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Research Note

A New Bidirectional Neural Network for Lexical

Modeling and Speech Recognition Improvement

M.R. Yazdchi1, S.A. Seyyed Salehi2 and R. Zafarani�

One of the most important challenges in automatic speech recognition is the case of mismatch

between training and test data. Conventional methods for improving recognition robustness seek

to eliminate or reduce the mismatch, e.g. enhancement of the speech by adapting the statistical

models. Training the model in di�erent situations is another example of these methods. The

success with these techniques has been moderate compared to human performance. In this

paper, an inspiration from human listeners created the motivation to develop and implement a

new bidirectional neural network. This network is capable of modeling the phoneme sequence,

using bidirectional connections in an isolated word recognition task. This network can correct the

phoneme sequence obtained from the acoustic model to what is learned in the training phase.

Acoustic feature vectors are enhanced, based on the inversion techniques in neural networks,

by cascading the lexical and the acoustic model. Speech enhancement by this method has a

remarkable e�ect in eliminating mismatch between the training and test data. The e�ciency

of the lexical model and speech enhancement was observed by a 17.3 percent increase in the

phoneme recognition correction ratio.

INTRODUCTION

A comparison of machine speech recognition with
human listeners for a speaker independent task shows
that machine speech recognition is acceptable for a
simple task (connected digit recognition). However,
word error starts to increase with a raise in task
di�culty. Its di�culty can be measured in a number
of ways, including perplexity (de�ned as number of
words allowed to follow a given word), even if there
are no environmental e�ects. Human listeners per-
form well under various conditions [1]. The speech
recognition task becomes more di�cult where there are
mismatches between the training and testing conditions
of the recognition systems. The performance of speech
recognition systems trained in clean/controlled con-
ditions reduces drastically during testing under noisy
conditions. Previous research has revealed that human
listeners are able to comprehend speech which has un-
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dergone considerable spectral excisions. For example,
speech is understandable, even if it has been high or
low-pass �ltered [2]. These observations suggest that
there is enough redundancy in the speech signal for rea-
sonable recognition. Therefore, listeners can recognize
the speech with only a fraction of spectral-temporal
information present in it [3]. Conventional techniques
used in these cases include; Multi-conditional train-
ing, speech enhancement and adaptation of statistical
models for the speech unit. In the �rst method, the
automatic speech recognition system is trained under
di�erent conditions. Simplicity is its main advantage.
However, its main aw is the increase in recognition
error caused by various types of training data. In the
speech enhancement method, speech data is enhanced
in such a way as to eliminate the mismatches between
training and test data. Neural networks which are able
to model nonlinear functions, have shown an e�ective
performance in speech enhancement [4]. Adaptation
techniques reduce mismatches under training and test
conditions by modifying the model parameters for new
speakers or conditions. Observations of the human
auditory system have led to a novel approach: The
missing data [5]. In this method, primary recogni-
tion (coarse and holistic recognition) is accomplished
by reliable regions. Unreliable regions are corrected
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afterwards. This action is iterated until the recognition
is completed and the primary recognition is modi�ed
to the �nal recognition (�ne recognition). This paper
is an e�ort to design a lexical model, based on a new
bidirectional neural network. This network, inspired
by the parallel structure of the human brain, processes
information by having up-down connections, in addi-
tion to bottom-up connections. This network tries to
get closer to the performance, exibility, correctness
and reliability of the human auditory system. In this
network, up-down links improve the input (phoneme
sequence) in successive iterations by a new technique.
Cascading this network, as a lexical model with the
acoustic model, results in multiple pronunciations (al-
ternative pronunciations) to be converted to canonical
pronunciation. These pronunciations are also corrected
to the hand-labeled phoneme sequences. Canonical and
alternative pronunciations are, as follows:

1. Canonical Pronunciation: Is also known as
phonemic transcription, which are the standard
phoneme sequences assumed to be pronounced in
read speech. Pronunciation variations, such as
speaker variability, dialect or coarticulation in con-
versational speech, are not considered;

2. Alternative Pronunciation: Actual phoneme se-
quences pronounced in speech. Various pronuncia-
tion variations, due to the speaker or conversational
speech, can be included.

In this method, there is no need for large speech
databases. Neural networks are capable of making
appropriate decisions for the test data not being
available in the training data. This is based on
what is learned in the training phase [6]. Cascading
the following lexical model and acoustic model, will
have remarkable results in acoustic feature vectors
(acoustic data) enhancement. In this method, by
using the inversion techniques in neural networks, the
corrected phoneme sequence from the lexical model is
used to enhance feature vectors. This enhancement
re-increases the phoneme recognition correction ratio.
In the following sections, some inversion approaches
in neural networks are presented �rst. Then, speech
data and feature extraction are described and the
acoustic model is presented. After that, the lexical
model is described and two methods of speech en-
hancement using neural network inversion techniques
are presented. Finally, a discussion of the presented
work is given.

INVERSION TECHNIQUES (ORGANIZING
BIDIRECTIONAL NEURAL NETWORKS)

In this section, two techniques of neural network
inversion are described, in order to recognize input

from output. In the �rst method, the error between
the desired output and the actual output is measured
after the training phase. This error is back propagated
through hidden layers to the input layer, in order to
adjust the input [7]. During this process, weights
are �xed and the input is updated. The adjustment
stops when there are no errors or incomplete epochs.
The second technique is based on training an inverse
network. During the training phase, two feed-forward
networks (direct/inverse nets) are trained. The input
and output of the direct network are the output and
input of the inverse one, respectively [8].

Inverting Neural Networks by Gradient Input
Adjustment

In this approach, the error is back propagated to
update the input. A feed-forward network, with the
hidden layer, H , and input and output layers, I and
O, is assumed. xtk is the kth element of the input
vector in the tth iteration. It is initiated from x0k and
updated, according to the following equation, in the
gradient method:

xt+1k = xtk � �
@E

xt
k

fk 2 I; t = 0; 1; 2; � � � g: (1)

In the above, gradient error is calculated, based on the
following equation:

�j =

(
f 0j(yj)(yj � dj) j 2 O

f 0j(yj)
P

m2H;O �mwjm j 2 I;H
(2)

where fj is the activation function of the jth neuron,
yj is the activation of the jth neuron, dj is the target
output and wjm is the weight between neurons j and
m. This method, like other gradient methods, has the
probability of falling into local minima.

Neural Networks Inversion Based on Training
of Inverse Network

Another method that is used to compute input from
output, uses two feed-forward networks in reverse
structures. The training phase of these networks will
converge if the training data is having a one-to-one
mapping. For example, if the training data have the
(many-to-one) mapping, then, the direct network will
converge and the inverse network will compute a value
near a point in inputs where redundancy is high [9].
These networks can be trained, based on two separated
back propagation algorithms or a single bidirectional
algorithm [9]. A general structure of the two networks
containing a single hidden layer is shown in Figure 1.
Figure 2 shows the mapping between the input space
and the output space in these networks.
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Figure 1. Two single hidden layer networks,
(direct/inverse networks).

Figure 2. The mapping between the input and output
space.

SPEECH DATA AND FEATURE
EXTRACTION

An actual telephone database (TFarsdat) was used [10].
This database contains �ve sections, which are pro-
nounced by 64 speakers. From all the pronounced
words in this database, 400 words that were pro-
nounced more than once were selected and used in the
training and testing of the networks [10]. 75 percent of
them were used for training and the rest were used as
test data. Thus, from all words pronounced, the words
of 48 speakers were used for training and the rest was
used as test data. The sampling rate is 11025 Hz, which
was downsampled to 8KHz (Telephone speech sampling
rate). MFCC (Mel Frequency Cepstral Coe�cient)
features were extracted, as follows: The speech signal
is segmented into 16ms-long overlapping frames with a
8ms overlapping shift [11,12].

ACOUSTIC MODEL

The acoustic model is a MLP network with two hidden
layers and a neural structure of 9�39�50�40�34. In

the input, 9 consecutive frames (4 consecutive previous
frames, 4 consecutive frames ahead and the current
(middle) frame) are presented to the network. The
output is describing the middle frame using 34 neurons
(number of phones). Activation functions of hidden
and output layers were hyperbolic tangent functions.
Their outputs were between 1 and -1, in order to
make the convergence speed of the network faster.
The weights were initialized, according to the Nguyen-
Widrow algorithm. The network is trained, based on
RPROP (Resilient Back Propagation Algorithm) [13].
The frame correction ratio of 71.34 percent was re-
ported.

In converting frames to phonemes, the mean
phoneme length, in frames, is considered important.
A simple technique in the conversion is considered,
since phoneme lengths are normally two frames or
more. Two or more consecutive frames of one type
were considered as a phoneme in the acoustic model
output. Therefore, single frames were ignored. Table 1
shows the phoneme recognition ratios obtained by this
technique. (Results were taken by NIST software in
sequence comparison.)

LEXICAL MODEL

Until now, multi-layer feed-forward neural networks
have been extensively used in pattern recognition.
However, unidirectional networks lack enough capa-
bility in conditions where patterns are mixed with
noise [9]. Bidirectional processes are the way in which
the cortex seems to perform in making sense of the
sensory input [14]. The robust pattern recognition in
humans shows the capability of this method in signal
clustering [9]. It seems that a holistic but coarse
initial hypothesis is generated by an express forward
input description and, subsequently, re�ned under the
constraints of this hypothesis [14-16]. A bidirectional
neural network for pattern completion has been applied
to di�erent applications, such as the completion of
hand written numbers [17]. It was shown by this
method that the appropriate training of a feed-forward
neural network with up-down connections for correct-
ing the input, can e�ectively rebuild the missed blocks
in incomplete patterns. Therefore, a novel bidirectional
neural network and its training algorithm have been
designed. Missed phonemes are appropriately rebuilt
in the phoneme sequence extracted from an acoustic
model in an isolated word recognition task. Two major
goals are settled by cascading the lexical model with

Table 1. Phoneme recognition ratios over test data from the acoustic model.

Substitution Insertion Deletion Correction Accuracy

14.7% 10.4% 13.7% 71.6% 61.1%
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the acoustic model:

1. Correcting the output phoneme sequence from
the acoustic model compared to the hand-labeled
phoneme sequences;

2. Correcting the output phoneme sequence from the
acoustic model compared to the canonical phoneme
sequence.

In the �rst goal, cascading the lexical model with
the acoustic model will improve the phoneme recogni-
tion ratios. In the second one, the multiple pronunci-
ations are adjusted to the canonical pronunciation. In
both cases, the architectures and training algorithms
are completely the same. The only di�erence is in the
training data.

Neural Network Architecture

This network is a MLP with two recurrent connections.
The output and input layers have hyperbolic tangent
and linear activation functions, respectively. The
recurrent connection from the hidden layer to itself is
for the purpose of long-term memory. The connection
between the hidden layer to the input layer is for the
reason of updating the input in the next iteration.
Based on the partial information given, this network is
capable of recalling the rest of the patterns in several
iterations. (The number of iterations is dependent on
the data and will be determined empirically in the
training phase.) This model is used once, for adjusting
the phoneme sequences in multiple pronunciation of a
word to its canonical phoneme sequence. The model is
also used to correct the phoneme sequences in multiple
pronunciations of a word to the hand-labeled phoneme
sequences.

In input, each phoneme is represented using 34
bits. This way to presentation creates the possibility
of cascading this model with the lower levels (acoustic
model) directly. The word boundary is determined by
the hand-labeled data (isolated word task). The num-
ber of phonemes in the lengthiest word is considered
as the network's input length. Silence phonemes are
added to the end of the words that are shorter than
this length. The output of this network is the binary
presentation of the word corresponding to the input
phoneme sequence. The network has a 34�16�30�9
structure. (The number of inputs show that, in the
data used, the lengthiest word had 16 phonemes. The
number of outputs show that a maximum of 512 words
can be classi�ed.)

Figure 3 shows the network architecture. Parts
of the information are given as inputs to the network.
The output is calculated in the nth iteration and the
input is adjusted in the n + 1th iteration, based on
the following equations. This action is iterated N0

Figure 3. Neural network structure in lexical model.

times, until the rest of the pattern is revealed. N0

(number of iterations) is dependent on the input data,
determined empirically and used in the training phase.
The network output is the average of all outputs during
the iterations.

y(j; n) = f(

nIX
i=0

x(i; n)vij +

nHX
k=1

y(k; n� 1)wr
kj);

j = 1; � � � ; nH ;

z(k; n) = f(

nHX
j=1

y(j; n)wjk) k = 1; � � � ; n0;

x(i; n+ 1) = (1� )x(i; n) + f(

nHX
j=1

y(j; n)vrji);

i = 1; � � � ; nI ; (3)

where n = 1; � � � ; N0 and 0 �  � 1.
In the above equations,  will specify the complet-

ing speed of the incomplete patterns. This coe�cient
is determined empirically in test and training phases.
Selecting a nonproper value for it can lead to a
divergence in the algorithm.

Network Training Algorithm

After the initialization of the network parameters using
the following equation, the network is trained by an
algorithm, which is derived from gradient and back
propagation methods:

ẑ(k; n) =
1

n

nX
m=1

z(k;m); k = 1; � � � ; n0;

_z(k; n) = (ẑ(k; n)� dz(k))f
0(z(k; n));

k = 1; � � � ; n0;
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wjk = wjk + � _(z)(k; n)y(j; n);

k = 1; � � � ; n0; j = 1; � � � ; nH ;

_y(j; n) = f 0(Y (j; n))(

nIX
k=1

_x(k; n+ 1)vrjk

+

n0X
k=1

_z(k; n)wjk +

nHX
i=1

_y(i; n+ 1)wr
ij);

j = 1; � � � ; nH ;

wr
ij = wr

ij + � _y(j; n)y(i; n� 1);

i = 1; � � � ; nH ; j = 1; � � � ; nH ;

vij = vij + � _y(j; n)x(i; n� 1);

i = 1; � � � ; nI ; j = 1; � � � ; nH ;

_x(i; n) = (1� ) _x(i; n+ 1)

+ (

nHX
j=1

_y(j; n)vij)f
0(x(i; n+ 1));

i = 1; � � � ; nI ;

vrij = vrij + � _x(k; n)y(j; n);

k = 1; � � � ; nI ; j = 1; � � � ; nH ; (4)

where:

n = N0 � 1; � � � ; 1:

Equation 5 shows the error measurement in the
last iteration. Equation 4 is used to measure errors in

the previous iterations, recursively.

x̂(k;N0) =
1

N

N0X
m=1

x(k;m);

k = 1; � � � ; nI ;

_x(k;N0) = (x̂(k;N0)� dx(k))f
0(X(k;N0));

k = 1; � � � ; nI : (5)

Words pronounced by 48 speakers were used in the
network training. In the test phase, the obtained
phoneme sequences from the acoustic model were used.
According to how phonemes are extracted from frames,
a mean value from the frames in one phoneme is
calculated and the phoneme sequence is extracted.
Table 2 shows the results. It must be mentioned
that the results in Tables 2 and 3 are obtained based
on the phonemic (canonical pronunciation) and the
hand-labeled transcription, as the desirable output,
respectively. In order to compare bidirectional neu-
ral networks' abilities, the results were compared to
unidirectional neural networks (Autoassociative MLP
with a 34�16�100�30�100�34�16 structure) and
Elman Recurrent Network [18] (with a 34+34�20�34
structure) in Tables 2 and 3 [19].

SPEECH ENHANCEMENT

Speech enhancement is motivated by the need to
improve the performance of speech recognition systems
in noisy conditions. Speech enhancement is a method
for improving the performance of an ASR where there is
mismatch in training and test data. The most common
methods used for speech enhancement include spectral
subtraction, HMM based methods and Kalman �lter-
ing. Spectral subtraction is the easiest technique to
implement, although the method su�ers from various

Table 2. Phoneme recognition ratios over test data. The hand-labeled phoneme sequence is the target output.

Model Accuracy Correction Deletion Insertion Substitution

Unidirectional Network 67 % 74.5 % 12 % 7.5 % 13.5 %

Bidirectional Network 82.5 % 88.5 % 4.7 % 6 % 6.81 %

Elman Network 67.8 % 75.2 % 11.8 % 7.4 % 13 %

Table 3. Phoneme recognition ratios over test data. The canonical pronunciation phoneme sequence is the target output.

Model Accuracy Correction Deletion Insertion Substitution

Acoustic Model 50.2 % 65 % 16.6 % 14.8 % 18.4 %

Unidirectional Network 57.8 % 69.2 % 14.6 % 11.4 % 16.2 %

Bidirectional Network 71.5 % 80.4 % 9.3 % 8.9 % 10.3 %

Elman Network 58.2 % 69.5 % 14.5 % 11.3 % 16 %
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complexities. First of all, it requires prior assumptions
about the noise estimation. A good noise estimate
is not an attainable prerequisite for non-stationary
noise. Another serious problem arises because of the
overestimation of the noise. The problem with model
and �lter based techniques is their complex structure.
Neural nets provide alternatives to traditional speech
enhancement techniques, both in the time and fre-
quency domain. The advantage of using neural nets
for spectral domain enhancement is, in many cases,
the elimination of musical noise. Neural nets are also
considered suitable when there is a nonlinear mixing of
noise and speech. Speech enhancement techniques with
neural networks can be categorized into time-domain
�ltering, transform-domain mapping, state-dependent
model switching and on-line iterative approaches [20].
The lexical model described in the previous section is
cascaded with the acoustic model here. This corrects
the phoneme sequence obtained from the acoustic
model. Corrected phoneme sequence is used to enhance
features, based on the inverting techniques discussed
previously.

Speech Enhancement Using the Gradient
Inverting Method

In this method, the acoustic model is cascaded with
the lexical model described in the previous section.
The lexical model is cascaded to correct the phoneme
sequence to the hand-labeled transcription of them.
The error between the phoneme sequence in the lex-
ical model output and the acoustic model output is
measured. This error is back-propagated to update
the features and all training data are adjusted. A new
acoustic model is trained over these enhanced features.
The lexical model is cascaded with this new acoustic
model. The results revealed that the recognition ratios
are re-improved. The results are available in Table 4
and Figure 4 illustrates this method.

Speech Enhancement Using the Inversion
Method of Training Inverse Networks

There is a need for the inverse network of an acoustic
model in this method. Both the acoustic model
and its inverse are trained in the training phase, as
illustrated in Figure 5. The inverse model is capable
of generating the input (features) from the output
(phoneme sequence). As described before, the lexical

Figure 4. Cascading the lexical and acoustic model to
enhance features in the gradient inversion method.

Figure 5. Cascading the lexical and acoustic model to
enhance features in the inverse network training method.

model corrects the phoneme sequence of the acoustic
model and features are adjusted based on this phoneme
sequence. Enhanced features are obtained from the
adjusted frame sequence, using the acoustic model's
inverse and a new acoustic model is trained over these
enhanced features. The lexical model is cascaded
with this new acoustic model. An outstanding rise in
phoneme recognition ratios is observable in Table 4.

Phoneme Boundary Detection

The information about phoneme boundary is com-
pletely necessary in order to adjust the frame sequence

Table 4. Phoneme recognition ratios over test data (phoneme boundary determined from hand-labeled data).

Method Accuracy Correctness Deletion Insertion Substitution

Gradient Based 83.4 % 89.1 % 4.3 % 5.7 % 6.6 %

Inverse Network 83.9 % 89.6 % 4.1 % 5.7 % 6.3 %
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Table 5. Phoneme recognition ratios over test data (phoneme boundary detection using boundary detector network).

Method Accuracy Correction Deletion Insertion Substitution

Gradient Based 82.8 % 88.7 % 4.5 % 5.9 % 6.8 %

Inverse Network 83.1 % 88.9 % 4.7 % 5.8 % 6.4 %

from the corrected phoneme sequence. In the above,
the phoneme boundary is determined by the hand-
labeled transcription. A more practical way is to detect
phoneme boundary by features.

A neuron (boundary detector neuron) with the
sigmoid activation function, is placed in the acoustic
model output layer. If the phoneme boundary is
exactly in the middle of the input, this neuron will
be set to `1'. If the phoneme boundary is one frame
ahead or behind, this neuron will be set to `.75'. If
the boundary is located 2 frames ahead or behind,
the output will be set to \.25" and, otherwise, to
`0.0'. Table 5 shows the phoneme recognition ratios
of the previous method, using the boundary detection
network.

CONCLUSION AND FUTURE WORK

Studying human perception and recognition systems
shows that they have a hierarchical and bidirectional
structure [14-16,21,22]. High level information has
improved the exibility and performance of image
recognition systems [14].

The bidirecting of feed-forward neural networks
has created remarkable improvement in their perfor-
mance and the creation of dynamic basins of at-
traction [23-25]. In this paper, the performance of
a new bidirectional neural network in an ASR was
considered. Comparing the feed-forward networks'
results shows the advantages of bidirectional networks.
This bidirectional network is an auto/hetero associative
memory capable of completing input patterns.

It has been shown that a combination of lexical
knowledge and the features improves the recognition
ratios. Bidirectional links create the possibility of
eliminating the mismatches in input patterns. In other
words, high level knowledge is used in describing low
level input. The bidirectional links can be established
using one of the two neural network inverting tech-
niques. The inverse network method shows better
results compared to the gradient based method. This is
due to the local minimum problem. Phoneme bound-
ary detection error in phoneme boundary detection
networks results in a decrease in the recognition ratios.

The described method is used in an isolated word
task. Recurrent neural networks can model time series,
therefore, these networks can be applied in continuous
speech recognition.

In continuous speech recognition, by adding a

context layer to the network's input, the introduced
bidirectional neural network will be able to model the
phoneme sequence. On the other hand, by detecting
word and phoneme boundaries, the given techniques
can also be applied to continuous speech. In this way,
all the given methods are applied after the processes of
phoneme and word segmentation.
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