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Dynamic Responses of Railway

Suspension Bridges Under Moving Trains

H. Xia1, Y.L. Xu2, T.H.T. Chan2 and J.A. Zakeri�

This paper describes a numerical simulation technique that is used to investigate a dynamic

train-long suspension bridge interaction. A three-dimensional �nite element model is used to

represent a long suspension bridge. Each vehicle of the train is modeled by a 27-degrees-

of-freedom dynamic system, including two bogies with four wheel-sets. By applying a mode

superposition technique to the bridge and taking the measured wheel and track irregularities as

known quantities, the degrees of freedom of the bridge-train system are signi�cantly reduced

and the coupled equations of motion are e�ciently solved. The proposed formulation and the

associated computer program are then applied to a real long suspension bridge. The dynamic

responses of the bridge and the train vehicles are computed and compared with the limited

measured data and the results are satisfactory.

INTRODUCTION

To meet the needs of modern society for advanced
transportation systems, more and more long suspen-
sion bridges have been built throughout the world, such
as the Minami Bisan Seto suspension bridge in Japan
in 1988 [1] and the Tsing Ma suspension bridge in
Hong Kong in 1997 [2]. For such long span bridge-
train systems, Diana and Cheli [3] pointed out two
fundamental aspects to be investigated: One is bridge
safety, due to train passage and the other is train
runability, including passenger comfort.

In this paper, a three-dimensional model is pre-
sented, �rst, for investigating the dynamic interaction
of long suspension bridges with moving trains. The
measured irregularities between wheels and track are
used to represent their non-linear relationship and are
taken as known quantities. The modal superposition
technique is applied to the bridge, which further re-
duces computational e�ort. This formulation, together
with the associated computer program is, then, applied
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to a real long suspension bridge carrying a railway
within the bridge deck as a case study. Finally,
the computed bridge response is compared with the
limited measured results to verify the approach, to
some extent.

BASIC DYNAMIC MODELS

Dynamic Model of Train

The dynamic model of a train consists of several
locomotives, passenger coaches or freight cars. Each
vehicle is composed of a car body, bogies, wheel-sets
and the connections between the components [4]. The
following assumptions are used in the modeling of the
train in this study (see Figure 1):

1. The car body, bogies and wheel-sets in each vehicle
are regarded as rigid components;

2. The connections of car body-bogies and the connec-
tions of bogie-wheel-sets are represented by linear
springs and viscous dashpots.

With the above assumptions, the ith vehicle body has
�ve degrees of freedom with which to be concerned.
They are designated by the lateral displacement, Yci,
roll displacement, �ci, yaw displacement, 	ci, vertical
displacement, Zci, and pitch displacement, 'ci. The
jth bogie in the ith vehicle has �ve degrees of freedom:
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Figure 1. Dynamic model of vehicle.

The lateral displacement, Ytij , roll displacement, �tij ,
yaw displacement, 	tij , vertical displacement, Ztij ,
and pitch displacement, 'tij . For the lth wheel in the
jth bogie and ith vehicle, only three degrees of freedom
are considered: The lateral displacement, Ywij1, roll
displacement, �wij1, and vertical displacement, Zwij1.

For a 4-axle 2-bogies vehicle studied in this paper,
the total degrees of freedom are twenty-seven [5]. The
equations of motion for the car body and two bogies in
the ith vehicle can be derived, as follows:
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where the subscripts c, t1 and t2 represent the car
body and the front and rear bogies of the vehicle,

respectively, i = 1; 2; � � �Nv, and Nv is the number of
vehicles on the bridge.

The sub-mass diagonal matrices and the sub-
sti�ness matrices are expressed, as follows:

Mcci = diag
�
Mci Jc�i Jc i Mci Jc'i

�
;

and:

Mtjtj i = diag
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�
;
(2)
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The sub-damping matrix can be obtained by simply
replacing \k" in the corresponding sub-sti�ness matrix
by \c". vi, _vi and �vi are the displacement, velocity and
acceleration vectors of the ith vehicle, respectively.

The force vector consists of two parts:
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The components in the �rst part, Fcei, Ft1ei and Ft2ei,
are the vectors of external forces (such as wind forces)
acting on the car body and the front and rear bogies

of the vehicle, respectively. Ft1wi and Ft2wi are the
vectors of forces transmitted from the wheels through
the primary springs and dashpots to the front and rear
bogies, respectively. The forces transmitted from all of
their wheels to the bogies can be expressed in terms of
the displacements and velocities of the wheels.
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j = 1; 2; (8)

whereNwij is the number of wheel-sets in the jth bogie
of the ith vehicle. �l is the sign function, with �l = 1
when the wheel is in the front bogie and �l = �1 when
it is in the rear bogie.

Dynamic Model of Suspension Bridge

A long suspension bridge consists of bridge towers,
bridge deck, cables, suspenders and anchorages. This
study assumes that there is no relative displacement
between the track and bridge deck. Using the �nite
element method, the equation of motion for the bridge
can be expressed, as follows:

M�X+C _X+KX = F; (9)

where F is the force vector, consisting of two parts,
F = Fe+Fw. Fe is the vector of external forces acting
on the nodes of the bridge model and Fw is the vector
of forces from the wheels of a train on the bridge deck
through the track. The displacements of the bridge
deck at any section in the �nite element analysis are
usually identi�ed in terms of the lateral displacement,
Yb, vertical displacement, Zb, and torsional displace-
ment, �b, at the shear center (or centroid) of the cross
section [6]. The lateral, vertical and torsional forces
given by the lth wheel in the jth bogie of the ith
vehicle, corresponding to the deck displacements, can
be expressed, as follows:

Fhijl = �mwijl
�Ywijl + ch

1ij( _Ytj i � 00h3i _�tj i

+ 2�ldi _ tj i � _Ywijl)

+ kh
1ij(Ytj i � h3i�tj i + 2�ldi tj i � Ywijl);
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where g is the acceleration, due to gravity.

Wheel Hunting and Track Irregularities

Track irregularity is an important source of self-
excitation in the bridge-train system. The track irreg-
ularities consist of lateral irregularity, Ys(x), vertical
irregularity, Zs(x), and rotational irregularity, �s(x).
In this study, the measured track irregularities are
used so that these functions are regarded as known
quantities. In consideration of track irregularities, the
relations between the lth wheel displacements and the
bridge deck displacements can be deduced, as follows:
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where, xijl is the coordinate of the lth wheel of the jth
bogie in the ith vehicle along the bridge deck.

EQUATIONS OF MOTION FOR

BRIDGE-TRAIN SYSTEM

This study concerns the dynamic interaction between
the suspension bridge and train and no external ex-
citations, such as wind or earthquake, are included.
Equations 1 to 11 constitute the basic equations for the
coupled bridge-train system. However, the direct inte-
gration of these equations in the time domain, to �nd
the dynamic responses of both the bridge and the train,
is very cumbersome. The mode superposition method
is, therefore, used in this study for the bridge [7,8]. The
mode shape between the deck nodes can be determined
using the Lagrange interpolation.

Let �nh(xijl), �
n
� (xijl) and �

n
v (xijl) denote the val-

ues of the lateral, rotational and vertical components of
the nth bridge mode at the position of the lth wheel of
the jth bogie in the ith vehicle, and qn the generalized
coordinate of the nth mode. The displacement of the
bridge deck at the same position can be expressed, as

follows:
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n
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where Nb is the number of the mode shapes con-
cerned. If the bridge mode shapes are normalized,
as f�ngTMf�ng = 1, the equation of motion of the
bridge deck related to the nth mode, Equation 9, can
be derived, as follows:

�qn + 2�n!n _qn + !2nqn = Fn; (13)

where �n and !n are, respectively, the damping ratio
and the circular frequency of the nth mode of the bridge
and Fn is the nth generalized force.
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where Fnijl is the nth generalized force from the lth
wheel of the jth bogie of the ith vehicle. Furthermore,
in terms of Equation 12, the displacements of the lth
wheel (Equation 11) can be expressed as the function
of the generalized coordinate and mode shape of the
bridge, as well as the known track irregularities.
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Clearly, the displacements of the wheel need not be
included in the equations of motion for the bridge-
train system. This can reduce the computational e�ort
signi�cantly. Combining the above equations and then
carrying out some manipulation, one can derive the
coupled equations of motion for the bridge-train system
as:�
Mvv 0
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��
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+
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+
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�
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Fv
Fb

�
; (16)
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where the subscripts \v" and \b" represent the vehicles
and bridge, respectively. Assuming that the number
of vehicles on the bridge is Nv and the number of
concerned bridge vibration modes is Nb, the sub-
displacement vectors can be expressed as:

Xv =
�
Xv1 Xv2 � � � XvNv

�T
;

Xb =
�
q1 q2 � � � qNb

�T
; (17)

where Xvi = [vci; vt1i; vt2i]
T , i = 1; 2; : : :Nv. The

sub-mass and sti�ness matrices of the vehicles are
listed, as follows:
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The sub-damping matrix of the vehicle can be achieved
by simply replacing \K" in the sti�ness matrix by \C".

The sub-mass, sub-sti�ness and sub-damping ma-
trices of the bridge are deduced, as follows:
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The sub-sti�ness matrices attributed to the interaction
between the bridge and the vehicles can be derived as:
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where i = 1; 2; � � �Nv, n = 1; 2; � � �Nb and j = 1; 2. The
sub-damping matrices attributed to the interaction
between the bridge and vehicles can be obtained by
simply replacing \k" in Equation 21 by \c". If the
external forces, such as wind and earthquake, are not
taken into account, the force vectors can be expressed,
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as follows:
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Since the coe�cients, � and �, are the functions of

the positions of the wheels, they are always changing
when the train is running on the bridge. The elements
in the mass, damping and sti�ness matrices are, thus,
time-dependent. The dynamic equations of the vehicle-
bridge system are actually second-order linear non-
homogeneous di�erential equations with time-varying
coe�cients. These equations are solved, using the
Newmark implicit integral algorithm with � = 1=4, in
this study.

CASE STUDY

A computer program is written, based on the formu-
lation derived above and is used to perform a case
study. The case study concerns a long suspension
bridge carrying a railway inside the bridge deck (see
Figures 2 and 3). The main span of the bridge is 1377 m
and the height of the tower is 206 m, measured from the
base level to the tower saddle. The two main cables of
36 m apart in the north and south are accommodated
by the four saddles located at the top of the tower legs
in the main span. A three-dimensional �nite element
model of the bridge was established and the natural
frequencies and mode shapes were computed [9].

The train concerned in the case study consists of 8
passenger coaches. The main parameters of the coach
used in the case study are listed in Table 1.

The track vertical, lateral and torsional irregulari-
ties are taken into consideration by using the measured
data from one of the main railways in China. The
length of the measured data is 2500 m and the samples,
of a length of 600 m, are plotted in Figure 4 for lateral
and vertical irregularities.

Displayed in Figure 5a is the time history of the
lateral displacement responses of the bridge at the
middle main-span. The train speed in calculation is
70 km/h. It is seen that, when the train runs on the
left side span, the bridge responses at the middle main-
span are quite small; when the train travels on the
main span, the bridge response becomes large. As the

Figure 2. Con�guration of the suspension bridge used in the case study.
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Figure 3. Cross section of bridge deck.

Table 1. Main parameters of the vehicle used in the case study.

Parameter Unit Value Parameter Unit Value

Full length of a coach L M 22.5 Secondary vertical spring sti�ness kv2 kN/m 1060

Distance between bogies 2s M 15.6 Secondary lateral spring sti�ness kh2 kN/m 460

Distance between wheel-sets 2d m 2.5 Primary vertical dashpot cv1 kNs/m 15

Mass of car body Mc t 50.99 Primary lateral dashpot ch1 kNs/m 15

Car body roll mass moment Jc� t-m2 154.83 Secondary vertical dashpot cv2 kNs/m 30

Car body pitch mass moment of Jc' t-m2 1958.7 Secondary lateral dashpot ch2 kNs/m 30

Car body yaw mass moment Jc t-m2 1875.3 Distance h1 M 0.98

Mass of bogie Mt t 4.36 Distance h2 M 0.36

Roll mass moment of bogie Jc� t-m2 1.47 Distance h3 M 0.07

Pitch mass moment of bogie Jc' t-m2 3.43 Distance h4 m 1.25

Yaw mass moment of bogie Jc t-m2 5.07 Distance a m 0.98

Mass of wheel-set mw t 1.77 Distance b m 1.12

Roll mass moment of wheel-set Jw t-m2 0.92 Distance B m 1.435

Primary vertical spring sti�ness kv1 kN/m 2976 Distance e m 2.05

Primary lateral spring sti�ness kh1 kN/m 20000

train travels on the right side span, the bridge response
decreases. The bridge, then, has a free vibration
when the train leaves from the bridge. Figure 5b
shows the corresponding response spectrum. There is
a peak in the displacement response spectrum around
0.068 Hz, indicating that the �rst lateral vibration
mode dominates the lateral displacement response.
Nevertheless, the lateral displacement responses are
quite small. In consideration of the fact that the
track irregularities are the only excitation source to the

bridge from the train, it can be, thus, concluded that
the bridge lateral responses, due to track irregularities,
are not signi�cant.

Figure 6a shows the vertical displacement re-
sponse of the bridge at four di�erent positions. The
distances of points A, B, C and D from the left
abutment of the bridge are, respectively, 1012.5 m,
1138.0 m, 1174.0 m and 1498.5 m. The maximum ver-
tical displacement response at each point occurs almost
when the train runs around that point. The pattern of
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Figure 4. Measured track irregularity curves used in the
case study.

Figure 5. Lateral bridge responses.

the displacement response, however, depends on the
position concerned. For instance, the displacement
response curves of points A and D are clearly di�erent
from those at positions B and C. It is also seen that the
maximum response at point D is larger than that at
point C, which may be because the �rst vertical mode
of vibration of the bridge is almost anti-symmetrical.
Although the maximum vertical displacement response

Figure 6. Vertical bridge responses.

at point C reaches 0.5 m, it is still very small compared
with the main span of 1377 m long.

The bridge and train responses are computed for
the train running at di�erent speeds. The maximum
lateral and vertical displacement and acceleration re-
sponses of the bridge are listed in Table 2. It is
seen that the maximum vertical displacement response,
the maximum lateral acceleration response and the
maximum vertical acceleration response of the bridge
increase with the increasing train speed, but, the
maximum lateral displacement response decreases with
the increasing train speed.

The maximum responses of the vehicle acceler-
ation, wheel derail factor and o�oad factor are also
listed in Table 2. It is seen that the train responses
increase signi�cantly with the increasing train speed.

To investigate the tra�c-induced vibration of the
bridge, two dynamic displacement transducers were
installed on the bridge deck at the middle main span
near the edge of the bridge deck. The measurement
time was 45 minutes and the tra�c on the bridge
during the measurement included both highway and
railway vehicles. Since the used dynamic displacement
transducer could not measure the bridge response of
very low frequency, due to the passage of the train, the
direct comparison of the vertical dynamic displacement
response between the measurement and the prediction
could not be made. Figure 7 shows the measured
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Table 2. Maximum responses of bridge and vehicles.

Types of Response Unit U = 20 km/h U = 40 km/h U = 70 km/h U = 120 km/h

Deck vertical displacement cm 49.39 49.52 51.29 54.04

Deck vertical acceleration cm/s2 0.0845 0.332 0.878 3.156

Deck lateral displacement mm 15.07 10.83 8.058 4.686

Deck lateral acceleration cm/s2 0.931 1.097 1.298 2.234

Vehicle vertical acceleration cm/s2 12.96 31.85 48.29 74.31

Vehicle lateral acceleration cm/s2 19.01 38.19 40.05 51.92

Derail factor Q=P 0.247 0.287 0.306 0.413

O�oad factor �P=P 0.380 0.381 0.393 0.410

Figure 7. Measured bridge lateral displacement.

lateral dynamic displacement response of the bridge
at the middle main span during the passage of the
train. It is seen that the predicted vibration pattern
and the amplitude of the lateral displacement response
(Figure 7) are similar to those from the measurement,
although they are not exactly the same. Both lateral
response curves also exhibit a kind of random vibration
nature.

CONCLUSIONS

In this paper, a formulation has been developed for
investigating the dynamic interaction of a long sus-
pension bridge under running trains. Each railway
vehicle was modeled as a 27 degrees-of-freedom dy-
namic system and a three-dimensional dynamic �nite
element model was developed to represent the suspen-
sion bridge. To reduce the degrees of freedom of the
coupled bridge-train system, due to track irregularities
and contact forces between the wheels and track,
this study took the measured track irregularities as
known quantities and applied the mode superposition
technique for the analysis of the bridge. A real long
suspension bridge carrying a train inside the bridge
deck was taken as a case study. The dynamic response

of the bridge-train system and the derail factor and the
o�oad factor related to the running safety of the train
were computed. The calculated lateral displacement
response of the bridge was also compared with the
measured data. The results showed that the formu-
lation presented in this paper could well predict the
dynamic behaviors of both the bridge and train with
reasonable computation e�ort. It was also found that
the dynamic responses of the long suspension bridge
under the running train are relatively small and the
e�ects of bridge motion on the runability of the railway
vehicles are insigni�cant.
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