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Numerical Solution of the System of

Nonlinear Fredholm Integro-Differential

Equations by the Operational Tau
Method with an Error Estimation

G. Ebadi*, M.Y. Rahimi' and S. Shahmorad'

In this paper, the operational approach to the Tau method is used for the numerical solution
of a nonlinear Fredholm integro-differential equations system and nonlinear ODEs with initial or
boundary conditions without linearizing. An efficient error estimation of the approximate solution
is also introduced. Some examples are given to clarify the efficiency and high accuracy of the

method.

INTRODUCTION

In recent years, the operational approach to the Tau
method has been developed to cover the numerical
solution of ODEs, PDEs and linear integro-differential
equations [1-10]. Liu and Pan presented an extension
of the operational approach to the Tau method for
the numerical solution of a linear ODEs system with
polynomial or rational polynomial coefficients, together
with initial or boundary conditions [11]. Ortiz et
al. have solved nonlinear ODEs and PDEs using
an operational approach to the Tau method, through
an iteration process defined by a sequence of linear
problems with variable coefficients [1,4,5,8].

In this paper, Ortiz and Samara’s operational
approach to the Tau method is considered for the
numerical solution of nonlinear ODEs and nonlinear
Fredholm integro-differential equations system without
linearizing.

Consider the following nonlinear Fredholm
integro-differential equations system:

m b

ZDijyj(x) /\i/ ki(z,t)oi(yr(t), - ,yn(t))dt
= fl(x)v

i=1(1)m, T € [a,b], (1)
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with the supplementary conditions:

Z (A9 (@) + Biay(0)) = d,
r=1(1)w, 2)
where
[ng. = m,?;l{nd”} w= ZM,-L
< =
and:
ndz; ﬁl]r
= e = 3 S
r=0 s=0

For i = 1(1)m, fi;(x) and k;(x,t) are polynomials in
x and in z, t, respectively and o;(y1(¢), - ,yn(t)) are
polynomials in y(t),- - ,y.(t), otherwise, they can be
approximated by polynomials with suitable methods
and 3, is degree of p;jr(x).

In this paper, one assumes that, for i, 7 =
1(1)m7 Q5 € Na %(2/1(15)7 7yn(t)) = H] 1/y]a'j( )7
otherwise, it can be written as a sum of this form by a
suitable method, for example, Taylor expansion.

The organization of this paper is as follows:
First, the operational approach to the Tau method for
the numerical solution of Fredholm Integro-Differential
Equations (FIDEs) is explained. Then, the numerical
solution of a linear FIDEs system by the Tau method
is reviewed, and the operational approach to the Tau
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method is applied to a nonlinear FIDEs system. After
that, the nonlinear ODEs are solved and an error
function is introduced. Some numerical results are
given, also, to clarify the accuracy of the method and,
finally, the contains conclusions are presented. Note
that, the numerical results are computed by Maple
programming.

Remark 1

For i = 1(1)m, the following notations have been used
throughout this paper:
2 )T

f:(l,l',l',"' )

3]

a = (17a7a27"')T7

Ty = (17b7b27"')T7
e = (170707"')T7

yin = (yioayila"' 7yin707"'

71' = (inafila"' 7finf5707'“)T7

7:(f07f17"' 7fnf707"')T7

@n: (y[]aylv"' 7yn707"')T'

LINEAR AND NONLINEAR FIDES

The operational approach to the Tau method describes
the reduction of given linear and nonlinear integro-
differential equations (IDEs) to a linear and nonlinear
algebraic equations system, based on three simple
matrices:

01 0
0 1 0
w= 0 1 )

0
0
10
=10 2 o0 ,
00 3 0
01 0 0
0 2 o0
= 1
L 0 3
0
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Linear FIDEs

Consider the linear FIDEs (the following result is
quoted from [1,9,11]):

b
Dy(x) — A / K y(t)dt = f(z), z€ab], (3)

with the supplementary conditions:

s

> (Aky* (@) + By (1)) = d;,
k=1
j=1(0na, @
where:
7d d ng  Pi i
D= ;Pi(x)w = ;;piﬂjﬁv

is the differential operator of order ng.
Let yn(x) = Z;L:O y]x] = ynTE7 then:

xryn(x) — Z ijj+r — ynTquv
7=0

and:

d?"
y(2) = —yul(2) =7,"0'T. (5)

Theorem 1
Let yn(z) = 7,7% € C™[a,b], (the space of ng-times
continuously differentiable functions on [a, b]) and:

ng di ng Bi i
D= Zpi(l“)@ = Zzpia‘x]@v
i=0 i=0 j=0

be a linear differential operator of order ng with
polynomial coefficients, then;

Dy, (z) =7, TIT, (6)
where:
na ng Bi o
M= n'pi(p) =Y piyn's’.
i=0 i=0 j=0

Theorem 2
If k(x,t) = Z?:O E?:O kijl'itj, ki; € R and y(z) =
7,17, then:

b
/ Kz, )y()dt = 7,717, (7)

where 1y = > Z;L:O ki lej is a matrix associated
uniquely with k(x,t) and constants a, b, such that, chj =

WU(Ty — Ta)er T .
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Lemma 1

If yo(z) = 7," T, then,

y7(1k) (a) = ynTnkjﬂJ
y () =7, " Ts. (8)
Proof

By using Equation 5 one has:

(k)

y'l(’Lk) (a’) = yn (x)|z:a = ynTnkfhza = ynTnkfav

and:
Y () =y (@) |a=p = T "0 T omb = T 0" T,

so, the proof is completed.[d
Applying Lemma 1 for supplementary Condi-
tions 4, one has:

nd

> (Akjy(k_l)(a) + Bkjy(k_l)(b))

=1
ndg
= (Akj?nTn(k_l)Ta + Bkj?nTn(k_l)Tb)
=1
ng
=Tn Z (Akm(k_l)fa + Bkm(k_l)fb) .
k=1
Let:

nd

By =3 (AT + Bin ),
k=1

thus, E; € M(,11)x(1) and Equation 4 is converted
into 9," Bj = dj, j = 1(1)ng.

Now, by using Equations 6 through 8, the integro-
differential Equation 3 and supplementary Conditions 4
reduce to the following algebraic equations system:

7, 1y = 7
_T =T (9)
U E=d
with IIy =1II — A¢y and:
E=(Ei,Ez,- ,Epn;) € M(ni1)x(n)- (10)

By setting G = (F,1I;) and g7 = (ET,TT), Equation 9
can be written as 7,7 G = g. To obtain y,(z), the
system of equations 7,7 G, = g, must be solved for
the unknown coefficients, yo,%1, - ,¥Yn, where G, is
the matrix defined by considering the first (n 4+ 1) rows
and columns of G, and g, is the vector defined by
considering the first (n + 1) elements of the vector, g.
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Nonlinear FIDEs

Consider the nonlinear Fredholm integro-differential
equation:

b
Dy(x) - A / DA =S €t

with the supplementary Conditions 4, where D is
defined as before and ¢(y(t)) is a polynomial in y(¢),
otherwise, it is approximated by a polynomial with
suitable methods. In this paper, p(y(t)) = y™(t),m €
N, is considered, since other types of ¢(y(t)) can be
reduced to the sum of this form.

Theorem 3

If wz) = Y uja? = w7 and v(z) = Yo vz’ =

7=0
LT, then, u(r)v(z) = alo(p)T, where v(p) =
Z?:O vil"’l'
Proof
See [9].00
Lemma 2

Let y(z) =7, 7, then, y™(z) =7, y™ " (n)7.

Proof
Let u(z) = 7,77 and v(x) = y™ '(2) and Theorem 3
be applied.]

Theorem 4
If yo(z) = Sl yima® = 3,'7T and k(z,t) =
Yoo i kijx't/, then,

b
/ k(e Dy (4)dt = 5, o g, (12)

m—1

where tf,, =y~ (u)ty and ¢y is the same matrix as
introduced in Theorem 2.

Proof
Use Lemma 2 and Theorem 2 for y(z) =

%,y (w)z. O
If Equations 6, 10 and 12 are used for:

b

Dy(x) - A / Ko, ™ (1)t = f(z), = € [a,b],

m € N,

with supplementary Conditions 4, the following nonlin-
ear system will be obtained:

_ T =T
y, y=1f,
{y TEf_ r (13)

where IIy = II — Atfp, and iy, is the same matrix
as introduced in Theorem 4 and setting G = (E,IIy)
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and g7 = (ET,fT), one has §7G = g’ instead of
Equation 13, which is a nonlinear algebraic equations
system, because G contains unknown elements of the
vector ¥,. To find y,(z), the nonlinear equations
system 77,7 G,, = g,,7 must be solved, where G, and g,
are defined by considering the (n +1) x (n 4+ 1) leading
submatrix of G and the first (n 4+ 1) elements of the
vector g, respectively.

LINEAR FIDES SYSTEM

Consider the system of linear FIDEs:

m b
Z (Dz'jyj(x) - Aij/ kij(xvt)yj(t)dt> = fi(x),
x € [a,b], i=1(1)m, (14)

with the supplementary Conditions 2, where D;;, 7,5 =
1(1)m, are the same as that in Equation 1, f;(z) =
Z;Z'b fijz? = 7in. Now, applying Equations 6
through 8, for Equations 14 and 2, they are converted
into a system of linear algebraic equations. Let
Yin(x) = yjn%j = 1(1)m, be the Tau approximates
and let IT;;, 4, j = 1(1)m denote the matrices associated
with D;j, i,j = 1(1)m by Theorem 1 and iy, 1,5 =
1(1)m be the matrices associated with k;;(x,t),4,j =
1(1)m by Theorem 2. Then, one has:

m

b
Z (Dijyjn(x) - /\ij/ kij(x,t)yjn(t)dt>

m
Z (y]n H’b]x A’b']'yj'n,T[’fijf)

=1
= Z_jnT (HU — /\ij[’fi,') T
=1
= Z_jnTﬁUE, i=1(1)m,
j=1
where
;= Tij — Aijeg,; - (15)

Applying Lemma 1 to supplementary conditions:

J

i ; ( ]kr?/]

Jj=1

@) + Biuoy 1) = dr,

r=1(1)w,
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yields:

nd].

Z (AjkryjnTnk_

7=1 k=1

-1

1Ea + BjkryjnTnk Eb)

To+ B '1T) =d..

Zy Z ]kr”kil

Assume that:

nd;

Z (Ajrrn™

k=1

1Ea+Bjkr77k_1jb) :Erj S M(n+1)><(1)7

then, one has:

Y T B = dpyr = 1(1)w,

Jj=1

and:

2T
with:
E. =

||
&.I

i = (E1j,Esj,Esj,- -+ ,E,j),

and:
4 = (d,do,ds, -+ ,do).

Let yMT = (ylnTvy}nT?ySnT? T 7ymnT) € RM? M=
m(n + 1), where 7,7, j = 1(1)m are the coefficients
vectors of y;,(z) in a standard basis. The problem
of determining %,,” can be formulated as the linear
equations system [11]:

S
yMTG - SM ) (16)
with:
Ei Qu Qa - Qm
G Ey, Q12 Q2 - Qmo

Em le QQm e Qmm
S Mm(n-l—l)Xm(n-I—l)a

where Qi; = (ILi;)(nt1)(n—n, +1) is the restriction of
II;; (as defined in Equation 15) to its first (n + 1) rows
and (n — ng, + 1) columns and:

T ~T—- T T = T
SM :(d 7f1n,11 7f2n,12 7"'7fmndm )GRMa
: to its first
(n — ng, + 1) components. By solving Equation 16,

one obtains y;,(z) for j = 1(1)m

— T —= T
where f, ~—~ is the restriction of f;
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NONLINEAR FIDES SYSTEM

Consider the nonlinear FIDEs system:
> Dijys() = \s / ki(z,t) Hya” fiz),
j=1

z€fab], i=1(1)m, (17)

with the supplementary conditions:

S (Ajkry§k‘1)(a) + By (0 )) —d,,

7j=1 k=1

r=11)w,

where

my = max fnagd 0=
Nd;j dij Bijr

Dz] = sz]r( dl‘r Z sz]rsx d T,
r=0 r=0 s=0

for 4,7 = 1(1)m,ng,; is the order of operator
D;;, fi(x), ki(x,t) are algebraic polynomials in z and
x, t, respectively, and A, a, b are given constants.
Lemma 3
Let y;(z) =7,,7%,i = 1(1)m then:

Hy: ( ) ylnT . 1 Hy'” _7 T S N

=1
Proof
One has:

Hyl ) =)yt @) [] vl (@),

i=2
if one sets:
v(@) =y o) [[ ol (@), ul@) = (o),
i=2

then, by using Theorem 3, the proof is completed.[]

Theorem 5
If k(x,t) = E?:O Z;:O kijxitj with k’ij € R,i,j =
1(1)m and y;(x) =7;," T, j = 1(1)m, then:

/kxtHy tydt =7, LfsT

where:
m n n . .
ps =yl T ) JTwl (Do) ki u@, —a)en
i=s+1 1=0;5=0

is a matrix associated uniquely with k(z, ).
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Proof

Using Theorem 2 with y(z) = Yo" yl'(z) =

gsnTys M) [T2eyy v (w)T and  setting 7.0 =

Ve Lyt p) [T o1 Ui (1), the proof is completed.O]
Let yjn(x) = ¥,,'%, j = 1(1)m be the Tau

approximations, then for i = 1(1)m,1 < x < b, one

has:

ZDijyjn(x)_ 1/ CCt Hyoém
j=1

j=1
- Zy]nTﬁUT,
j=1
where
— Hi' ]
His - Ais[/fs J =S,

fi(z) = Z] i fijxd = f; T%and s = min{1, -
which «a;s # 0.

In the same way as done in the previous section,
one has . 7, "E; = d" instead of Equation 2.
For determining the Tau approximations y;,(x) =
U, T,j = 1(1)m, Equations 17 and 2 are converted
into the system of nonlinear algebraic equations:

- ,m} for

_ - T

Uy G=Su , (19)
where yMT and ?MT are the same notations as used
in Equation 16 and:

Ei Qu Qa - Qm
Ey Q12 Qa2 - Qme

S Mm(n+1)><m(n+1)7

with Q;; = (II ”)(,H_l)(n na, +1)> Which is the restriction
of IL;; to its first (n+1) rows and (n—ng4, +1) columns.
It should be noted that, in Equation 18, the elements
of TI;; contain the unknown coefficients of y;,(7),j =
1(1)m. By solving the nonlinear system (Equation 19),
one finds the unknown coefficients of y;,(x) for j =
1(1)m.

NONLINEAR ODES

In this section, the nonlinear differential equation
f(x,y,y',y") = 0 is considered, where f is an analytic
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function in terms of y,y’ and y".
equation can be written as:

= pix)y
1=0

where r,n;,m;,¢; € N|{J{0} and p;(z) is an analytic
function in terms of z. Using Theorem 3 and Lemma 3,
one can write:

Therefore, the

flzy,y' y") (y")™i(y")" =0,

Zyn

g,y y")

Un' Z(y(u))"“l(y’(u))mi (" () pi(p) =07, (20)

where 07 = (0---,0)(1)(n+1). Equation 20 and the
supplementary Conditions 4 form a system of nonlinear
algebraic equations. Each equation of this system is a
polynomial, in terms of unknown elements of vector 7,,.

ESTIMATION OF ERROR FUNCTION

In this section, an error function is obtained for the
approximate solution of Equations 2 and 17. Let
ejin(x) = y;(x) — yjn(x), j = 1(1)m be called the error
function of Tau approximation y;,(z) to y;(x), where
y;(x), 7 = 1(1)m is the exact solution. Substituting
y;(x) = ejn(x) + yjn(z), 7 = 1(1)m in Equations 2
and 17, for z € [a,b], i = 1(1)m and s € N, they can
be written as:

ZDU(y]TL( )+6]n >\ / ]‘8 l‘t H y]n
=1 s
+ejn(D)™ (8)dt = fi(2), (21)
and:

Z ]< jkr(Yin(a) +ejn(a ))(k_l)
=1 k=1

+ Bujk (yn (b) + ejn(b))(k1)> = dr,
r=1(1)w.

By using (1) +¢50(0)” = Sy (5) w206k, 0

in Equation 21 and because of satisfying y;,(x) in
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Equation 2, for « € 5[a,b] and i = 1(1)m, one has:

m b
ZDijejn(x) - >\i/ ki(x,t)p; (esn(t)a e(s+1)n(t),
=1 a

emn(t)>dt: Hin(2),
and
m Td;
Z (AJ/’W (k= )( )+Bjkr - 1)(b)> 0,
71=1 k=1
r=1(1)w,
where
Hzn(x) ZZDUy]n )\ / k’ l‘t Hyoéu
j=1

are the perturbation terms associated with y;,(z),j =
1(1)m and:

QQi(esn(t)a e(s+1)n(t)7 e 7emn(t))
= Plis H (y5. () + 1ij)
Jj=s+1

m—2 r

+ 3 (v )

Pri(r+1) H y]n +901ij)>
Jj=r+2

H ya” Qplzma
with:
=30 (Yo
P1ij = P yjn ejn )
p=1
Jj=s(1)m, i =1(1)w.

One proceeds to find approximations e;, n(z) to the
error functions, e;,(x), for j = 1(1)m and N € N,
in the same way as done before for solving problem in
Equations 17 and 2. With problems in Equations 17
and 2, the Tau problem:

m b
Z Dijejn(x)_)‘i /ki(l’, t)QDz <esn(t)a e(s+1)n(t)a Tty
j=1 @

emn(t)> dt = —Hi (),
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was associated for ¢ = 1(1)m,a < x < b, with the
supplementary conditions:

J

iZ(A e (@) + Byrels (1)) = 0,
k=1

Jj=1
r=1(1)w,

which defines ej, n(z) for j = 1(1)m, where N is the
degree of error polynomial e;,(x).

NUMERICAL EXAMPLES

In this section, the efficiency of the presented method
is shown by some numerical results. Numerical results
for Examples 1 to 3, were reported in Tables 1 and 2.
In these tables, the terms y;Tau, y;Exact, e(y;) and
Est. e(y;) stand for Tau approximations of y;(z), exact
solution, y;(z), their absolute error and estimation
error of y; for ¢ = 1,2. It should be noted that, in
the following examples, N = n + 2 has been used.
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Example 1

Consider the following system of nonlinear FIDEs with
the exact solutions, y;(z) = x — 22 and yo(z) = 4 — 22.

1 (z) + 2%y (z) + 3y1(2) + yh(z) — dy2(z)
1
-/ (B0 + 200 ()t = (o),
y1(x) = 2y1 () + 5 (2) — 2y5(x) + y2(x)

- / (¢ — @)1 () + 58242 (1)dt = folz),

-1

with the supplementary conditions:

yl(_l)-l-yi(_]-):]-a 2/1(1)"‘?!1(1):—1,

yo(—1) +u5(=1) =4,  y2(1) +y3(1) = 0.

where fl( ) = =18 4+ 19z — 222 — 2z% and fo(z) =
—53-20 x+2x For the numerical results, see Table 1.

Table 1. Numerical results of Example 1.

T ‘ y1Tau ‘ yi1Exact ‘ e(y1) ‘ Este(y1) ‘ y2Tau ‘ y2Exact ‘ e(y2) ‘ Este(yz2)
n=2>5

-1.0 -2.00 -2.00 0 0 6.00 6.00 1.00e-09 1.03e-09
-0.8 -1.44 -1.44 1.00e-09 0.02e-08 5.60 5.60 1.00e-09 1.21e-09
-0.6 -0.96 -0.96 4.00e-10 4.07e-10 5.20 5.20 1.00e-09 1.07e-09
-0.4 -0.56 -0.56 1.00e-10 1.13e-10 4.80 4.80 0 0
-0.2 -0.24 -0.24 2.00e-10 2.01e-10 4.40 4.40 0 0
0.0 0.00 0.00 5.86e-10 5.89e-10 4.00 4.00 0 0
0.2 0.16 0.16 1.00e-09 1.02e-09 3.60 3.60 0 0
0.4 0.24 0.24 1.30e-09 1.33e-09 3.20 3.20 0 0
0.6 0.24 0.24 1.40e-09 1.46e-09 2.80 2.80 1.00e-09 1.02e-09
0.8 0.16 0.16 1.40e-09 1.44e-09 2.40 2.40 1.00e-09 1.04e-09
1.0 0.00 0 1.23e-09 1.29e-09 2.00 2.00 1.00e-09 1.26e-09
n =10

-1.0 -2.00 -2.00 0 0 6.00 6.00 1.00e-09 1.01e-09
-0.8 -1.44 -1.44 0 0 5.60 5.60 1.00e-09 1.03e-09
-0.6 -0.96 -0.96 2.00e-10 2.17e-10 5.20 5.20 1.00e-09 1.04e-09
-0.4 -0.56 -0.56 2.00e-10 2.10e-10 4.80 4.80 0 0
-0.2 -0.24 -0.24 2.00e-10 2.02e-10 4.40 4.40 0 0
0.0 0.00 0.00 1.52e-10 1.53e-10 4.00 4.00 0 0
0.2 0.16 0.16 2.00e-10 2.01e-10 3.60 3.60 0 0
0.4 0.24 0.24 2.00e-10 2.00e-10 3.20 3.20 0 0
0.6 0.24 0.24 2.00e-10 2.00e-10 2.80 2.80 1.00e-09 1.02e-09
0.8 0.16 0.16 1.00e-10 7.20e-10 2.40 2.40 1.00e-09 1.00e-09
1.0 0.00 0 1.31e-10 1.31e-10 2.00 2.00 1.00e-09 1.00e-09
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Example 2
Consider the nonlinear FIDEs system:

y1(2) + yn(z) — / Tty (1) + 23 (0)de

1 3
= —§+1$+3l‘3,

o=

Pyn(@) - yalo) = [ (030 — ()
0
1 2 6,
9 + 7 5
with exact solution y;(7) = x and y2(x) = 22. Table 2
presents the numerical results.

Example 3
Consider the nonlinear ODE:

xy"? —2yy' + 2 =0,

with the supplementary condition y(0) = % and exact

solution y(z) = 1(2? 4+ 1). For n = 4, the presented
method gives the system of nonlinear equations:

Yo =1/2

—2yoy1 =0

—dyoys —y7 = —1 )
—6yoys — 2y1y2 =0
—8yoys — 2y1y3 =0

which has the solution {yo = y2 = 0.5,y1 = y3 = ya =
0} and leads to y,(z) = 0.54+0.522 and this is the exact
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solution. For n = 7, one has the system of nonlinear
equations:

yo =1/2

—2yoy1 =0

—6yoys — 2y1y2 =0

—4dyoy. —yi = -1

—8Yoys — 2y1y3 =0

—10yoys — 2y1ys + 2y3y2 =0

—12y0y6 — 2415 + 35 + 4yay2 = 0
L —14y0y7 — 2y196 + 10y3y4 + 6ysy2 = 0

and its solution is {yg =y2 =0.5,y1 = y3 =ys = y5 =
ys = yr = 0}, which leads to the exact solution.

CONCLUSION

Nonlinear FIDEs systems are usually difficult to solve
analytically, therefore, one needs to find an approxi-
mate solution. It has been shown that the operational
approach to the Tau method is a suitable method of
high accuracy for these problems.

The advantages of this method are, as follows:

1. It solves Nonlinear FIDEs systems and nonlinear
ODEs without linearization;

2. It gives an error estimator as a polynomial and
improves accuracy by increasing n reasonably.

In Tables 1 and 2, one can see that the accuracy of the
Tau method at the end points of the intervals is less
than the others. The authors will try to improve this
in the future.

Table 2. Numerical results of Example 2.

T ‘ y1 Tau ‘ y1Exact ‘ e(y1) ‘ Este(y1) ‘ y2Tau ‘ y2Exact ‘ e(yz2) ‘ Este(y2)
n=2>5

0.0 0.00 0 2.170e-06 | 2.175e-06 0.00 0 2.170e-07 | 2.174e-07
0.1 0.10 0.10 1.797e-06 | 1.801e-06 0.01 0.01 3.765e-06 | 3.782e-06
0.2 0.20 0.20 3.352e-05 | 3.382e-05 0.04 0.04 1.192e-06 | 1.199e-06
0.3 0.30 0.30 4.990e-05 | 4.997e-05 0.09 0.09 3.512e-06 | 3.529e-06
0.4 0.39 0.40 6.818e-05 | 6.851e-05 0.16 0.16 7.563e-06 | 7.913e-06
0.5 0.49 0.50 8.945e-04 | 8.973e-04 0.25 0.25 1.432e-05 | 0.920e-04
n =10

0.0 0.00 0 2.170e-09 | 2.200e-09 0.00 0 2.170e-10 | 2.300e-10
0.1 0.10 0.10 2.101e-09 | 2.152e-09 0.01 0.01 7.494e-09 | 7.498e-09
0.2 0.20 0.20 6.997e-08 | 6.997e-08 0.04 0.04 2.294e-09 | 2.311e-09
0.3 0.30 0.30 1.828e-08 | 1.860e-08 0.09 0.09 4.275e-09 | 4.278e-09
0.4 0.40 0.40 4.837e-08 | 4.851e-08 0.16 0.16 5.634e-09 | 5.642e-09
0.5 0.50 0.50 7.004e-07 | 7.302e-07 0.25 0.25 5.808e-08 | 7.116e-08
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