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First Order Perturbation Solution for

Axial Vibration of Tension Leg Platforms

A.A. Golafshani1, M.R. Tabeshpour� and M.S. Seif2

The dynamic response of the leg (tether) of a Tension Leg Platform (TLP), subjected to axial load
at the top of the leg, is presented. The structural model is very simple, but several complicated
factors, such as foundation e�ect, buoyancy and simulated ocean wave load, are considered. As
an application, the e�ect of added mass uctuation on the dynamic response of the leg subjected
to such a load is presented. This e�ect is important in the fatigue life study of tethers. A �rst
order perturbation method is used, in order to formulate and solve the problem. The di�erential
equation is solved by means of non-harmonic Fourier expansion, in terms of eigenfunctions
obtained from a non-regular Sturm-Liouville system.

INTRODUCTION

A Tension Leg Platform (TLP) is a suitable structure
for oil exploitation in deep water. Many studies have
been carried out to understand the structural behavior
of a TLP and to determine the e�ect of several param-
eters on the dynamic response and average life time of
the structure [1-4]. Angelides et al. (1982) considered
the inuence of hull geometry, force coe�cients, water
depth, pre-tension and tendon sti�ness on the dynamic
responses of the TLP. The oating part of the TLP was
modeled as a rigid body with six degrees of freedom and
the tendons were represented by linear axial springs [5].
Morgan and Malaeb (1983) investigated the dynamic
response of TLPs using a deterministic analysis. The
analysis was based on coupled nonlinear sti�ness coef-
�cients, closed-form inertia and drag-forcing functions,
using the Morison equation [6].

A comprehensive study on the results of tension
leg platform responses in random seas, considering all
structural and excitation nonlinearities, is presented by
Tabeshpour et al. [7]. This kind of interpretation of
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the results is necessary for the optimum design of a
TLP.

There are several issues in design optimization
of a TLP. The geometrical optimum design of a TLP
hull is presented by using a genetic algorithm method
under regular sea waves [8]. Such a method can
be used to extend the structural optimization under
random wave loads. The optimum pretension of
tendons can be determined, based on minimum down
time or maximum fatigue life. In minimum down
time, the nonlinear time histories of deformations and
accelerations are investigated and, in a fatigue study,
a �rst order reliability method is used to estimate the
lifetime of the tendons.

Work on closed form solutions of a TLP can
be very useful, in order to have a deep view of the
structural behavior, due to high nonlinearities in the
real structure. A continuous model for the vertical
motion of a TLP, considering the e�ect of a contin-
uous foundation, has been reported [9]. The exact
solution of the heave response of the structure can
be useful, both in the initial design of the tendons
and in the veri�cation of the complete coupled model
responses. Added mass uctuation is an important
point, because of its direct e�ect on the lifetime of
the tendons when fatigue analyses are carried out.
Fluctuating added mass has a direct relation with the
heave response of the hull structure. The e�ect of
added mass uctuation on the heave response of a
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tension leg platform has been investigated, using a
perturbation method both for discrete and continuous
models [10,11]. Also, the analytical solution derived
can be used to verify the numerical results of the
complete model.

Another important problem is the investigation of
the e�ects of radiation and scattering on the hull and
tendon responses. An analytical solution for the surge
motion of a TLP was proposed and demonstrated [12-
14], in which the surge motion of a platform with
pre-tensioned tethers was calculated. In that study,
however, the elasticity of tethers was only implied
and the motion of tethers was also simpli�ed as an
on-line rigid-body motion proportional to the top
platform. Thus, both the material property and the
mechanical behavior for the tether incorporated in the
tension leg platform system were ignored. When this
simpli�cation was applied, no matter what material
was used or what dimension of tethers, the dynamic
response of the platform would remain the same, in
terms of the vibration mode, periods and the vibration
amplitude. An important point in that study was the
linearization of the surge motion. But, it is obvious
that the structural behavior in the surge motion is
highly nonlinear, because of the large deformation
of a TLP in the surge motion degree of freedom
(geometric nonlinearity) and nonlinear drag forces of
the Morison equation. Therefore, the obtained solution
is not true for the actual engineering application. For
heave degree of freedom, the structural behavior is
linear, because there is no geometric nonlinearity in the
heave motion degree of freedom and the drag forces
on the legs have no vertical component. Similarly,
an analytical heave vibration of a TLP with radia-
tion and scattering e�ects for damped systems has
been presented [15]. A similar method is presented
for the hydrodynamic pitch response of the struc-
ture [16].

The most important point in the design of a
TLP is the pretension of the legs. The pretension
causes the platform to behave like a sti� structure,
with respect to the vertical degrees of freedom (heave,
pitch and roll), whereas, with respect to the horizontal
degrees of freedom (surge, sway and yaw), it behaves
as a oating structure. Among the various degrees
of freedom, vertical motion (heave) is very important,
because of its direct e�ect on stress uctuation, which
may lead to the fatigue and fracture of the tethers.
Therefore, conceptual studies for understanding the
dynamic vertical response of a TLP can be useful for
designers. Rossit et al. [17] presented an analytical
solution for the dynamic response of the leg of a TLP
subjected to a suddenly applied axial load at one end.
The applied load was constant and the e�ect of the
buoyancy was not considered.

The aim of this paper is to �nd a solution to the

mentioned problem, using two models. The structural
models are very simple, but several complicated factors,
such as foundation, buoyancy and simulated ocean
wave loading, are considered. In the �rst model, the
foundation is assumed to be rigid, but, in the second
model, it is assumed that the foundation is embedded
in the ocean bottom, which acts as a Winkler-type
elastic foundation. Buoyancy is the force needed to
apply a unit displacement to the body in the water.
Therefore, it is modeled as a spring at the top of the leg.
A concentrated force is applied at the top of the leg, as
the simulated load of an ocean wave. The problem is
solved by means of a non-harmonic Fourier expansion,
in terms of eigenfunctions obtained from a non-regular
Sturm-Liouville system [18,19].

ANALYTICAL SOLUTION OF THE MODEL

The structural model of the system is shown in Fig-
ure 1. The behavior of the system is described by the
following di�erential equation:

�
[u(y)� u(y � lf )]EfAf + [u(y � lf )

� u(y � l)]EtAt

�@2v
@y2

+ Fh(t)�(y � l)

=
�
[u(y)� u(y � lf )]�fAf + [u(y � lf )

Figure 1. Dynamic structural model.
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� u (y � l)] �tAt +Mf� (y � lf )

+M� (y � l)
� @2v

@t2
; (1)

where u is the step function, v is the longitudinal
deformation, E is the Young modulus of the tether
material, At and Af are the cross section areas of the
tether and foundation, respectively, �t and �f are the
density of the tether and foundation materials, respec-
tively, lt and lf are the length of tether and foundation,
respectively, and � denotes the Dirac delta function.
The applied vertical load subjected to the mass, m, is
the simulated wave load, Fh(t) =

PN

j=1 Fj sin(
jt +
�j), obtained from the wave spectrum.

The system is linear, therefore, one can �nd
the solution of Equation 1 using a single Fourier
component, Fh(t) = F0 sin(
t), and, then, determine
the overall response of the system by the superposition
of responses to single Fourier components. The initial
conditions are, as follows:

v(y; 0) = 0;

@v

@t
(y; 0) = 0: (2)

And the mass distribution functions are de�ned, as
follows:

m(y) = [u(y)� u(y � lf )]�fAf

+ [u(y � lf )� u(y � l)]�tAt +Mf�(y � lf )

+M�(y � l): (3)

In the case of free vibration, Equation 1 becomes:�
[u(y)� u(y � lf )]; EfAf + [u(y � lf )

� u(y � l)]EtAt)
@2v

@y2
= m(y)

@2v

@t2
; (4)

which can be solved by assuming:

m(y) = [u(y)� u(y � lf )]�fAf + [u(y � lf )

� u(y � l)]�tAt;

subjected to the boundary conditions:

v(0; t) = 0; (5)

�EtAt

@v

@y
(lf ; t) �Mf

@2v

@t2
(lf ; t)

= EfAf

@v

@y
(lf ; t); (6)

�kbv(l; t)�M
@2v

@t2
(l; t) = EtAt

@v

@y
(l; t): (7)

One needs to solve Equation 4 for 0 � y � lf and lf �
y � l independently and match the solutions wherever
the two parts are connected.

For 0 � y = y1 � lf , one has:

EfAf

@2v

@y2
= m(y)

@2v

@t2
;

or:

@2v

@y2
=

1

c2f

@2v

@t2
; (8)

where m(y) = �fAf , c
2
f = Ef=�f .

Using the method of separation of variables, the
eigenfunctions are determined as:

Yn1 = B sin�nfy1; (9)

where �nf is the separation constant and cf�nf = !nf
is the angular frequency.

For lf � y = y2 � l, one has:

EtAt

@2v

@y2
= m(y)

@2v

@t2
;

or:

@2v

@y2
=

1

c2t

@2v

@t2
; (10)

where m(y) = �tAt, c
2
t = Et=�t.

Similarly, using the method of separation of vari-
ables, the eigenfunctions are determined, as follows:

Yn2 = A[cos �nty2 + (
kb
kt

1

�ntlt

�
M

mt

�ntlt) sin �nty2]; (11)

where �nt is the separation constant and ct�nt = !nt
is the angular frequency.

It is clear that the displacement and force �elds
are continuous at y1 = lf and y2 = 0. The continuity
of the displacement �elds implies:

Yn1(lf ) = Yn2(lt);

consequently,

A

"
cos�ntlt +

�
kb
kt

1

�ntlt
�

M

mt

�ntlt

�
sin�ntlt

#

�B sin�nf lf = 0: (12)
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Also, the continuity of the force �eld gives:

EtAt

@v1
@y1

(lt; t) = �EfAf

@v2
@y2

(lf ; t)

�Mf

@2v1
@t2

(lt; t): (13)

Or, equivalently,

A
kt
kf

�ntlt

"
sin�ntlt �

�kb
kt

1

�ntlt

�
M

mt

�ntlt

�
cos�ntlt

#

+B
�Mf

mf

�2nf l
2
f sin�nf lf

� �nf lf cos�nf lf
�
= 0: (14)

The coe�cients A and B can be determined by solving
Equations 12 and 14. There are non-zero solutions, if:

������
cos�ntlt +

�
kb
kt

1
�ntlt

� M
mt

�ntlt

�
sin�ntlt

kt
kf
�ntlt

h
sin�ntlt �

�
kb
kt

1
�ntlt

� M
mt

�ntlt

�
cos�ntlt

i

� sin�nf lf
Mf

mf
�2nf l

2
f sin�nf lf � �nf lf cos�nf lf

����� = 0; (15)

which results in the frequency equation:

��
kb
kt

1

�ntlt
�

M

mt

�ntlt

�
tan�ntlt + 1

�
�
�
Mf

mf

�nf lf tan�nf lf + 1

�

�
kt
kf

�ntlt
�nf lf

tan�nf lf

�
tan�ntlt �

�
kb
kt

1

�ntlt
�

M

mt

�ntlt

��
= 0; (16)

with:

�tAtlt = mt: total mass of the tether,
�fAf lf = mf : total mass of the foundation,
EtAt=lt = kt: the axial sti�ness of the tether,
EfAf=lf = kf : axial sti�ness of the foundation.

The response of the tether subjected to axial load can
be expressed in terms of the normal modes of the

system, as follows:

v(y; t) =

1X
n=1

Yn(y)Tn(t); (17)

Yn(y) = bu(y)� u(y � lf )cY1(y) + [u(y � lf )

� u(y � l)]Y2(y); (18)

M(y) = [u(y)� u(y � lf )]�fAf + [u(y � lf )

� u(y � l)]�tAt +Mf�(y � lf )

+M�(y � l): (19)

According to the orthogonality of the normal modes, it
can be shown that:

Z l

0

M(y)Yn(y)Yr(t) = 0 (n 6= r); (20a)

Z l

0

M(y)Yn(y)Yr(t) = Hr (n = r): (20b)

De�ning:

M1(y1) = �fAf +Mf�(y1 � lf ); (21)

and:

M2(y2) = �tAt +M�(y2) +Mf�(y2 � lt); (22)

Equation 20 is rewritten as:

Z lf

0

M1(y1)Yn1(y1)Yr1(y1)

+

Z lt

0

M2(y2)Yn2(y2)Yr2(y2) = 0

(n 6= r); (23a)

Z lf

0

M1(y1)Yn1(y1)Yr1(y1)

+

Z lt

0

M2(y2)Yn2(y2)Yr2(y2) = Hr

(n = r); (23b)

Hr = Hr1 +Hr2; (24a)

Hr1 =
mf

2
+ Y 2

r1(lf )

�
Mf

2

�
; (24b)
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Hr2 =

�
kb
kt

1

�ntlt
�

M

mt

�ntlt

�2
mt

2
+
mt

2

+ Y 2
r2(lt)

�
Mf

2

�
+ Y 2

r2(0)

�
kb

2�2rtc
2
t

+
M

2

�
:
(24c)

Multiplying Equation 1 by:

Yn(y)dy = bu(y)� u(y � lf )cY1(y)dy

+ [u(y � lf )� u(y � l)]Y2(y)dy;

and integrating over 0 � y � l, one obtains:�
[u(y)� u(y � lf )] EfAf

+ [u(y � lf )� u(y � l)] EtAt

�

�

Z l

0

Yr(
X

Y 00n Tn)dy + Fh(t)

Z l

0

Yr�(y)dy

=

Z l

0

M(y)Yr(
X

Yn �Tn)dy; (25)

or:

EfAf

Z lf

0

Yr1

�X
Y 00n1Tn

�
dy1

+EtAt

Z l

lf

Yr2

�X
Y 00n2Tn

�
dy2

+ Fh(t)Yr2(0) = Hr
�Tr: (26)

Since Yn1 satis�es Equation 8 and Yn2 satis�es Equa-
tion 10, one has:

Y 00n1 = �
M1(y1)

EfAf

c2f�
2
nfYn1; (27)

Y 00n2 = �
M2(y2)

EtAt

c2t�
2
ntYn2: (28)

Substituting Equation 27 and Equation 28 in Equa-
tion 26 and applying Equation 23 results in:

�Tn +

�
c2f�

2
nf

Hn1

Hn

+ c2t�
2
nt

Hn2

Hn

�
Tn

=
Yn2(0)

Hn

F0 sin(
t); (29)

which is a non-homogeneous ordinary di�erential equa-
tion, whose solution is given by:

Tn(t) = An cos knt+Bn sin knt

+
F0

k2n � 
2

Yn2(0)

Hn

sin(
t); (30)

where:

k2n = c2f�
2
nf

Hn1

Hn

+ c2t�
2
nt

Hn2

Hn

: (31)

Initial conditions result in:

An = 0;

Bn = �
F0

k2n � 
2




kn

Yn2(0)

Hn

; (32)

and:

Tn(t) =
F0

k2n � 
2




kn

Yn2(0)

Hn

�

�
�



kn
sin knt+ sin(
t)

�
; (33)

or:

Tn(t) =

F0
k2n�


2



kn

Yn2(0)
Hn

�
� 

kn

sin knt+ sin(
t)
�

mf

2 +(Y 2
r1(lf )+Y 2

r2(lt))
�
Mf

2

�
+
�
kb
kt

1
�ntlt

� M
mt

�ntlt

�2
mt

2 +mt

2 +Y 2
r2(0)

�
kb

2�2rtc
2

t

+M
2

� ; (34)

and:

Tnj(t) =

Fj

k2n�

2

j


j

kn

Yn2(0)
Hn

�
�


j

kn
sin knt+ sin(
jt+ �j)

�
mf

2 + (Y 2
r1(lf ) + Y 2

r2(lt))
�
Mf

2

�
+
�
kb
kt

1
�ntlt

� M
mt

�ntlt

�2
mt

2 + mt

2 + Y 2
r2(0)

�
kb

2�2rtc
2

t

+ M
2

� ; (35)
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and:

Yn(y) = [u(y)� u(y � lf )] sin�nfy1

+ [u(y � lf )� u(y � l)]

�
cos�nty2+

�
kb
kt

1

�ntlt
�
M

mt

�ntlt

�
sin�nty2

�
:
(36)

Note that the vertical vibration frequency of a typical
TLP is between 1.5-2 sec and the excitation frequency
content of a sea wave is between 4-15 sec. Therefore, it
is not necessary to consider resonance frequency for the
vertical vibration of a TLP. Now, the dynamic response
of the tether is, as follows:

v(y; t) =

1X
n=1

NX
j=1

Yn(y)Tnj(t): (37)

PERTURBATION BASED SOLUTION OF

ADDED MASS FLUCTUATION

As a conceptual application of the presented formu-
lation, the problem of added mass uctuation of the
vertical motion of a moored structure is investigated.
The structural model of the system has been shown in
Figure 2. The behavior of the system is described by
the following di�erential equation:

EAt

@2v

@y2
+ Fh(t)�(y � l) = [�tAt

+m(1 + "av)�(y � l)]
@2v

@t2
; (38)

Figure 2. Dynamic structural model.

where " is the added mass uctuation parameter and a
is the ratio of the added mass to the structural mass.
The mass distribution function is de�ned, as follows:

M(y; t) = �tAt +m[1 + "av(y; t)]�(y � l): (39)

In the case of free vibration, Equation 38 becomes:

EAt

@2v

@y2
=M(y; t)

@2v

@t2
: (40)

Considering the �rst order perturbation of the re-
sponse [20], one has:

v(y; t) = v0(y; t) + "v1(y; t): (41)

Substituting Equation 41 in Equation 38 results in:

EAt

@2(v0 + "v1)

@y2
+ Fh(t)�(y � l)

= [�tAt +m(1 + "a(v0 + "v1))

�(y � l)]
@2(v0 + "v1)

@t2
: (42)

According to the perturbation theory, one obtains the
two following equations:

EAt

@2v0
@y2

+ Fh(t)�(y � l)

= [�tAt +m�(y � l)]
@2v0
@t2

; (43)

EAt

@2v1
@y2

+ F 0h(t)�(y � l)

= [�tAt +m�(y � l)]
@2v1
@t2

; (44)

where:

F 0h(t) = �amv0
@2v0
@t2

: (45)

Similarly, solving the di�erential equation gives:

Tn0(t) =
F0

c2�2n0 � 
2

Yn0(l)

Hn0

�
�




c�n0
sin c�n0t

+ sin(
t)
�
: (46)

Now, the dynamic response of the tether is given by:
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v0(y; t) =
1X
n=1

F0
c2�2n0 �
2

Yn0(l) sin�n0y
�
� 

c�n0

sin c�n0t+sin(
t)
�

mt

2 + Y 2
r0(l)

�
kb

2�2r0c
2
+ m

2

� :
(47)

Using the separation of variables, the eigenfunctions
are determined, as follows:

Yn1 = sin�n1y; (48)

and the frequency equation becomes:

tan�n1l =
�n1l

m
mt

�2n1l
2 � kb

kt

; (49)

where �n1 is the separation constant.
The response of a tether subjected to axial load

can be expressed in terms of the normal modes of the
system, as follows:

v1(y; t) =

1X
n=1

Yn1(y)Tn1(t); (50)

where:

Hr1 =
mt

2
+ Y 2

r1(l)

�
kb

2�2r1c
2
+
m

2

�
: (51)

As previously, one has:

Y 00n1 = �
M(y)

EAt

c2�2n1Yn1; (52)

and:

�Tn1 + c2�2n1Tn1 =
Yn1(l)

Hn1
F 0h(t): (53)

Substituting Equation 45 in Equation 53 results in:

�Tn1 + c2�2n1Tn1 = am
Yn1(l)

Hn1
Y 2
n0(l)Tn0

�Tn0;

and:

Tn0 �Tn0 = 
c�n0

�
F0

c2�2n0 �
2

Yn0(l)

Hn0

�2

"



c�n0

�
� sin2 c�n0t� sin2
t

�

+

�
1 +


2

c2�2n0

�
sin c�n0t sin
t

#
: (54)

After some mathematical calculation, Equation 31 is
reformed as:

Tn0 �Tn0 =

c�n0

2

�
F0

c2�2n0 � 
2

Yn0(l)

Hn0

�2

"



c�n0
(cos 2c�n0t+ cos 2
t� 2)

+

�
1 +


2

c2�2n0

��
cos(c�n0 � 
)t

� cos(c�n0 +
)t
�#

: (55)

As previously, one has:

�Tn1 + c2�2n1Tn1 = am
c�n0
Yn1(l)Y

2
n0(l)

2Hn1�
F0

c2�2n0 � 
2

Yn0(l)

Hn0

�2

�

"



c�n0
(cos 2c�n0t+ cos 2
t� 2)

+

�
1 +


2

c2�2n0

�
(cos(c�n0 � 
)t

� cos(c�n0 +
)t)

#
: (56)

Solving the di�erential Equation 53, one obtains:

Tn1(t) = An1 cos c�n1t+Bn1 sin c�n1t

+ am
c�n0
Yn1(l)Y

2
n0(l)

2Hn1�
F0

c2�2n0 � 
2

Yn0(l)

Hn0

�2

�

"



c�n0

 
�

2

c2�2n0

�
cos 2c�n0t

3c2�2n0
+

cos 2
t

c2�2n0 � 4
2

!

+ (1 +

2

c2�2n0
)

 
cos(c�n0 � 
)t


(2c�n0 � 
)

+
cos(c�n0 +
)t


(2c�n0 +
)

!#
: (57)

From initial conditions, one has:
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Bn1 = 0;

and:

An1 = �am
c�n0
Yn1(l)Y

2
n0(l)

2Hn1�
F0

c2�2n0 � 
2

Yn0(l)

Hn0

�2

"



c�n0

�
�

7

3c2�2n0
+

1

c2�2n0 � 4
2

�

+ (1 +

2

c2�2n0
)

 
4c�n0


(4c2�2n0 �
2)

!#
;

and, therefore:

Tn1(t)=�am
c�n0
Yn1(l)Y

2
n0(l)

2Hn1�
F0
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By substituting Equations 48 and 58 into 50, v1 is
determined as:

v1(y; t) =
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: (59)

From Equation 49, one has:

�n0 = �n1 = �n:

Now, the dynamic response of the tether becomes:
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: (60)

CONCLUSION

The analytical solution of the tether response of a TLP
was presented for a simple continuous model. The
applied load is simulation of an ocean wave. Some
complicated factors, such as foundation e�ect and
buoyancy, were considered. The presented solution
gives a conceptual view of the heave response of a
TLP under sea wave loads. The formulation presented
herein can be used in analytical studies on the fatigue
life of tethers.

The analytical solutions of the tether response
of a TLP were presented for a continuous model,
considering the buoyancy and the e�ect of added mass
uctuation under the load simulated as an ocean wave.
A �rst order perturbation method was used to solve
the di�erential equation, approximately. The presented
solution gives a conceptual view of the heave response
of a TLP under sea wave loads. The formulation
presented here can also be used in analytical studies
on the fatigue life of tethers.

The importance of the solved example is an
investigation into the added mass uctuation in fa-
tigue analysis on the tendons (tethers) of the moored
structure. Such closed form studies can be used
for various studies, such as: Verifying the numerical
results of the 6 degrees of freedom TLP system, the
conceptual investigation of added mass uctuation,
simple fatigue analysis for uncoupled TLP systems,
comparing the structural dynamics response with wave
radiation scattering interaction models (see references)
and the e�ect of higher modes in the axial vibration of
tendons, etc.
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