Scientia Iranica, Vol. 6, No. 1, pp 39-42
© Sharif University of Technology, January 1999

Research Note

A Zero-Knowledge Proof

for Vertex Cover Problems

J. Mohajeri!

In this paper, a new zero-knowledge proof for vertex cover problem is proposed which is efficient
and practical. This proof can be modified for independent set and clique problems. These

problems are ali NP-C.

INTRODUCTION

Many researchers have studied zero-knowledge proofs
and the class of problems which have such zero-
knowledge proofs. Little attention, however, has
been paid to the practicality of these proofs. It is
known, for example, that under certain cryptographic
assumptions, all problems in NP have zero-knowledge
proofs [1,2]. Although these proofs can be performed
by probabilistic polynomial time provers who have the
appropriate trapdoor information, they may involve a
transformation to a circuit or to an NP-complete prob-
lem, therefore, they are often quite inefficient. The first
zero-knowledge proofs, for quadratic residuosity and
nonresiduosity [3], were practical as well as efficient;
however, probabilistic polynomial-time proving could
be performed if appropriate trapdoor knowledge was
available. One of these kinds of proofs is demonstrated
in later sections.

In this paper, a practical zero-knowledge proof
for a vertex cover problem is presented in the following
order.

First, polynomial time algorithms and intractable
problems are described and NP-complete problems are
defined. Then, minimum and maximum disclosure
proofs are explained. Finally, the main idea for zero-
knowledge proofs and the new zero-knowledge proof for
vertex cover problems are presented.

POLYNOMIAL TIME ALGORITHMS AND
INTRACTABLE PROBLEMS

Differ¢nt algorithms possess a wide variety of time com-
plexity functions. The characterization of efficiency

1. Electronic Research Center, Sharif University of Tech-
nology, P.O. Box 11365-8639, Tehran, I.R. Iran.

defined as “efficient enough” and “too inefficient”
always depends on the actual situation. However,
computer scientists recognize a simple distinction that
offers considerable insight into this matters, which
is the difference between polynomial and exponential
time algorithms.

Definition 1

A function f(n) is O(g(n)) whenever there exist a
constant ¢ and an integer N such that | f(n) |< ¢
| g(n) | Vn > N.

Definition 2

A polynomial time algorithm is defined as one whose
time complexity function is O(p(n)) for some polyno-
mial function p, where n is used to denote the input
length.

Based on the above definitions, any algorithm
whose time complexity function cannot be bounded as
defined above is called an exponential time algorithm
[4].

The distinction between these two types of algo-
rithm has particular significance when the solution of
large problem instances is considered.

The fundamental nature of this distinction was
first discussed by Cobham [5] and Edmonds [6]. Ed-
monds, in particular, equated polynomial time algo-
rithms with “good” algorithms and conjectured that
certain integer programing problems might not be
solvable by such “good” algorithms. This reflects the
viewpoint that exponential time algorithms should not
be considered as “good” algorithms, which, indeed, is
usually the case. Hence, a problem is referred to as
intractable if it is so hard that no polynomial time
algorithm can possibly solve it.

40

NP-COMPLETE PROBLEMS

Problems are classified into two important classes, P

and NP.

Definition 3

The notation P is used for all pr
be solved using a polynomial time

blems that can
algorithm on a

deterministic Turing machine, whereas NP consists of

all problems that a polynomial time

algorithm on a

nondeterministic Turing machine can|solve.

From the above definition, it is

lear that class P

is a subclass of NP, but it is a celebrated open problem

where P # NP.
Another particular subset of

NP is NP-C. A

specific problem is NP-complete if and|only if it is one of
the “hardest” members of NP, that is ,|every problem in
NP can be reduced in polynonrial time to this specific

problem.
NP-complete problem is in P. One of

It follows that P = NP if and only if an

the most famous

members of NP-C is satisfiability proplem.
Since it is generally believed that P # NP, NP-

complete problems are considered t
The foundations for the theory of
were presented in [7].

b be intractable.
NP-completeness

MINIMUM AND MAXIMUM DISCLOSURE

PROOFS

Assume that P (the prover) knows s
and wants to convince V (verifier
convince V in two ways: maximum
and minimum disclosure proof.

ome information,
of it. P can
disclosure proof

In a maximum disclosure proof, P simply discloses

his information, so that V is capable

of verifying and,

therefore, actually learns the information.

Example 1

Let P know the prime factorization of n, this could be

proved to V as the following:

P: T know prime factorization of n.
P: Yes I do. V: Do not. P: Do too.

V: No you don’t.
V: Prove it. P:

All right. I will tell you. He whispeps in V's ear. V:
That is interesting. Now I know it, too. I'm going to

tell Bob. P: Oh no.

This is an instance of maximum
Unfortunately, in this usual way, in or
something to V, P has to tell him. B
it too and can consequently tell any
to and P can do nothing about it.

Using One-way functions, P cou

disclosure proofs.
der for P to prove
ut then he knows
ne else he wants

d perform a min-

imum disclosure proof. In a minimum disclosure proof,

P convinces V that he has the infor

mation, but does

J. Mohajeri

not reveal even one bit of it and, consequently, does
not help V in any way to determine the information he
has.

This protocol proves to V that P does have a piece
of information, but it does not provide the content
of the information. These proofs take the form of
interactive protocols. V asks P a series of questions.
If P knows the secret, he can answer all the questions
correctly. If he does not, he has just some chance
of answering correctly. After about 10 questions, V
will be convinced that P knows the secret, yet none
of the questions or answers reveal the content of the
information.

Definition 4

In a minimum disclosure proof, the following properties
hold:

1. P probably cannot cheat V. If P does not know the
proof, his chances of convincing V that he knows the
proof are negligible.

2. V cannot cheat P. He does not get the slightest
hint of the proof, apart from the fact that P knows
the proof. In particular, V cannot demonstrate the
proof to anyone else without proving it himself from
scratch. Zero-knowledge proofs have an additional
condition.

3. V learns nothing from P that he could not learn by
himself without P, apart from the fact that P knows
the proof. In other words, V is able to simulate the
protocol as if P were participating although he, in
fact, is not. A very simple minimum disclosure proof
about knowledge of the factor of n is shown in the
following example.

Example 2

Recall Example 1; P knows the factorization of n and
wants to convince V of it. He can do so through using
the following protocol in three steps:

Step 1: V chooses a random integer = and tells that
z = z* (mod n) to P.

Step 2: P has to compute y = 2% = 22 (mod n) with
his information and tell it to V.

Step 3:" V himself computes 2? (mod n) and compares
it to y, if they are equal he accepts, otherwise
rejects.

V obtains no new information because he can
square z himself. On the other hand, it is known that
extracting square roots is equivalent to factoring n. In
Step 2, P has to extract not only a square root of z*,
but the particular one of the four square roots that is
a quadratic residue (mode n). Determining quadratic

Vertex Cover Problems

residuosity is also intractable without knowing the
factor of n. Of course, the possibility of P succeeding
without knowing the factor of n can be made still
smaller by iterating the protocol.

Let now repeat the basic requirements. It is
assumed that the information is the proof of a theorem.

1. The prover probably cannot cheat the verifier.

2. The verifier cannot cheat the prover.

MAIN IDEA FOR ZERO-KNOWLEDGE
PROOFS

The protocol of Example 2 was constructed in an
ad hoc manner, based on the special interconnection
between factoring and extracting square roots. Some
general ideas are needed if one wants to construct
protocols satisfying the defined requirements for a large
class, such as problems in NP. The crucial idea in
construction will be that of a lockable box. The verifier
cannot open it because the prover has the key. On
the other hand, the prover has to commit himself to
the contents of the box, that is, he cannot change
the contents when he opens the box. In fact, the
verifier may watch when the prover opens the boxes.
Locking information in a box means applying a one-
way function to it. The prover knows the inverse
function and applies it when opening the box. His
commitment to the box can be verified by applying
the one-way function to the plain text information. In
the next section, this method will be employed in the
zero-knowledge proof of the vertex cover problem.

ZERO-KNOWLEDGE PROOF FOR VERTEX
COVER PROBLEM

Definition 5

Let G(V,E) be a graph, a subset V! C V is called a
vertex cover if and only if for each edge {u,v} € E, at
least, either u or » belongs to V.

Vertex Cover Problem

Let k be a positive integer, with k£ <| V' | and G(V,E)
a graph; now, is there a vertex cover of size k or less
for G7.

Lemma 1

For any graph G(V,E) and subset V' C V| the following
statements are equivalent:

a) V'is a vertex cover for G.

b) V — V' is an independent set for G.

41

c¢) V—V'is aclique in the complement G¢ of G, where
G¢ = (V,E°) with E¢ = {{u,v} : u,v € V, {u,v} ¢
E}.

This implies that the NP-completeness of all three
problems will follow as an immediate consequence of
proving that any one of them is NP-C. Karp has proved
the following theorem in [8].

Theorem 1

Vertex cover is an NP-Complete problem. Every zero-
knowledge proof based on the above problem can be
modified for the other two. A zero-knowledge for
independent set problems is presented in [9]. That
protocol can also be used for the two other problems. In
this paper, a new zero-knowledge proof protocol based
on vertex cover problems will be proposed.

P wants to convince V that he knows a vertex
cover of a graph with n vertices. In the following,
a protocol, with m round is described, each round
consists of 4 steps.

Step 1: P prepares and presents to V the following
locked boxes; B;, 1 < i < n, Bl,1 < i <k,
B;;, 1 <t < j <n. Each of B;, B, and B;; are
respectively called vertex box, cover box and
edge box. Each of B; boxes contains one of
the nodes, each of the B! boxes contains one of
the B; boxes which has one vertex of V'. Each
of B;; boxes consists of 0 or 1. If B; and B;
include vx,; and vy ;, respectively, then 1 appears
in B;j if and only if {vg;, vk ;} belongs to E, and
0 appears otherwise.

Step 2: V flips a fair coin and tells P the outcome.

Step 3: a) If the outcome is “heads”, P opens B; and
B;; boxes.
b) If the outcome is “tails”, V randomly selects
one of the B;; boxes, i.e., an edge box, then:
(i) if it contains 1 then P has to open one of
the Bj, which contains B; or Bj, otherwise
(ii) if 0 appears, V reselects another edge
box. This procedure will be repeated until
1 appears, then (i) will be conducted.

Step 4: a) V verifies that he has got a copy of G. If
so, he accepts, otherwise rejects. The exam-
ination is easy because the opened vertex
boxes reveal the proper vertex labels, so no
problem concerning graph isomorphism has
to be settled.

b) V verifies that the opened box contains B, or
Bj, if so, he accepts, otherwise rejects. Note
that the boxes have to be reconstructed for
each round of protocol.

P may try to cheat V in two ways:

42

1. He does not put a description of G

in the boxes, but,

rather, a description of some other graphs that he

knows their vertex cover. Then he

succeeds if event

b occurs and gets caught if event a happens.

2. P uses a false vertex cover of s

ize k. Then he

succeeds if event a or b occurs and V chooses an

edge box which at least one of its
V', otherwise he gets caught.

Probability of success for P in state (1) is 1

lm
2 e’

this probability in state (2) is w

m is the number of edges in G covered by V'

probability of a fail prover passing L

1L 1T —r _ 1k
1 or (2)F or §(g)P = 4H()
them approaches zero as L increases.
The above protocol satisfies thr

zero-knowledge proof, because:

1. The prover probably cannot cheat

vertex belongs to

5 and
here e =| E | and
Thus,
round is equal to:

L-r and each of

ee conditions of a

the verifier. If the

prover does not know a vertex cover of the graph,
his chance of convincing the verifier that he knows
this information is negligible, because the possibility

of P succeeding without knowing
the graph can be made arbitrarily
the protocol.

2. The verifier cannot cheat the prove
the slightest hint of the proof, ap

a vertex cover of
small by iterating

r. He does not get
art from the fact

that the prover knows a proof. In particular, the
verifier cannot prove that he knows a vertex cover

of size k for G to anyone else w
himself from scratch.

3. Assume that V has an algorithm A
dom polynomial time) to extract
from his conversation with P. In ¢
V can use A to extract the same
in the absence of P. V first plays
flips a coin and, according to the
applies an isomorphism to G and
in the vertex and edge boxes and
boxes in the cover boxes, or else |
k vertex box in cover boxes and py
in other boxes such that the chose
a vertex cover for G.

Now having received the boxes,
of V. He applies his algorithm A to
between (a) and (b) lines. He eith
information as in the presence of a

ithout proving it

\ (running in ran-
some information
he following way,
information even
the role of P. He
outcome, either

locks the result
puts arbitrary k
ocks an arbitrary
1ts some numbers
n vertex performs

V plays the role
decide the choice
er gets the same
true prover P or

J. Mohajeri

learns that P is a false prover. V can do everything
in polynomial time. Hence, the following result is
obtained.

Theorem 2

The given protocol for the vertex cover is zero-
knowledge proof.

ACKNOWLEDGEMENT

The author would like to thank Dr. Mahmood Salma-
sizadeh for his comments concerning this work.

REFERENCES

1. Chaum, D. “Demonstrating that a public predicatecan
be satisfied without revealing any information about
how”, Advances in Cryptology - Crypto 86 Proceedings,
pp 195-199 (1987).

2. Goldreich, O., Micali, S. and Widgerson, A. “How
to prove all NP-statements in Zero-Knowledge, and a
methodology of Cryptographic protocol design”, Lecture
Notes in Computer Science, 263, Springer, Berlin Hei-
delberg, New York, pp 171-185 (1987).

3. Goldwasser, S., Micali, S. and Rackoff, C. “The knowl-
edge complexity of interactive proof systems”, Proceed-
ing of the 17th ACM Symposium on the Theory of
Computing, pp 291-304 (1985).

4. Garey, M.R. and Johnson, D.S., Computers and In-
tractability, W.H. Freeman and Company (1979).

5. Cobham, A. “The intrinsic computational difficulty of
functions”, Proc 1964 International Congress for Logic
Methodology and Philosophy of Science, North Holland,
Amesterdam (1964).

6. Edmonds, J. “Paths, trees, and flowers”, Canad. J.
Math., 17, pp 449-467 (1965).

7. Cook, S.A. “The complexity of theorem-proving pro-
cedures”, Proc. 3rd Ann. ACM Symp. On Theory of
Computing, New York, pp 151-158 (1971).

8. Karp, R.M., Reducibility Among Combinatorial Prob-
lems, R.E. Miller and J.W. Thatcher, Eds., Complexity
of Computer Computations, Plenum Press, New York,
pp 85-103 (1972).

9. Mohajeri, J., Zero-Knowledge Proofs for Independent Set
and Dominating Set Problems, C.J. Colbourn and E.S.

Mahmoodian, Eds., Combinatorics Advances, Kluwer
Academic Publishers, pp 251-254 (1995).

