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tained from a one-dimensional Ensemble Monte Carlo simulation of
vrdes under different conditions are presented. To study the electron
tructures, the anode voltage and the environment temperature have
For active regions of shorter than 0.1 pm and anode voltages of less
monstrated that electron transport behavior is quasi-ballistical. For
pnger active regions, intervalley scattering as well as back scattering
transport behavior at the anode side of the active region. Next,
1 is replaced by an nt-Al,Ga;_,As layer, to study the effects of the

hetero-interface on the electron transport behavior. The simulation results illustrate that, in this
case, the average velocity profile across the active region is more uniform, however, experiences

an overall decrease.

Effects of the anode voltage, the Al mole fraction and the active region

length on the electron trangport behavior are also presented. It has been shown that, by a right

selection for these three par
velocity.

INTRODUCTION

The structure of the simulated n*-i-n* diode consists
of an undoped layer of GaAs sandwiched between two

highly doped layers of n-type GaAs.

The undoped

layer acts as the active region of the diode while the

two highly doped layers play the ro

le of the diode’s

anode and cathode. The one-dimensional simulation of
this diode using a self-consistent method has already

been performed [1,2].
dynamics are first calculated in small
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ameters, one may obtain an optimized profile for the electron average

and contact regions are defined in “config”. Moreover,
the particle distributions in the real space and the k-
space as well as the potential distribution are initialized
in “init”. The particle dynamics are next calculated
by Ensemble Monte Carlo method in “emc”. It is
possible that in each time step, some particles reach the
contact regions, where they can flow out of the device.
Hence, during the simulation, the number of particles
may not be constant. For this reason, the number of
particles is controlled during each time step. To solve
the Poisson equation, one needs to know the carrier
density distribution. This distribution is calculated in
“charge” with the help of particle distribution, using
a method called cloud-in-cell [4]. Finally, the Poisson
equation is solved through finite difference method.
Since a discrete vertical nt-i-nt structure is
symmetrical and the potential across it varies only in
one dimension, there is no need for a two-dimensional
simulation for such a structure. However, in a planar
structure on which the Ohmic contacts are all located
on the same surface, a two-dimensional simulation
becomes important. In that case, one can also ob-
tain more information about the carrier distribution
throughout the channel depth and length. In this
investigation, by varying the anode voltage, the length
of the active region and the environment tempera-
ture, the carrier transport behavior has been studied
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Figure 1. The simulator program flowchart.

using a one-dimensional simulation. Then, the two-
dimensional results are presented to show the location
of the electrons in a two-dimensional cross section of
the device.

Finally, the nt-GaAs cathode is replaced by a
nt-Al,Ga;_.As layer to investigate the effects of the
hetero-interface on the carrier transport characteristics
in a heterostructure n*-i-nt diode.

RESULTS AND DISCUSSIONS

In the simulation presented here, the active region
length is taken to be 0.25 pum, while the anode and
cathode lengths are both equal to 0.15 gym. The
doping concentrations in the anode and cathode regions
are uniform and equal to 2x10'7 em~3. At both
ends of the diode, the contacts are Ohmic. For the
GaAs, a two-valley (i.e., I' and L) model is used.
The scattering mechanisms used in this calculation
are acoustic phonon scattering, polar and non-polar
optical phonon scatterings and scattering from ionized
impurity atoms.

The potential distribution across the diode for an
anode voltage of V4 = 0.75V at T = 77°K is illustrated
in Figure 2. The electron energy distribution across the
diode under similar conditions is depicted in Figure 3.
As one can see from this figure, the upper edge of the
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Figure 2. The potential distribution across the GaAs
nt-i-n* diode for an anode voltage of V4 =075 Vat T =
TT°K.
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Figure 3. The electron energy distribution across a GaAs
nt-i-nt diode, for V4 = 0.75 V at T = 77°K. The
horizontal dashed line shows the energy separation
between the ' and L valleys.

energy distribution envelope moves quasi-ballistically
across the active region and is equal to the magnitude
of the electronic charge times the potential distribution
in that region [5].

As is shown in Figure 4, a similar situation occurs
for the electron velocity distribution across the diode
under similar conditions. The upper edge of the
velocity distribution is an envelope whose velocity is
given by:

b, = )2V (=)
m*

where m* is the effective mass of the electrons in the I’
valley. This also provides that in the active region, the
electrons move quasi-ballistically towards the anode.
Figures 3 and 4 show that electrons are accu-
mulated in the neighborhood of the anode in the



34

Cathode Anode
0F y,=075V ! 1
—~ 8} T=77°K -
Z
g o7
9]
~ 4
S
X 2 1
z o0
9]
O
ER ,
2 | A
e | |
= .
-8t ‘ H
-10 I N L . 1 '
0.0 0.1 0.2 0.3 0.4 0.5

Device length (uzm

Figure 4. The electron velocity distribution across a
GaAs nT-i-n™ diode, for V4 = 0.75 V dt T = 77°K.
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and mentioned before, the distribution along the device
depth is almost uniform in both valleys. Profiles for the
potential energy, velocity and the electric field resulting
from this simulation are also almost uniform along the
diode depth and all are nearly similar to those resulting
from a one-dimensional simulation. Figure 6 illustrates
the electric field profile along the device length as an
out come of this two-dimensional simulation. The rise
in the electric field just after the cathode in the active
region accelerates the electrons in that region. This
is the main cause for the quasi-ballistical motion of
the electrons in the active region. The high field on
the anode side of the diode also justifies population
of electrons in the 1. valley on that side of the diode,
shown in Figure 5b.

Changing the anode voltage to V4 = 0.29V which
is equivalent to the energy separation between the
I" and L valleys, results in a situation displayed in
Figures 7 and 8. These two figures illustrate the
electron energy and velocity distribution, respectively.
Electrons still move quasi-ballistically in the active
region of the diode under the new conditions. They no
longer accumulate in the vicinity of the anode in the
active region, since, under the new conditions, a few
electrons in the anode have enough energy to transfer
to the L valley from where the back-scattering to the
active region of I' valley could occur.

Figure 9 compares the average velocity of the
electrons across a diode with a 0.25 pm long active
region, under three different anode voltages V4 = 0.29,
0.75 and 1.5 V at 77°K. While with an increase in
the anode voltage the peak of the average velocity
rises, its position in the active region moves towards
the cathode, since, in addition to the back scattering
effects, more electrons in the vicinity of the anode in
the active region gain enough energy to move to the L
valley.
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Figure 6. Profile of the electric field along a GaAs
n*-i-n™" diode, for V4 = 0.75 V at T = T7°K.
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Figure 7. The electron energy distribution across a GaAs
nT-i-nt diode, for V4 = 0.29 V at T = 77°K. The
horizontal dashed line shows the energy separation
between the [ and L valleys.
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Figure 8. The electron velocity distribution across a
GaAs nT-i-n*t diode, for V4 =0.29 V at T = 77°K.

Referring to Figure 7 for V4 = 029 V at T =
77°K, one realizes that none of the electrons in the
active region are in the L valley, even in the vicinity of
the anode. However, as Figure 9 shows the peak of the
corresponding average velocity is lower than the peaks
corresponding to the higher voltages. This is because
for V4 = 0.29 V, electron transport near the anode in
the active region is dominated by collision processes.
Through reducing the active region length, one may
almost eliminate this effect. This is demonstrated in
Figure 10, in which the average velocity of electrons
across a diode with a 0.1 pm long active region is
illustrated for V4 = 0.25 V at T=77°K. In such an
active region, the collision processes have been almost
eliminated and the peak in the average velocity has
moved very close to the edge of the anode.

Elevating the environmental temperature will re-
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Figure 9. Comparison of the electron average velocity
profile across a GaAs nT-i-n* diode, for three different
anode voltages V4 = 0.29,0.75 and 1.5 V; at T = 77°K.
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Figure 10. The electron average velocity profile across a
GaAs nT-i-n™ diode with a 0.1 pm long active region, for
Va=020V atT = 77°K.

sult in higher scattering rates. Figure 11 compares
the electrons average velocities across a diode with
a 0.25 pum long active region for V4 = 0.75 V at
three different temperatures 7' = 77, 150 and 300°K.
At T = 77°K, the thermal energy is 7 meV which
is much smaller than the energy of the longitudinal
POP. Therefore, the POP scattering is dominant at this
temperature. On the other hand, due to the relatively
high fleld in the vicinity of the cathode in the active
region, the POP scattering rate due to absorption is
negligible in comparison with its rate due to emission.
Therefore, under such conditions, one expects the
electrons to move quasi-ballistically in nearly the first
half of the active region. Increasing the temperature
towards 300°K, the POP scattering rates due to both
absorption and emission increase considerably, so that
the electron transport behavior after passing nearly
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Figure 12. The electron energy distribution across a n

(Alg.18Gag gzAs)-i (GaAs)-nt (GaAs) diode, for V4 = 0.75

V at T = 77°K. The horizontal dashed line shows the

energy separation between the I" and L valleys.
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Figure 13. The electron velocity distribution across an
nt (Alp.1sGag.s2As)-i (GaAs)-nT (GaAs) diode, for Vy =
0.75 Vat T = 77°K.

distribution, in this case, also demonstrates the quasi-
ballistical motion of the electrons.

As discussed before, decreasing the anode voltage
may reduce the number of electrons in the L valley
and, hence, lowers the back scattering effects. Figure
14 demonstrates the effects of the anode voltage on
the average velocity of the electrons across a het-
erostructure n*-i-n* diode, at T = 77°K. As mentioned
previously, by reducing the anode voltage from 0.75
V (solid line) to-0.24 V (dashed line), the average
velocity increases considerably throughout the active
region. By further reduction in the anode voltage,
although the average velocity profile across a major
portion of the active region remains almost uniform, its
peak value decreases. The dotted dashed curve depicts
the profile of the average velocity for the electrons
across the above mentioned diode for V4 = 0.14 V. This
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Figure 14. Average velocity of the electrons across an nt

(Alo_lgcao,ngS)~i (GaAs)vn+ (GaAs) diode, for VA =
0.14, 0.24 and 0.75 V at T=T7°K.

reduction in the velocity occurs because the electron
energy is almost equivalent to the barrier height at the
heterointerface.

If one increases the aluminum mole fraction and
maintains the anode voltage at a constant value, the
electron average velocity on the cathode side of the
active region would increase. This is a result of an
increase in the electron energy due to the enhanced
barrier at the heterointerface. However, another conse-
quence of this energy increase is that some electrons at
the anode side of the active region gain enough energy
to move to the L valley there. The latter effect and the
backscattering from the anode L valley into the active
region I' valley make the profile of the average velocity
to fall at anode side of the active region. Figure 15
compares the average velocities for the electrons across
two diodes with the Al mole fractions of z = 0.18
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Figure 15. Average velocity of the electrons across two
different nt (Al,Gaj-,As)-i (GaAs)-n™ (GaAs) diodes,
for V4 = 0.24 V at T = 77°K. The Al mole fractions for
these two diodes are x = 0.18 and 0.25.
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Figure 16. Aerage velocity of the electrons across an nt

(Alg.18Gag.s2As)-i (GaAs)-nt (GaAs) diode with a 0.15
pum long active region, for Va4 = 0.24 V at T = 77°K.

and 0.25, for V4 = 024 V at T = 0.77°K. The
solid curve demonstrates the result for the device with
an nt-Alg 3Gag geAs cathode and the dashed curve
depicts the result obtained for the diode with an n*-
A10‘25Ga0_75AS cathode.

Finally, by reducing the active region length to
0.15 pm, one would expect to see an improvement in
the average velocity profile at the anode side of the
active region, since in this case, the POP scattering
effect is decreased as depicted in Figure 16. A right
selection for Al mole fraction, the active region length
and the anode voltage results in an optimized profile
for the electron average velocity.

CONCLUSIONS

In this paper, it has been demonstrated that motion
of electrons in the first 0.1 pm of the active region at
a low temperature is quasi-ballistical, when the anode
voltage in a GaAs diode is less than 0.29 V. It is also
concluded that after the first 0.1 ym in the active region
collision processes become dominant for such biasing
conditions. This causes the electron average velocity
profile to drop below that of the higher voltages. Under
higher anode voltages, at a low temperature. back
scattering effect becomes important. Hence, under
such conditions, electrons accumulate in the vicinity of
the anode in the active region. Moreover, it has been
illustrated that at high temperatures, for an anode
voltage of 0.75 V, POP and backscattering are both
significant. These two effects reduce the peak of the
average velocity profile considerably.

It has been presumed that by replacing the GaAs
cathode with an Al,Ga;_,As layer, higher energy car-
riers crossing the heterointerface increase the electron
velocity on the cathode side of the active region, in
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