweight homogeneous
mobile agents with the same functionality will decrease
the dependency of the algorithm to each of the agents
and, therefore, increase fault tolerance. In this way, if a
number of agents are, for some reason, discarded in the
environment, the total functionality of the algorithm
would not be affected; however, optimal solutions may
not then be reached. Mobile agent application could

help increase information transfer, based on existing
agent negotiation models between virtual organiza-
tions. The overhead that the use of mobile agents will
create in the system is not neglected and a thorough
analysis has been undertaken to show overall system
resource occupation by the agents presented in the
following sections.

Flat (Non-Hierarchical) Resource Discovery

In the first model, there is a non-hierarchical approach
to resource discovery. In the flat resource discovery
algorithm, the machine capability tables are queried
when a resource is requested by a user submitted task.
The query is made, based on the static attributes
requested by the task. The reason for using the static
attributes is that only these kinds of attributes are
advertised and available in the capability tables as
the result of the resource dissemination process. The
query would then introduce the available resources
in the pervasive environment that matches the static
attribute constraints. A number of mobile agents
matching the number of introduced resources by the
previous query are created to explore the dynamic
attributes of each resource. In this section, based on
the mobile agent’s destination, algorithm functionality
is divided into two sections. This division is made,
due to the fact that some agents may travel around
the same virtual organization or may travel to other
virtual organizations:

e Mobile Agents Exploring the Same Virtual Organi-
zation:
This kind of mobile agent will not pass the source
virtual organization boundaries. They are directly
sent to the machines that are hosting the spotted
resource. The agent would query the resource
interfaces to extract its dynamic attributes (like the
printer queue length). Having gained the required
information, the agents will return to the source
machine;

e Mobile Agents Sent to Other Virtual Organizations:
As the capability table residing on each machine
does not contain exact information about resources
available in other virtual organizations and its in-
formation is limited to the static attributes of the
resources and their virtual organization identifier,
the source machine is compelled to send the mobile
agents to the destination virtual organization’s at-
torney.

The mobile agent sent to the attorney will then nego-
tiate with the resource management system of the host
and pass over the specifications of the needed resource.
The specifications are then sent over to the resource
discovery module which will, in turn, search inside its
virtual organization for the required resource, based on
the method presented in the previous section. In this

618

process, local mobile agents are created to search the
internal space of the virtual organization. The results
are then summed up by the resource discovery module
and the best choice is passed back to the resource
management system, which will, in turn, present the
waiting mobile agent with the best solution. The agent
will return to its source virtual organization to provide
its original host with the requested information.

The main reason for searching inside each virtual
organization is that there might be several homoge-
neous resources with the same static attributes, which
have different dynamic performance characteristics. At
the end of the exploration, all the created mobile agents
will return to their original host and the best choice
would be made from the different solutions provided
by each agent. The pseudo code for the flat resource
discovery is shown in Algorithm 2.

The total exploration time required to explore and
find a suitable resource follows the subsequent formula:

Tory =HTuct2 0 Mg, (T} 4 Tt M, (03},

where:

¥ = 2% Max{T;pot, + T4, }, 4
J 1S7f§7{ t; + q:.} ()

Texp: total exploration time,

Tee: time to create one agent,

K,K': number of agents,

Tevot: time to jump to next VO,

Tivot: time to jump to next node,

Ty: time taken to query a resource.

Function EMS.Resource_Discoveryl (Rgst)
{
no_match = loockupAwailableRsc (Rgst->>condition);
VOList = loockupVOList{no_match);
createAgents (no_match);
sendAgents ();
ForAll (currentAttorney in VoList-2> Attorney)
{
negotiateAttorney (currentAttorney);
initResourceDiscoveryInDest VO (VOList->1D);
}
returned_Res = summonAgents ();

return conclude (Rgst->status,returned_Res);

Algorithm 2. Flat resource discovery algorithm.

E. Bagheri and M. Naghibzadeh

Hzierarchical Resource Discovery

Although flat resource discovery provides us with a
reasonable solution, it has several shortcomings. For
this reason, a hierarchical model for resource discovery
is proposed. This algorithm basically functions the
same as the flat algorithm. The main difference
between the two algorithms is that the hierarchical
algorithm gives high priority to the resources located in
the same virtual organization as the process requesting
the resource. The concept is implemented by activating
the mobile agents in two phases. The first groups of
agents are sent to the resources available in the same
virtual organization, if the queried resources are shown
to be suitable for the waiting task they are selected and
the discovery process is terminated. But, if a suitable
result could not be found, other agents are forked
and sent to other virtual organizations for resource
discovery.

The main advantage of this model is that it
decreases the resource usage costs by preferring the
resources in the same virtual organizations. However,
if a suitable resource is not found in the first phase,
the algorithm would take longer compared with the flat
resource discovery algorithm. The hierarchical resource
discovery algorithm is shown in Algorithm 3.

Function RMS.Resource_Discovery2 (Rqgst)
{
source_ V(O = Rqst->source;
no_match = loockupAvailableRsc (Rgst->condition):
createAgents (no_match);
sendAgents ();
negotiatemachine ();
returned _Res = summonAgents ();
if (lconclude (Rgst->status,returned_Res))
{
no_match = lookupAvailableRsc (Rgst->>condition);
createAgents (no_match);
sendAgents ();
negotiateAttorney ();
returned _Res = summonAgents ();
return conclude (Rgst->status,returned_Res);
}
return conclude (Rgst->status,returned_Res);

}

Algorithm 3. Hierarchical resource discovery algorithm.

Resource Management in Pervasive Computing Environments 619

The total exploration time required to explore and
find a suitable resource in the hierarchical algorithm
obeys the following formula:

— !
Texp =1 + p(kTac + 2% 1%]?2(]6{11(:00”} + k Tac

+ Max {9,)), ®)
where:
’19]' =2 % 1¥?§{Tivoti + qui}' (6)

p is set to one if the resource is not found in the phase
and zero if the first attempt is successful.

Using mobile agents can have two other advan-
tages compared with other existing models. The first
advantage of using mobile agents is the added ability
to calculate network traffic load. Mobile agents most
likely travel through two different paths in a round
trip to their destination (this is very much related to
the routing algorithm used in the internet protocol
layers), which would be very useful to calculate the
network traffic load or predict the future state. Being
aware of the network traffic conditions, the time for a
task to migrate to the destination machine would be
conceivable.

In many resource management systems, having
a module to track and update the information about
the leaving resources is very essential. These modules
are mainly designed based on message passing schemes.
In the proposed model, no algorithm, other than
the resource discovery algorithm, is used to detect
unavailable resources. When a resource leaves the
pervasive computing environment, no event is triggered
and only the capability table of the host is reorganized.
If a mobile agent is sent to the host to query a resource’s
dynamic attributes and finds it unavailable, it would
return to its original host and would report a missing
resource. The host would then update its capability
table and broadcast a missing resource notification
within its virtual organization. The machines receiving
the message would also update their capability tables.

ALGORITHM PERFORMANCE
EVALUATION

A suitable simulation environment was set up to
implement the proposed algorithms and assess their
performance. Modular design and implementation
were precisely observed to allow rapid change in the en-
vironment structure, while testing different approaches.
All the functionality was implemented within defined
classes. The communication between different modules
of the system was implemented based on the message
passing schema, so that modular dependency is de-
creased to a minimum.

The implementation of the simulation environ-
ment was done using the Java programming language.
Mobile agents were simulated by background threads
which allow a parallel execution theme. A MySql
database management system was used to create the
agent capability tables. The reasons for using MySql
were its complete support for SQL querying, easy
installation, lightweight on deployment and customiz-
ability, which allows a rapid development of the sim-
ulation software. However, an actual implementation
of the algorithms, due to their complexity, will, indeed,
require a simple data structure implementation and the
use of a DBMS will be infeasible. Although MySql
provides a very lightweight DBMS configuration, it will
still be too heavy for such cases and the use of a simple
data structure will suffice.

The other very important aspect that should have
been considered while designing the simulation envi-
ronment was to create a stable criterion to allow global
algorithm comparison. For this reason, a simulation
clock in the heart of the system was prepared to provide
the basis for an algorithm performance comparison.
Most of the comparison criteria introduced in the
following sections are mainly based on the number
of cycles that the algorithm has taken to perform
its specific tasks. The simulation clock was mainly
responsible for keeping track of the number of cycles
that have past since a particular time (7p).

Performed Experiments

Resource discovery and dissemination algorithms can
show dissimilar results under different resource dis-
tribution models. For this reason, and to evaluate
the proposed algorithms under various environment
conditions, several resource distributions were created.
Therefore, environment functionality and essence were
changed in different experiments, which is a good
measure to assess the algorithms [22]. Fifteen sets
of experiments were executed under three different
resource distributions.

In the first five sets of experiments, the number
of virtual organizations, along with the number of
machines in the environment, were kept constant at
10 and 100, respectively. In these experiments, the
number of resources were set at 10, 20, 30, 40 and 50
to evaluate the algorithm scalability. The distribution
is shown in Figure 1. The experiments were conducted
to study the effect of the number of resources available
in the environment on the algorithm scalability and
performance.

In the next five sets of experiments, the number
of resources and virtual organizations were set to 50
and 10, respectively, while the number of machines
varied in different experiments between 100 and 500.
The experiments studied the effect of available machine

620
) Resource distribution (SVSNDR)
14
—+— 10 resources
— - m—- 20 resources
10 || --a-- 30 resources g
~-® -~ 40 resources ™
— - - 5() resources ! I\
@ !
£ s —
2 o
¢ X\ g \'.
= !
(] & 4
5 ‘(.\'\ ," \‘I ;)*‘-..\x
& \
2 " \\ N H A /2
= 4 . g * o 1 !y, s
= Ty ,aﬁ\] ";.\', Y 7 - .\
=z oy X d . I
AT N A R k--X, koo

Virtual organization

Figure 1. Resource distribution model in the first five
experiments.

number on the proposed algorithms. Many algorithms
show performance reduction with an increase in the
number of machines.

The last five sets of experiments changed the
number of the available virtual organizations between
10, 20, 30, 40 and 50. These changes were made
while the number of resources and machines were
kept constant at 50. Scalability should be carefully
considered, while the number of virtual organizations
changes in different experiments.

Performance Assessment Criteria

In order to compare the designed and implemented
algorithms under different experiments, several algo-
rithm performance assessment criteria were devised.
Eight main parameters were carefully designed, which
will be precisely introduced in the following parts.

e Number of Messages Passed:

As previously explained, the resource dissemination
algorithms are compelled to use the message passing
schema. The algorithms with fewer messages passed
throughout the advertisement process show better
performances. As can be clearly seen in Figure 2,
in the devised algorithm, more than 85 percent
of the messages have been sent locally (messages
broadcasted inside each virtual organization). The
ratio of the number of messages passed inside the
pervasive computing environment infrastructure to
the number of local messages is 0.17, which shows
very low network traffic creation and, therefore, low
network resource consumption. The proposed re-
source dissemination algorithm shows to be efficient
under different conditions;

e Mean Advertisement Time:
A change in the environment (e.g., resources added
to a machine) requires the capability tables to be

E. Bagheri and M. Naghibzadeh

Distribution of message passing

300
250
=
g 200
— 4~ - Total messages passed
100] —— Messages passed between VOs
- - &k - Messages passed inside VOs
50 —
-
[} .-.I—’.-I-’.l*-l-..l-O-‘.’.]‘ T T T
1 2 3 4 5 & T 8 9 10 11

Number of passed messages

Figure 2. Message passing scheme in the resource
dissemination algorithm.

updated. The average latency time required to
update the capability tables, from the time that the
change had actually occurred, calculated in different
experiments, is called the mean advertisement time.
Although the dissemination algorithm performance
is shown using the number of messages passed factor,
the mean advertisement time factor can be studied
to show algorithm scalability. As shown in Figure 3,
the algorithm has kept a constant rate in different
experiments, from this factors point of view, and is
shown to be scalable;

e Path Length Ratio:
This parameter is used to show the discovered
path optimality in the resource discovery algorithm.
The calculation is done using an omniscient in the
environment. When a resource request is sent to the
resource management system all possible resources
are selected and the longest path is then calculated.
This length is divided by the length of the selected

Mean advertisement time

400
— 4@ = Proposed model
350+ — fl— Custom model l_
/
300 va \\
250 ,' l_
’
g \
= 2004)
> '--...'_...'...,,l.-’ T-5-1
150
100 ‘- .
. ~’_,’--.’.’.‘_+‘.’.’..’
0 T T T T T T T

1 2 3 4 5 6 7 8 9 10 11
Experiments

Figure 3. Mean advertisement time in the proposed
algorithm.

Resource Management in Pervasive Computing Environments

path provided by the discovery process. The path
length ratio shows near 200% improvement in the
path length selection in both proposed algorithms
(Figure 4). As can be seen in this figure, the ratio is
mostly between 0.4 and 0.55, which confirms a much
more optimal path selection scheme in the authors’
algorithm;

e System Overhead (Load):
This parameter is calculated using the multiplica-
tion of the average number of active agents by the
mean lifetime of each agent, which is shown with O;
in Equation 7.

O; = #agents; x Age(agents;). (7)

The more active mobile agents with a longer lifetime
are created, the more computational and network
resources are consumed and, therefore, algorithm
performance decreases. The proposed discovery
algorithm’s performance has been shown in Figure 5.
An appropriate overlay model, based on the exper-
iments’ essence, shows that, whenever the requests
for resource discovery increase, a rise in the systems
overload happens. However, the number of available
resources of a specific type is also relevant to the
created overhead;

e Minimum Discovery Time:
The first agent to return to its original host with
the required information will have the minimum
(fastest) resource discovery time. Although this
factor is not used in the resource discovery algorithm
performance evaluation, it assists one in proving
simulation correctness. As can be seen in Figure 6,
the minimum resource discovery times in both al-
gorithms are very close to each other. The main
reason for the performance similarity is related to
the algorithm functionality. In the flat resource

(Selected fmaximum) path ratio

0.6

2
= 03
=
0.2
—— Non-hierarchical RADMA
0.1 — fl— Hierarchical RADMA -
U'D T T T T T T T T
1 2 3 4 bl G T 8]

Experiments

Figure 4. Path length ratio in both proposed resource
discovery algorithms.

Cycles

621

System load

A

1600
—4— Non-hierarchical model
1400 " = k= + Hierarchical model
v & .
1200 M | 'y i 4
rr ¥ v
Al

NG S SRR IV

0 - — —
: ' 8 0 10 11 12 13 14 15

Experiments

Figure 5. System overhead created in each algorithm.

Cycles

Minimum discovery time

—4— Non-hierarchical model
60 a ,* = «4~ - Hierarchical model
w7 A
- \
50
40
30
20
10
0 T T T T T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Experiments

Figure 6. Minimum (fastest) discovery time in the

proposed algorithms.

discovery algorithm, the fastest agent to return the
requested information would be the mobile agent
that has been sent to the same virtual organization.
On the other hand, in the hierarchical resource
discovery model, the mobile agents used in the
first phase would end up faster and have a shorter
time of resource discovery. Conceptually comparing
both algorithms shows that the minimum resource
discovery time in both models should be very much
similar and follow the same trend. Figure 6 shows
the simulation results, which confirm this concept
and prove simulation validity. The slight difference
seen in the figure is related to the random resource
distribution that can be neglected in the real world
experiments;

Maximum Resource Discovery Time:

This factor calculates the average time spent to
locate a suitable resource in the pervasive computing
environment by each proposed resource discovery
algorithm. Ty, can be computed, based on Equa-

622

Cycles

tion 3 or Equation 5. For faster resource discovery,
one requires lower effective resource discovery time
from the designed algorithms. Figure 7 shows faster
resource discovery time for the hierarchical resource
discovery algorithm. However, the flat resource
discovery algorithm shows to be very scalable and
provides similar speeds in resource discovery un-
der different resource distribution conditions. As
can be clearly seen in Figure 7, although the
non-hierarchical algorithm follows a more lengthy
resource discovery process, it follows a constant
trend, shows similar behavior under different cir-
cumstances and seems to be scalable;

Algorithm Performance:

To precisely calculate the resource discovery process
performance, the AP; factor was devised, consider-
ing the pervasive computing environment essence.
AP; is based on three main factors, which are: The
probability of the request for a specific resource
type, the available number of resources from a
specific type and the effective resource discovery
time. The more resources available for a specific
request, the faster the resource discovery process
will be performed. This shows that the number of
available resources of the specified type has a reverse
effect on the effective resource discovery speed. On
the other hand, the probability of a request for
a specific resource type has direct effect on the
weight of the effective resource discovery time of
that specific resource on the total resource discovery
algorithm performance. The algorithm performance
measure has been formulated and shown in the
following equation:

_ P(Ry)
~ #R;

The algorithms’ performance has been com-

AP, (8)

X Texp, -

Maximum discovery time

140
—4#— Non-hierarchical model
120 = -4 - Hierarchical model
e DT RN
1
YRR
] ' v .
80 It r !‘ L1 ‘
vy X K VI A
A ‘\ o
60 - [
¥ 4
40
20
0 —

6 7 8 0 10 11 12 13 14 15

Experiments

Figure 7. Effective resource discovery time for the
proposed algorithms.

Cycles

E. Bagheri and M. Naghibzadeh

pared in Figure 8. The most important fact in
the comparison is that both algorithms have similar
performance measures. Following the very close
and similar trend lines of both of the algorithms
that have been demonstrated in Figure 8, it can be
inferred that, although the algorithms were tested
under different resource distribution and network
conditions, a constant similar movement has been
followed in both approaches. As the algorithm
performance values under different circumstances
show to stay between 8.5 and 13, the algorithms
seem to be scalable from this point of view;

Algorithm Efficiency:

In order to evaluate the relation between the effec-
tive resource discovery time and the overall over-
head, created by the performed process on the
pervasive computing environment, the F; factor was
designed. The total overhead that had been forced
on the environment, based on the use of mobile
agents, was calculated. The total computed value
was divided by the number of available resources to
assume an evenly spread load among all available
resources for the sake of comparison and simplicity;
however, the overhead was not actually evenly
spread. The generated overhead has a reverse rela-
tion with the resource discovery algorithm efficiency.
The algorithm efficiency factor has been formulated
in the following equation :

E; = (#Ri X Texp,)/ O (9)

In this factor, a similar parallel trend can also
be shown for both algorithms. The trend lines
depicted in Figure 9 show that both algorithms are
conceptually behaving the same; however, the non-
hierarchical algorithm has a higher efficiency. Fig-
ure 9 compares both algorithms’ efficiency factors
under different simulation conditions.

Algorithm performance

14

— - - Non-hierarchical model

—@— Hierarchical model

= = Trend line (non-hierarchical model)
Trend line (hierarchical model)
0 —
1 2 3 4 5 6 7 8 9 10 11 12 13 14 135

Experiments

Figure 8. Resource discovery performance comparison in
the two different proposed algorithms.

Resource Management in Pervasive Computing Environments

Algorithm efficiency

10

Cycles

| --4# - Non-hierarchical model

| = = = Trend line (non-hierarchical model)
i —4&— Hierarchical model
T | e Trend line (hierarchical model)

9 10 11 12 13 14 15

Experiments

1 2 3 4 5 6 7 8

Figure 9. Resource discovery efficiency factor for the two
proposed resource discovery algorithms.

CONCLUSION

Two different approaches to resource discovery and
dissemination have been proposed in this article and
their details have been precisely explained. The
exact formula for the resource discovery time has been
provided, while the complete algorithms have been
shown in pseudo code. The simulation environment
under which the experiments were conducted, was
thoroughly clarified. The resource request model in
the simulations that followed the Zipfian distribution
was also explained.

The conducted simulations were divided into
three completely different sets of experiment, which
were inherently different in nature because of the type
of resource distribution in the environment. The
experimental results for the two models were compared
under eight devised factors and the simulations were
proved to have been executed correctly.

The results show that the resource dissemination
algorithm performs in the same way under different
experimental conditions and proves to be scalable. As
the main message passing load has been moved inside
the virtual organizations, the algorithm avoids message
contention in the pervasive computing infrastructure.

The comparison between the two designed re-
source discovery algorithms shows that the hierarchical
algorithm performs better, based on the efficient re-
source discovery time and the system overhead created.
On the other hand, the non-hierarchical algorithm
shows more efficiency, (F;). This algorithm is also
scalable and shows similar behavior under different
simulation conditions.

REFERENCES

1. Realizing the Information Future: The Inter-
net and Beyond, National Academy Press (1994);

10.

11.

12.

13.

14.

15.

16.

623

http://www.nap.edu/readingroom/books/rtif/.

Stevens, R., Woodward, P., DeFanti, T. and Catlett,
C. “From the I-WAY to the national technology grid”,
Communications of the ACM, 40(11), pp 50-61 (1997).

Oram, A., Ed. Peer-to-Peer: Harnessing the Power of
Disruptive Technologies, O'Reilly Press, USA (2001).

Foster, I. and Kesselman, C., Eds., The Grid:
Blueprint for a New Computing Infrastructure, Morgan
Kaufmann (1999).

Oppenheimer, D.; Albrecht, J., Patterson, D. and Vah-
dat, A. “Distributed resource discovery on planet lab
with SWORD?” | In Proceedings of the First Workshop
on Real, Large Distributed Systems (December 2004).

Nabrzyski, J., Schopf, J.M. and Weglarz, J., Eds., Grid
Resource Management: State of the Art and Future
Trends, Chapter 26, Kluwer Publishing (2003).

Czajkowski, K., Fitzgerald, S., Foster, I. and Kessel-
man, C. “Grid information services for distributed re-
source sharing, high performance distributed comput-
ing”, Proceedings 10th IEEE International Symposium,
pp 181-194 (7-9 Aug. 2001).

Buyya, R., Stockinger, H., Giddy, J. and Abramson,
D. “Economic models for management of resources in
peer-to-peer and grid computing”, SPIFE International
Conference on Commercial Applications for High-
Performance Computing, Denver, USA (2001).

Cao, J., Jarvis, S., Saini, S., Kerbyson, D. and Nudd,
G. “ARMS: An agent-based resource management
system for grid computation”, Scientific Programming,
pp 135-148 (2002).

Waldo, J. “The jini architecture for network-centric
computing”, Commaunications of the ACM, pp 76-82
(1999).

Veizades, J., Guttman, J., Perkins, E. and Ka-
plan, S., Service Location Protocol, RFC 2165 (1997);
http://www.ietf.org/rfc/rfc2165.txt.

Fox, S., Chawathe, Y. and Brewer, E. “Adapting
to network and client variation using active proxies:
Lessons and perspectives”, IEEE Personal Communi-
cations, pp 10-19 (1998).

Brumitt, B., Meyers, J., Krumm, A. and Shafer,
S. “Easy living: Technologies for intelligent environ-
ments”, Handheld and Ubiquitous Computing 2000
(HUC2K), pp 97-119 (2000).

Brunett, S., Czajkowski, K., Fitzgerald, S., Foster,
I., Johnson, A., Kesselman, C., Leigh J. and Tuecke
S. “Application experiences with the globus toolkit”,
In Proc. 7th IEEE Symp. on High Performance Dis-
tributed Computing, IEEE Press, pp 81-89 (1998).

Johnston, W.E., Gannon D. and Nitzberg, B. “Grids
as production computing environments: The engineer-
ing aspects of NASA’s information power grid”, In
Proc. 8th IEEE Symposium on High Performance Dis-
tributed Computing, IEEE Press, pp 197-204 (1999).

Buyya, R., Abramson, D. and Venugopal, S. “The
Grid economy”, Proceedings of the IEEE 2005, 93(3),
pp 698-714 (2005).

624

17.

18.

19.

20.

Chervenak, A.L. “Tertiary storage: An evaluation of
new applications”, Ph.D Thesis, UC Berkeley (Dec.
1994).

Sitaram, D. and Shahabuddin, P. “Scheduling policies
for an on-demand video server with batching”, Second
Annual ACM Multimedia Conference and Exposition,
pp 15-23 (1994).

Cao, J., Kerbyson, D. and Nudd, G. “High perfor-
mance service discovery in large-scale multi-agent and
mobile-agent systems”, International Journal of Soft-
ware Engineering and Knowledge Engineering, pp 621-
641 (2001).

Aloisio, G., Cafaro, M., Epicoco, 1., Fiore, S., Lezzi,

21.

22.

E. Bagheri and M. Naghibzadeh

D., Mirto, M. and Mocavero, S. “iGrid, a novel grid
information service”, Proceedings of the First European
Grid Conference (EGC) (2005), LNCS 3470, Lecture
Notes in Computer Science, Springer-Verlag, pp 506-
515 (2005).

Badshaw, J., Software Agents, AAAI Press/MIT Press
(1997).

Bester, A.J., Bresnahan, J., Chervenak, A.L., Foster,
I., Kesselman, C., Meder, S., Nefedova, V., Quesnel,
D. and Tuecke, S. “Secure, efficient data transport
and replica management for high-performance data-
intensive computing”, In Mass Storage Conference,

pp 13-27 (2001).

