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Numerical Solution of the System of

Nonlinear Fredholm Integro-Di�erential

Equations by the Operational Tau

Method with an Error Estimation

G. Ebadi�, M.Y. Rahimi1 and S. Shahmorad1

In this paper, the operational approach to the Tau method is used for the numerical solution

of a nonlinear Fredholm integro-di�erential equations system and nonlinear ODEs with initial or

boundary conditions without linearizing. An e�cient error estimation of the approximate solution

is also introduced. Some examples are given to clarify the e�ciency and high accuracy of the

method.

INTRODUCTION

In recent years, the operational approach to the Tau
method has been developed to cover the numerical
solution of ODEs, PDEs and linear integro-di�erential
equations [1-10]. Liu and Pan presented an extension
of the operational approach to the Tau method for
the numerical solution of a linear ODEs system with
polynomial or rational polynomial coe�cients, together
with initial or boundary conditions [11]. Ortiz et
al. have solved nonlinear ODEs and PDEs using
an operational approach to the Tau method, through
an iteration process de�ned by a sequence of linear
problems with variable coe�cients [1,4,5,8].

In this paper, Ortiz and Samara's operational
approach to the Tau method is considered for the
numerical solution of nonlinear ODEs and nonlinear
Fredholm integro-di�erential equations system without
linearizing.

Consider the following nonlinear Fredholm
integro-di�erential equations system:

mX
j=1

Dijyj(x) � �i

Z b

a

ki(x; t)'i(y1(t); � � � ; yn(t))dt

= fi(x);

i = 1(1)m; x 2 [a; b]; (1)
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with the supplementary conditions:

mX
j=1

ndjX
k=1

(Ajkry
(k�1)
j (a) +Bjkry

(k�1)
j (b)) = dr;

r = 1(1)!; (2)

where:

[ndj = max
1�i�m

fndijg; ! =

mX
j=1

ndj ];

and:2
4Dij =

ndijX
r=0

pijr(x)
dr

dxr
=

ndijX
r=0

�ijrX
s=0

pijrsx
s dr

dxr

3
5 :

For i = 1(1)m, fi(x) and ki(x; t) are polynomials in
x and in x, t, respectively and 'i(y1(t); � � � ; yn(t)) are
polynomials in y1(t); � � � ; yn(t), otherwise, they can be
approximated by polynomials with suitable methods
and �ijr is degree of pijr(x).

In this paper, one assumes that, for i, j =
1(1)m, �ij 2 N, 'i(y1(t); � � � ; yn(t)) =

Qm

j=1 y
�ij
j (t),

otherwise, it can be written as a sum of this form by a
suitable method, for example, Taylor expansion.

The organization of this paper is as follows:
First, the operational approach to the Tau method for
the numerical solution of Fredholm Integro-Di�erential
Equations (FIDEs) is explained. Then, the numerical
solution of a linear FIDEs system by the Tau method
is reviewed, and the operational approach to the Tau
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method is applied to a nonlinear FIDEs system. After
that, the nonlinear ODEs are solved and an error
function is introduced. Some numerical results are
given, also, to clarify the accuracy of the method and,
�nally, the contains conclusions are presented. Note
that, the numerical results are computed by Maple
programming.

Remark 1

For i = 1(1)m, the following notations have been used
throughout this paper:

x = (1; x; x2; � � � )T ;

xa = (1; a; a2; � � � )T ;

xb = (1; b; b2; � � � )T ;

e1 = (1; 0; 0; � � � )T ;

yin = (yi0; yi1; � � � ; yin; 0; � � � )
T ;

f i = (fi0; fi1; � � � ; finfi ; 0; � � � )
T ;

f = (f0; f1; � � � ; fnf ; 0; � � � )
T ;

yn = (y0; y1; � � � ; yn; 0; � � � )
T :

LINEAR AND NONLINEAR FIDES

The operational approach to the Tau method describes
the reduction of given linear and nonlinear integro-
di�erential equations (IDEs) to a linear and nonlinear
algebraic equations system, based on three simple
matrices:

� =

0
BBBBB@

0 1 0 0
0 1 0

0 1
...

0
: : :

1
CCCCCA ;

� =

0
BBBBB@

0
1 0

0 2 0
...

0 0 3 0
: : :

1
CCCCCA ;

� =

0
BBBBB@

0 1 0 0
0 1

2 0

0 1
3

...
0

: : :

1
CCCCCA :

Linear FIDEs

Consider the linear FIDEs (the following result is
quoted from [1,9,11]):

Dy(x)� �

Z b

a

k(x; t)y(t)dt = f(x); x 2 [a; b]; (3)

with the supplementary conditions:

ndX
k=1

(Akjy
(k�1)(a) +Bkjy

(k�1)(b)
�
= dj ;

j = 1(1)nd; (4)

where:

D =

ndX
i=0

pi(x)
di

dxi
=

ndX
i=0

�iX
j=0

pijx
j d

i

dxi
;

is the di�erential operator of order nd.
Let yn(x) =

Pn

j=0 yjx
j = yn

Tx, then:

xryn(x) =
nX
j=0

yjx
j+r = yn

T�rx;

and:

y(r)n (x) =
dr

dxr
yn(x) = yn

T �rx: (5)

Theorem 1

Let yn(x) = yn
Tx 2 Cnd [a; b]; (the space of nd-times

continuously di�erentiable functions on [a; b]) and:

D =

ndX
i=0

pi(x)
di

dxi
=

ndX
i=0

�iX
j=0

pijx
j d

i

dxi
;

be a linear di�erential operator of order nd with
polynomial coe�cients, then;

Dyn(x) = yn
T�x; (6)

where:

� =

ndX
i=0

�ipi(�) =

ndX
i=0

�iX
j=0

pij�
i�j :

Theorem 2

If k(x; t) =
Pn

i=0

Pn

j=0 kijx
itj , kij 2 R and y(x) =

yn
Tx, then:Z b

a

k(x; t)y(t)dt = yn
T �fx; (7)

where �f =
Pn

i=0

Pn

j=0 kij �
ij

f is a matrix associated

uniquely with k(x; t) and constants a; b, such that, �ijf =

�j�(xb � xa)e1
T�i.
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Lemma 1

If yn(x) = yn
Tx, then,

y(k)n (a) = yn
T �kxa;

y(k)n (b) = yn
T �kxb: (8)

Proof

By using Equation 5 one has:

y(k)n (a) = y(k)n (x)jx=a = yn
T �kxjx=a = yn

T �kxa;

and:

y(k)n (b) = y(k)n (x)jx=b = yn
T �kxjx=b = yn

T �kxb;

so, the proof is completed.�
Applying Lemma 1 for supplementary Condi-

tions 4, one has:

ndX
k=1

�
Akjy

(k�1)(a) +Bkjy
(k�1)(b)

�

=

ndX
k=1

�
Akjyn

T �(k�1)xa +Bkjyn
T �(k�1)xb

�

= yn
T

ndX
k=1

�
Akj�

(k�1)xa +Bkj�
(k�1)xb

�
:

Let:

Ej =

ndX
k=1

�
Akj�

(k�1)xa + Bkj�
(k�1)xb

�
;

thus, Ej 2 M(n+1)�(1) and Equation 4 is converted

into yn
TEj = dj , j = 1(1)nd.

Now, by using Equations 6 through 8, the integro-
di�erential Equation 3 and supplementary Conditions 4
reduce to the following algebraic equations system:

(
yn

T�f = f
T

yn
TE = d

T (9)

with �f = �� ��f and:

E = (E1; E2; � � � ; End) 2M(n+1)�(nd): (10)

By setting G = (E;�f ) and g
T = (d

T
,f
T
), Equation 9

can be written as yn
TG = gT . To obtain yn(x), the

system of equations yn
TGn = gn

T must be solved for
the unknown coe�cients, y0; y1; � � � ; yn, where Gn is
the matrix de�ned by considering the �rst (n+1) rows
and columns of G; and gn is the vector de�ned by
considering the �rst (n+ 1) elements of the vector, g.

Nonlinear FIDEs

Consider the nonlinear Fredholm integro-di�erential
equation:

Dy(x)� �

Z b

a

k(x; t)'(y(t))dt = f(x); x 2 [a; b];
(11)

with the supplementary Conditions 4, where D is
de�ned as before and '(y(t)) is a polynomial in y(t),
otherwise, it is approximated by a polynomial with
suitable methods. In this paper, '(y(t)) = ym(t);m 2
N, is considered, since other types of '(y(t)) can be
reduced to the sum of this form.

Theorem 3

If u(x) =
Pm

j=0 ujx
j = uTx and v(x) =

Pm

i=0 vix
i =

vTx, then, u(x)v(x) = uT v(�)x, where v(�) =Pn

i=0 vi�
i.

Proof

See [9].�

Lemma 2

Let y(x) = yn
Tx, then, ym(x) = yn

T ym�1(�)x.

Proof

Let u(x) = yn
Tx and v(x) = ym�1(x) and Theorem 3

be applied.�

Theorem 4

If yn(x) =
Pn

i=0 yinx
i = yn

Tx and k(x; t) =Pn

i=0

Pn

j=0 kijx
itj , then,

Z b

a

k(x; t)ymn (t)dt = yn
T �fmx; (12)

where �fm = ym�1n (�)�f and �f is the same matrix as
introduced in Theorem 2.

Proof

Use Lemma 2 and Theorem 2 for y(x) =
yn

T ym�1(�)x. �
If Equations 6, 10 and 12 are used for:

Dy(x)� �

Z b

a

k(x; t)ym(t)dt = f(x); x 2 [a; b];

m 2 N;

with supplementary Conditions 4, the following nonlin-
ear system will be obtained:(

yn
T�f = f

T
;

yn
TE = d

T
;

(13)

where �f = � � ��fm and �fm is the same matrix
as introduced in Theorem 4 and setting G = (E;�f )
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and gT = (d
T
; f

T
), one has yTG = gT instead of

Equation 13, which is a nonlinear algebraic equations
system, because G contains unknown elements of the
vector yn. To �nd yn(x), the nonlinear equations
system yn

TGn = gn
T must be solved, where Gn and gn

are de�ned by considering the (n+1)� (n+1) leading
submatrix of G and the �rst (n + 1) elements of the
vector g, respectively.

LINEAR FIDES SYSTEM

Consider the system of linear FIDEs:

mX
j=1

 
Dijyj(x)� �ij

Z b

a

kij(x; t)yj(t)dt

!
= fi(x);

x 2 [a; b]; i = 1(1)m; (14)

with the supplementary Conditions 2, where Dij , i; j =
1(1)m, are the same as that in Equation 1, fi(x) =Pnfi

j=0 fijx
j = f i

T
x. Now, applying Equations 6

through 8, for Equations 14 and 2, they are converted
into a system of linear algebraic equations. Let
yjn(x) = yjn

Tx j = 1(1)m, be the Tau approximates
and let �ij , i; j = 1(1)m denote the matrices associated
with Dij , i; j = 1(1)m by Theorem 1 and �fij , i; j =
1(1)m be the matrices associated with kij(x; t); i; j =
1(1)m by Theorem 2. Then, one has:

mX
j=1

 
Dijyjn(x)� �ij

Z b

a

kij(x; t)yjn(t)dt

!

=

mX
j=1

�
yjn

T�ijx� �ijyjn
T �fijx

�

=
mX
j=1

yjn
T
�
�ij � �ij �fij

�
x

=

mX
j=1

yjn
T�ijx; i = 1(1)m;

where:

�ij = �ij � �ij �fij : (15)

Applying Lemma 1 to supplementary conditions:

mX
j=1

ndjX
k=1

�
Ajkry

(k�1)
j (a) +Bjkry

(k�1)
j (b)

�
= dr;

r = 1(1)!;

yields:

mX
j=1

ndjX
k=1

�
Ajkryjn

T �k�1xa +Bjkryjn
T �k�1xb

�

=

mX
j=1

yjn
T

ndjX
k=1

�
Ajkr�

k�1xa+Bjkr�
k�1xb

�
=dr:

Assume that:

ndjX
k=1

�
Ajkr�

k�1xa+Bjkr�
k�1xb

�
=Erj 2M(n+1)�(1);

then, one has:

mX
j=1

yjn
TErj = dr; r = 1(1)!;

and:

mX
j=1

yjn
TEj = d

T
;

with:

Ej = (E1j ; E2j ; E2j ; � � � ; E!j);

and:

d
T
= (d1; d2; d3; � � � ; d!):

Let yM
T = (y1n

T ; y2n
T ; y3n

T ; � � � ; ymn
T ) 2 RM , M =

m(n + 1), where yjn
T , j = 1(1)m are the coe�cients

vectors of yjn(x) in a standard basis. The problem
of determining yM

T can be formulated as the linear
equations system [11]:

yM
TG = SM

T
; (16)

with:

G =

0
BBB@
E1 Q11 Q21 � � � Qm1

E2 Q12 Q22 � � � Qm2

...
...

...
...

...
Em Q1m Q2m � � � Qmm

1
CCCA

2Mm(n+1)�m(n+1);

where Qij = (�ij)(n+1)(n�ndi+1) is the restriction of

�ij (as de�ned in Equation 15) to its �rst (n+1) rows
and (n� ndi + 1) columns and:

SM
T
= (d

T
; f1nd1

T
; f2nd2

T
; � � � ; fmndm

T
) 2 RM ;

where f indi
T

is the restriction of f i
T

to its �rst

(n � ndi + 1) components. By solving Equation 16,
one obtains yjn(x) for j = 1(1)m.
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NONLINEAR FIDES SYSTEM

Consider the nonlinear FIDEs system:

mX
j=1

Dijyj(x) � �i

Z b

a

ki(x; t)

mY
j=1

y
�ij
j (t)dt = fi(x);

x 2 [a; b]; i = 1(1)m; (17)

with the supplementary conditions:

mX
j=1

ndjX
k=1

�
Ajkry

(k�1)
j (a) +Bjkry

(k�1)
j (b)

�
= dr;

r = 1(1)!;

where:

ndj = max
1�i�m

fndijg; ! =

mX
j=1

ndj ;

Dij =

ndijX
r=0

pijr(x)
dr

dxr
=

ndijX
r=0

�ijrX
s=0

pijrsx
s dr

dxr
;

for i; j = 1(1)m;ndij is the order of operator
Dij ; fi(x); ki(x; t) are algebraic polynomials in x and
x; t, respectively, and �; a; b are given constants.

Lemma 3

Let yi(x) = yin
Tx; i = 1(1)m then:

mY
i=1

yrii (x) = y1n
T yr1�11 (�)

mY
i=2

yrii (�)x; ri 2 N:

Proof

One has:
mY
i=1

yrii (x) = y1(x)y
r1�1
1 (x)

mY
i=2

yrii (x);

if one sets:

v(x) = yr1�11 (x)

mY
i=2

yrii (x); u(x) = y1(x);

then, by using Theorem 3, the proof is completed.�

Theorem 5

If k(x; t) =
Pn

i=0

Pn

j=0 kijx
itj with kij 2 R; i; j =

1(1)m and yj(x) = yjn
Tx; j = 1(1)m, then:Z b

a

k(x; t)

mY
i=s

yrii (t)dt = ysn
T �fsx;

where:

�fs=yrs�1s (�)
mY

i=s+1

yrii (�)
nX
i=0

nX
j=0

kij�
j�(xb � xa)e1

T�i;

is a matrix associated uniquely with k(x; t).

Proof

Using Theorem 2 with y(x) =
Pm

i=s y
ri
i (x) =

ysn
T yrs�1s (�)

Qm

i=s+1 y
ri
i (�)x and setting yn

T =

ysn
T yrs�1s (�)

Qm

i=s+1 y
ri
i (�), the proof is completed.�

Let yjn(x) = yjn
Tx, j = 1(1)m be the Tau

approximations, then for i = 1(1)m; 1 � x � b, one
has:

mX
j=1

Dijyjn(x)� �i

Z b

a

ki(x; t)

mY
r=s

y�irrn (t)dt

=

mX
j=1

yjn
T�ijx� �iysn

T �fsx

=

mX
j=1

yjn
T�ijx;

where:

�ij =

(
�ij j 6= s

�is � �is�fs j = s;
(18)

fi(x) =
Pnfi

j=0 fijx
j = f i

T
x and s = minf1; � � � ;mg for

which �is 6= 0.
In the same way as done in the previous section,

one has
Pm

j=1 yjn
TEj = d

T
instead of Equation 2.

For determining the Tau approximations yjn(x) =
yjn

Tx; j = 1(1)m, Equations 17 and 2 are converted
into the system of nonlinear algebraic equations:

yM
TG = SM

T
; (19)

where yM
T and SM

T
are the same notations as used

in Equation 16 and:

G =

0
BBB@
E1 Q11 Q21 � � � Qm1

E2 Q12 Q22 � � � Qm2

...
...

...
...

...
Em Q1m Q2m � � � Qmm

1
CCCA

2Mm(n+1)�m(n+1);

with Qij = (�ij)(n+1)(n�ndi+1), which is the restriction

of �ij to its �rst (n+1) rows and (n�ndi+1) columns.
It should be noted that, in Equation 18, the elements
of �is contain the unknown coe�cients of yjn(x); j =
1(1)m. By solving the nonlinear system (Equation 19),
one �nds the unknown coe�cients of yjn(x) for j =
1(1)m.

NONLINEAR ODES

In this section, the nonlinear di�erential equation
f(x; y; y0; y00) = 0 is considered, where f is an analytic
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function in terms of y; y0 and y00. Therefore, the
equation can be written as:

f(x; y; y0; y00) =

rX
i=0

pi(x)y
ni (y0)mi(y00)qi = 0;

where r; ni;mi; qi 2 N
S
f0g and pi(x) is an analytic

function in terms of x. Using Theorem 3 and Lemma 3,
one can write:

f(x; y; y0; y00) =

rX
i=0

yn
T (y(�))ni�1(y0(�))mi

� (y00(�))qipi(�)x = 0Tx;

or:

yn
T

rX
i=0

(y(�))ni�1(y0(�))mi(y00(�))qipi(�) = 0T ; (20)

where 0T = (0 � � � ; 0)(1)(n+1). Equation 20 and the
supplementary Conditions 4 form a system of nonlinear
algebraic equations. Each equation of this system is a
polynomial, in terms of unknown elements of vector yn.

ESTIMATION OF ERROR FUNCTION

In this section, an error function is obtained for the
approximate solution of Equations 2 and 17. Let
ejn(x) = yj(x)� yjn(x), j = 1(1)m be called the error
function of Tau approximation yjn(x) to yj(x), where
yj(x), j = 1(1)m is the exact solution. Substituting
yj(x) = ejn(x) + yjn(x), j = 1(1)m in Equations 2
and 17, for x 2 [a; b], i = 1(1)m and s 2 N, they can
be written as:

mX
j=1

Dij(yjn(x) + ejn(x))� �i

Z b

a

ki(x; t)

mY
j=s

(yjn(t)

+ ejn(t))
�ij (t)dt = fi(x); (21)

and:

mX
j=1

ndjX
k=1

 
Ajkr(yjn(a) + ejn(a))

(k�1)

+Brjk (yjn(b) + ejn(b))
(k�1)

!
= dr;

r = 1(1)!:

By using (yjn(t) + ejn(t))
p =

Pp

k=0

�
k
p

�
yp�kjn (t)ekjn(t)

in Equation 21 and because of satisfying yjn(x) in

Equation 2, for x 2 5[a; b] and i = 1(1)m, one has:

mX
j=1

Dijejn(x)� �i

Z b

a

ki(x; t)'i

�
esn(t); e(s+1)n(t);

� � � ; emn(t)
�
dt = �Hin(x);

and:

mX
j=1

ndjX
k=1

�
Ajkre

(k�1)(a) +Bjkre
(k�1)
jn (b)

�
= 0;

r = 1(1)!;

where:

Hin(x) =

mX
j=1

Dijyjn(x) � �i

Z b

a

ki(x; t)

mY
j=s

y
�ij
jn (t)dt

� fi(x); i = 1(1)m;

are the perturbation terms associated with yjn(x); j =
1(1)m and:

'i(esn(t); e(s+1)n(t); � � � ; emn(t))

= '1is

mY
j=s+1

(y
�ij
jn (t) + '1ij)

+

m�2X
r=s

�� rY
j=s

y
�ij
jn (t)

�
'1i(r+1)

mY
j=r+2

(y
�ij
jn (t) + '1ij)

�

+
�m�1Y
j=s

y
�ij
jn (t)

�
'1im;

with:

'1ij =

�ijX
p=1

�
�ij
p

�
y
�ij�p

jn (t)epjn(t);

j = s(1)m; i = 1(1)!:

One proceeds to �nd approximations ejn;N (x) to the
error functions, ejn(x), for j = 1(1)m and N 2 N,
in the same way as done before for solving problem in
Equations 17 and 2. With problems in Equations 17
and 2, the Tau problem:

mX
j=1

Dijejn(x)��i

Z b

a

ki(x; t)'i

�
esn(t); e(s+1)n(t); � � � ;

emn(t)

�
dt = �Hin(x);
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was associated for i = 1(1)m; a � x � b; with the
supplementary conditions:

mX
j=1

ndjX
k=1

�
Ajkre

(k�1)(a) +Bjkre
(k�1)
jn (b)

�
= 0;

r = 1(1)!;

which de�nes ejn;N (x) for j = 1(1)m, where N is the
degree of error polynomial ejn(x).

NUMERICAL EXAMPLES

In this section, the e�ciency of the presented method
is shown by some numerical results. Numerical results
for Examples 1 to 3, were reported in Tables 1 and 2.
In these tables, the terms yiTau, yiExact, e(yi) and
Est. e(yi) stand for Tau approximations of yi(x), exact
solution, yi(x), their absolute error and estimation
error of yi for i = 1; 2: It should be noted that, in
the following examples, N = n+ 2 has been used.

Example 1

Consider the following system of nonlinear FIDEs with
the exact solutions, y1(x) = x�x2 and y2(x) = 4�2x.

y001 (x) + x2y01(x) + 3y1(x) + y02(x) � 4y2(x)

�

Z 1

�1

(3y21(t) + 2xy1(t)y2(t))dt = f1(x);

y01(x)� 2y1(x) + y002 (x) � 2y02(x) + y2(x)

�

Z 1

�1

((t� x)y1(t) + 5t2y22(t))dt = f2(x);

with the supplementary conditions:

y1(�1) + y01(�1) = 1; y1(1) + y01(1) = �1;

y2(�1) + y02(�1) = 4; y2(1) + y02(1) = 0:

where f1(x) = �116
5 + 19x � 2x2 � 2x3 and f2(x) =

�53� 20
3 x+2x2. For the numerical results, see Table 1.

Table 1. Numerical results of Example 1.

x y1Tau y1Exact e(y1) Este(y1) y2Tau y2Exact e(y2) Este(y2)

n = 5

-1.0 -2.00 -2.00 0 0 6.00 6.00 1.00e-09 1.03e-09

-0.8 -1.44 -1.44 1.00e-09 0.02e-08 5.60 5.60 1.00e-09 1.21e-09

-0.6 -0.96 -0.96 4.00e-10 4.07e-10 5.20 5.20 1.00e-09 1.07e-09

-0.4 -0.56 -0.56 1.00e-10 1.13e-10 4.80 4.80 0 0

-0.2 -0.24 -0.24 2.00e-10 2.01e-10 4.40 4.40 0 0

0.0 0.00 0.00 5.86e-10 5.89e-10 4.00 4.00 0 0

0.2 0.16 0.16 1.00e-09 1.02e-09 3.60 3.60 0 0

0.4 0.24 0.24 1.30e-09 1.33e-09 3.20 3.20 0 0

0.6 0.24 0.24 1.40e-09 1.46e-09 2.80 2.80 1.00e-09 1.02e-09

0.8 0.16 0.16 1.40e-09 1.44e-09 2.40 2.40 1.00e-09 1.04e-09

1.0 0.00 0 1.23e-09 1.29e-09 2.00 2.00 1.00e-09 1.26e-09

n = 10

-1.0 -2.00 -2.00 0 0 6.00 6.00 1.00e-09 1.01e-09

-0.8 -1.44 -1.44 0 0 5.60 5.60 1.00e-09 1.03e-09

-0.6 -0.96 -0.96 2.00e-10 2.17e-10 5.20 5.20 1.00e-09 1.04e-09

-0.4 -0.56 -0.56 2.00e-10 2.10e-10 4.80 4.80 0 0

-0.2 -0.24 -0.24 2.00e-10 2.02e-10 4.40 4.40 0 0

0.0 0.00 0.00 1.52e-10 1.53e-10 4.00 4.00 0 0

0.2 0.16 0.16 2.00e-10 2.01e-10 3.60 3.60 0 0

0.4 0.24 0.24 2.00e-10 2.00e-10 3.20 3.20 0 0

0.6 0.24 0.24 2.00e-10 2.00e-10 2.80 2.80 1.00e-09 1.02e-09

0.8 0.16 0.16 1.00e-10 7.20e-10 2.40 2.40 1.00e-09 1.00e-09

1.0 0.00 0 1.31e-10 1.31e-10 2.00 2.00 1.00e-09 1.00e-09
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Example 2

Consider the nonlinear FIDEs system:

y1(x) + 3xy2(x)�

Z 1

2

0

(xty21(t) + t2y32(t))dt

= �
1

9
+

3

4
x+ 3x3;

x2y1(x) � y2(x)�

Z 1

2

0

(ty31(t)� xy2(t))
2dt

= �
1

9
+

2

7
x�

6

5
x2 + x3;

with exact solution y1(x) = x and y2(x) = x2. Table 2
presents the numerical results.

Example 3

Consider the nonlinear ODE:

xy02 � 2yy0 + x = 0;

with the supplementary condition y(0) = 1
2 and exact

solution y(x) = 1
2 (x

2 + 1). For n = 4, the presented
method gives the system of nonlinear equations:8>>>>>><
>>>>>>:

y0 = 1=2

�2y0y1 = 0

�4y0y2 � y21 = �1

�6y0y3 � 2y1y2 = 0

�8y0y4 � 2y1y3 = 0

;

which has the solution fy0 = y2 = 0:5; y1 = y3 = y4 =
0g and leads to yn(x) = 0:5+0:5x2 and this is the exact

solution. For n = 7, one has the system of nonlinear
equations:8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

y0 = 1=2

�2y0y1 = 0

�6y0y3 � 2y1y2 = 0

�4y0y2 � y21 = �1

�8y0y4 � 2y1y3 = 0

�10y0y5 � 2y1y4 + 2y3y2 = 0

�12y0y6 � 2y1y5 + 3y23 + 4y4y2 = 0

�14y0y7 � 2y1y6 + 10y3y4 + 6y5y2 = 0

and its solution is fy0 = y2 = 0:5; y1 = y3 = y4 = y5 =
y6 = y7 = 0g, which leads to the exact solution.

CONCLUSION

Nonlinear FIDEs systems are usually di�cult to solve
analytically, therefore, one needs to �nd an approxi-
mate solution. It has been shown that the operational
approach to the Tau method is a suitable method of
high accuracy for these problems.

The advantages of this method are, as follows:

1. It solves Nonlinear FIDEs systems and nonlinear
ODEs without linearization;

2. It gives an error estimator as a polynomial and
improves accuracy by increasing n reasonably.

In Tables 1 and 2, one can see that the accuracy of the
Tau method at the end points of the intervals is less
than the others. The authors will try to improve this
in the future.

Table 2. Numerical results of Example 2.

x y1Tau y1Exact e(y1) Este(y1) y2Tau y2Exact e(y2) Este(y2)

n = 5

0.0 0.00 0 2.170e-06 2.175e-06 0.00 0 2.170e-07 2.174e-07

0.1 0.10 0.10 1.797e-06 1.801e-06 0.01 0.01 3.765e-06 3.782e-06

0.2 0.20 0.20 3.352e-05 3.382e-05 0.04 0.04 1.192e-06 1.199e-06

0.3 0.30 0.30 4.990e-05 4.997e-05 0.09 0.09 3.512e-06 3.529e-06

0.4 0.39 0.40 6.818e-05 6.851e-05 0.16 0.16 7.563e-06 7.913e-06

0.5 0.49 0.50 8.945e-04 8.973e-04 0.25 0.25 1.432e-05 0.920e-04

n = 10

0.0 0.00 0 2.170e-09 2.200e-09 0.00 0 2.170e-10 2.300e-10

0.1 0.10 0.10 2.101e-09 2.152e-09 0.01 0.01 7.494e-09 7.498e-09

0.2 0.20 0.20 6.997e-08 6.997e-08 0.04 0.04 2.294e-09 2.311e-09

0.3 0.30 0.30 1.828e-08 1.860e-08 0.09 0.09 4.275e-09 4.278e-09

0.4 0.40 0.40 4.837e-08 4.851e-08 0.16 0.16 5.634e-09 5.642e-09

0.5 0.50 0.50 7.004e-07 7.302e-07 0.25 0.25 5.808e-08 7.116e-08
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