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A New Smoothing Approach
for Pattern-Color Separability

M. Mirmehdi* and M. Petrou!

In this paper, a set of masks is introduced which are used in combination for simulating pattern-
color separability function of the human visual system. These kernels provide a perceptual
degree of smoothing, corresponding to measurements estimated from human psychophysical
experiments. [t has been found that these kernels yield a better approach for smoothing color
images than the traditional widely practiced Gaussian masks. The masks are applied to color
texture segmentation and some results are presented. The masks are also useful for other vision

tasks where smoothing is a major step.

INTRODUCTION

Segmentation of texture images is a major field of
research in computer vision [1-3]. In this paper, the
preprocessing smoothing stage of an image, critical for
a good segmentation, not the segmentation itself, is
considered. Image smoothing within a multiscale or
multiresolution framework using Gaussian (or other)
masks is generally practiced as a precursor to tex-
ture segmentation. This is outlined in some detail
by Watt [4]. Malik and Perona [5] used Gaussian
masks to construct a computational model of human
texture perception. Vinken et al.[6] devised smoothed
versions of an image by convolution of the original
image with sampled Gaussian kernels of increasing
width.

Many researchers have performed a preprocess-
ing smoothing stage by simply generating a multi-
resolution pyramid representation of the image. In this
regard, an important work for texture segmentation is
[7), while many others can be found in [2,3,8]. Matalas
et al. [9] used a B-spline function, as a fast transform,
in order to obtain images at several smoothing levels
and calculate vector dispersion and gradient orienta-
tion at different scales. A small disparity function was
then applied to segment grey-level textures.
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Other works, related to smoothing as a precursor
to segmentation, are based on multi-channel filtering
theory, using for instance Gabor filters. These filters
take the form of a sinusoidal grating oriented in partic-
ular directions and modulated by a two-dimensional
Gaussian. For example, Jain and Farrokhnia [10]
presented a grey-level texture segmentation algorithm
which used a bank of Gabor filters as its first stage
to produce a bank of filtered images. More recently,
Campbell et al. [11] examined a combination of Gabor
filters and low-pass color filters for segmentation of
natural scenes. Their system was implemented as a
self-organising feature map trained on a large number
of hand-segmented outdoor scenes. The Wigner distri-
bution [12] is another Gaussian-based smoothing tech-
nique used to derive features for texture segmentation
[13].

In other approaches, features are first derived
from the image and then undergo Gaussian smoothing,
e.g. [14-17]. For example, Huang et al. [16] performed
Gaussian smoothing on the histograms of each band
of a color image prior to applying Markov Random
Fields (MRFs) for color image segmentation. Gaussian
smoothing for scale space analysis of other features
such as edges or junctions has also been reported
[18,19].

Psychophysical and neurophysiological evidence
indicate that the human visual system performs mul-
tiscale analysis [20,21]. Here, work by Zhang and
Wandell [22] is extended and smoothing, in a way that
imitates human vision, is investigated and compared
with the traditional method of Gaussian smoothing for
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color images. Then, the smoothing task is applied as a
preprocessing step to a color segmentation technique.
Finally, the results are compared with/ work by Ma and

Manjunath [23].

PERCEPTUAL APPROACH
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On the other hand, Zhang and Wandell {22] (hereafter

ZW) systematically studied the co
human subjects for different frequ
color variation.
of the CIE-Lab space based on a
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spatial blurring of the human visu
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measuring color reproduction errol
ages.

They proposed that their filters
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and some test patterns were employed to compare
reproduction errors in both CIE-Lap and S-CIE-Lab
spaces. The images for the S-CIE-Lab were smoothed
using filters calculated for a user viewing a computer

monitor from a fixed distance.

Here, the ZW kernels are extended to formulate

a new set of masks and are used

within a multi-

scale segmentation framework for smoothing the image

to a level where in the coarsest

version, different
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textured areas become patches of almost uniform
color.

The major question that arises here is whether
one has to use the new masks, or any smoothing
performed in the opponent color space would work
equally well. This issue has been examined and a
series of experiments using either the new masks or a
Gaussian mask of the same size has been performed
in both cases applying them in the opponent color
space. The blurred images were used in a multi-
level relaxation scheme [25,26] to obtain the final color
segmentation.

PERCEPTUAL SMOOTHING

Recent experiments by Zhang and Wandell [22] demon-
strated that the human eye perceives high spatial
frequencies of color as a uniform color instead of
separating them. An algorithm which takes this into
account must smooth the image in luminance and
chrominance color planes separately with different filter
matrices for the planes. ZW advocated the use of
the oppomnent color space, which consists of three
different color planes, O, O2, Os, representing the
luminance, the red-green and the blue-yellow planes,
respectively. Each of these planes in the 010,03 color
space is smoothed separately with two-dimensional
spatial kernels, defined as sums of Gaussian functions
with different values of standard deviation o. The
result of this operation is that the luminance plane
is blurred lightly, whereas the red-green and the blue-
yellow planes are blurred more strongly. This spatial
processing technique is pattern-color separable. ZW
filtered representation was then transformed back to
CIE-XYZ and then to CIE-Lab resulting in their
Spatial CIE-Lab space, namely S-CIE-Lab. The CIE
(Commission Internationale de L'Eclairage) Colorime-
try system (including XYZ, Lab and Luv spaces) is
described in [27].

In this application, smoothing is performed in the
010,03 space using the new masks. Then the image
data is transformed from the Oy 0203 to the CIE-Luv
space [28] and is used as the input in the ensuing
segmentation steps. The reason for using the CIE-Luv
space is that Euclidean distances between two points
in this space correspond to a measure of the perceived
color differences between them. This is not true in the
RGB space, as it is not a perceptually uniform space.

IMPLEMENTATION

It has been assumed that the input data is available
in the RGB format. The input RGB image can be
transformed into the O1 0203 opponent color space in
one step but, for clarity, this transformation is shown
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via the XY Z space:

X 0.431 0.342 0.178 R

Y |-{ 0222 0707 0.0714 G (1)
Z 0.020 0.130 0.939 B

O1 0.279  0.720 —0.107 X
Oy | =| -0449 0.200 —0.077 Y
03 0.086 —0.590  0.501 Z

(2)

Once smoothing has taken place in the O; 0,03 oppo-
nent color space, the data must be transformed back
to the XY Z space before it can be transformed to
the CIE-Luv space, in readiness for the segmentation
process. The transformation from 0O,0,03 to XY Z is
as follows:

X 0.626 —-1.867 —0.153 O
Y | = 1369 0.934 0.436 o
VA 1.505 1.421 2.536 O3 /(3)

The process of transforming the XYZ to CIE-Luv
space, as described in [28], can be summarized as
follows:

I { 116(Y/Yy)t/? —16 if Y/Y, > 0.008856

903.3Y/ Y, ifY/Yy <0.008856 °
4X
= 130(—
Y 3L(X +15Y + 32 o),
9Y
= 13L( o 4
vE BTy W) )
where,
4X, 9Y,
Ug = Vg =

Xo + 15Y + ?)Z()7 Xo +15Yy + 32, (

5)
and (Xp,Ys, Zy) is the reference white. The L and
the Y components are linked to the luminosity, while
u,v and X, Z are chromatic components. For smooth-
ing, after the RGB to 00503 transformation, three
convolution matrices (Plum,PTg,Pby) are set up for
the luminance plane, red-green and blue-yellow color

Table 1. Values for weight and spread of the convolution
kernels for a distance of 1m from the scene.

Plane Weight | o (degrees) | o (pixels)
Luminance 0.921 0.0212 1.11

0.105 0.0956 5.00

-0.108 2.973 155.80
Red-Green 0.531 0.0291 1.52

0.330 0.351 18.38
Blue-Yellow | 0.488 0.0391 2.047

0.371 0.274 14.35
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planes. Each of these consists of a weighted sum
of Gaussian kernels which achieve a different level of
smoothing for each plane (as mentioned earlier). For
example, the convolution matrix for P, as computed
according to ZW is:

2 2
1 w; _xtty
Prym = — € ) (6)
m “— n;
K3

for (i = 1,2,3). For P,, and Py, the index i ranges
from 1 to 2. The number of summations can be
verified against Table 1. The values for (w;, ;) which
have been determined from psychovisual measurements
of color appearance on human subjects are given in
Table 1 [22]. Divisor n; in Equation 6 is introduced
to normalize the sum of the matrix elements of each
individual Gaussian kernel before the weighted sum is
applied. Divisor m normalizes the sum of the final
matrix to 1.

In their subsequent coding error analysis in [22],
Zhang and Wandell experimented for an output devise
resolution of 90 dpi (~ 3 — 4 pixels/mm) at a viewing
distance of 18in for 1° of visual angle. The sizes of the
convolution matrices are found for different distances
as follows. Consider Figure 1. For a visual angle of #°
and a particular distance S away from the scene being
viewed, a viewing area & units wide is obtained. Given
the output device resolution of r pixels/mm, then the
value of z (and similarly y) can be computed in pixels
to be implemented in Equation 6, using z = rz, i.e.:

O
a:—75tanm. (7)

Some typical convolution kernels are illustrated in
Figures 2a-c. For ease of reference, these are named the
perceptual masks or kernels. For comparison, Figure 2d
shows the corresponding Gaussian kernel, computed so
that it has the same size as the new perceptual masks
with o being such that at the cut-off size its value is
1% of its central value.

Once the kernels are applied to the image in the
opponent color space, the image can be converted to
CIE-Luv which, as described earlier, is a perceptually
uniform space and, therefore, more suitable for carrying
out color measurements. Figure 3 demonstrates a real
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Figure 1. The visible width z for a particular distance S
at 9°of visual angle.
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(b) Red-green plane
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Figure 2. Convolution kernels for (a-c) perceptual smoothing and {d) Gaussian smoothing.

texture collage and its associated smoothed images at
various distances for both perceptual and Gaussian
smoothings. As the masks used are immense for large
distances and in order to avoid an ever increasing
border, the image is extended in|two ways; it is
assumed that the image is embedded in a much larger
image of either black pixels, or white pixels. These
two cases correspond to the physical situations where
the viewed object is seen against a|black or a white
background, respectively. The overall color impression
that results in the two cases, for both perceptual and
Gaussian smoothing is very different as illustrated in
Figure 3. However, the obtained segmentation results
did not differ significantly for either backgrounds.
Therefore, in all remaining experiments the option
of padding the image with zeros is| adopted to deal
with the border effects. It is clear from Figure 3
that the perceptually smoothed images provide a more
realistic representation and blurring of an “object”
viewed at varying distances than the Gaussian. Most
particularly, the Gaussian has mixed jand smoothed the
color values when convolved with each of the three color
channels.

SEGMENTATION

The use of perceptual smoothing is advocated as a
preprocessing step to any segmentation process that
requires smoothed images as its input data. Thus,
the segmentation process itself is not of concern here.
However, to test and demonstrate the use of percep-
tual smoothing, a segmentation technique reported
elsewhere [25,26] is now briefly mentioned. A multi-
level relaxation scheme is developed [25,26] in which a
mechanism of segmenting color textures is proposed, by
constructing a causal multiscale tower of image versions
based on perceptual smoothing of the color texture
image. The reason it is called “tower” and not a “pyra-
mid” was the abscence of a subsampling performance
leading to the preservation of the same number of pixels
at all levels. The levels of the tower were constructed
with the help of different blurring masks by assuming
that the same color-textured object was seen at 1,2,3,...
meters distance. Hence, each coarser version of the
image imitated the blurred version that the human
vision system would have “seen” at the corresponding
distance. The analysis of the image started at the
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Figure 3. Convolution kernels for (a-c) perceptual smoothing and (d) Gaussian smoothing. Real texture collage image
with (first row) perceptual and (second row) Gaussian smoothed transformations corresponding to viewing distances of 1,
5, and 10m against a “black background”, and (third and fourth rows) as before but against a “white background”.

A
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(e)

Figure 4. (a) Original texture image, (b) Blurred with perceptual kernels for viewing distance, (c) Blurred with Gaussian
kernel for viewing distance, (d) Multilevel segmentation starting with image (b), (e) Multilevel segmentation starting with

image (c).

coarsest level where the image is segmented into a
number of clusters. The processing then proceeded to-
wards the finest level, just as would happen if a person
slowly approached a distant object. The mechanism
with which information was transferred from a coarse
to a finer level was probability theory that made use of
causality. It is not advocated here that this is actually
the mechanism deployed by humans; probability theory
was used because it was a sound mathematical tool
that allowed the incorporation of both features and
preliminary conclusions that refer to many different
levels of analysis. At the finest level image or the final
iteration step, a segmented image resulted with each
pixel labelled and assigned to a particular cluster.

RESULTS

Now, the perceptual smoothing approach is illustrated
along with some smoothing and segmentation results.
The original image in Figure 4a was created by patch-
ing together two different color textures. This image

was blurred with the perceptual masks, assuming that
the object it represents was viewed from 10m distance,
to form the image in Figure 4b. If the corresponding
Gaussian mask was used, all structure in the image
would have been lost. Instead, in Figure 4c, the
Gaussianly blurred image is shown, with a mask the
same size as the perceptual mask, for a distance of
1m from the object. This was the blurring obtained
by the Gaussian mask that seemed to correspond
best to the perceptual blurring. Figures 4d and 4e
demonstrate the results of segmenting the image within
the same multiscale framework, with the parameters
tuned in each case to produce the best results (each
starting at the coarsest level, i.e., at configurations 4b
and 4c, respectively). The difference in the quality
of the results is due to the fundamental difference
between the two blurring masks which can be best
observed if the luminance of the two images is plotted.
Figures 5a and 5b show only the L components of the
images in Figures 4b and 4c. It can be seen that the
perceptual masks smooth the luminance very little in



15

Pattern Color Separability

(a) (b)

Figure 5. (a) Luminance band for 4(b), (b) Luminance band for 4(c), (c) Luminance band for perceptually smoothed
image from a distance of 1m.

comparison to the Gaussian masks, with the desirable with Figure 5b, the L component of the perceptual
result of preserving the luminance edges, which is smoothed image at 1m distance is shown in Figure 5c.
significant in the creation of a segmentation result In Figure 6, another example is illustrated. Figure
that seems perceptually correct. For direct comparison 6b shows the perceptually smoothed image viewed

(b) (e)

(d) ()
Figure 6. (a) Original monkey image, (b) Blurred with perceptual kernels for viewing distance, (c) Blurred with Gaussian
kernel for 1m viewing distance, (d) Multilevel segmentation starting with image (b), (¢) Multilevel segmentation starting

with Tmage (c).
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from a 10m distance. Figure 6¢ presents the Gaus-
sianly blurred image viewed from a 1m distance which
again seems to best correspond to the perceptually
blurred masks. Figures 6d and 6e display the final
segmentation results. It is quite clear again that
the perceptually-based smoothing leads to a much
more subjectively appealing segmentation, while with
Gaussian smoothing, only the result from 1m is re-
motely close. At greater distances, the results do not
correspond in any way.

Next, the results presented here are compared
with two recent segmentation techniques, by Matas and
Kittler [29] and Ma and Manjunath [23], referred to
hereafter as MK95 and MM97, respectively. MK95
grouped color pixels by simultaneously taking into
account both their feature space similarity and spatial
coherence.  Their approach uses color histograms
and incorporates neighbourhood connectivity. MM97
combined color intensity and Gabor texture features
(including magnitude and phase information) charac-
terized by a predictive coding method to detect and
separate color texture regions. Figure 7 shows a
color texture image collage made using real images
of ceramic tiles and granite stone, as well as the
segmentation obtained using MK95, MM97 and the
approach based on the smoothing process proposed
here. It is subjectively clear that better results are
obtained using the new technique. More precisely,
the error rate against the ground truth is 1.3% for
MK95, 9.7% for MM97 and 0.04% for the new proposed
method.

CONCLUSION

Recent experiments by Zhang and Wandell [22] for
perceptual smoothing, applied to the evaluation of
image coding schemes, are based on measurements of
psychophysical studies which showed that discrimina-
tion and appearance of small-field or fine patterned
colors differ from similar measurements made using
large uniform fields. The human eye perceives high
spatial frequencies of color as a uniform color instead
of separating them. An algorithm which takes this
into account must smooth the image in luminance
and chrominance color planes separately with different
filter matrices for each plane. This has been used to
propose a perception based approach for color texture
smoothing and segmentation. For the initial smoothing
stage, masks for smoothing the image in a progressive
manner have been developed to represent the viewing
of the image from increasing distances. This led
to the construction of a multi-scale tower of images
which were inputs for the second stage of a texture
segmentation process. This second stage is an itera-
tive probabilistic relaxation-based pixel classification
process [25,26]. The smoothing stage can act as a
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(a) (b)

(<) (d)

Figure 7. (a) Real texture collage and its segmentation
by applying (b) MK95, (c) MM97 and (d) our complete
smoothing and segmentation approach.

preprocessing step for any other technique which is
based on the processing of coarsened images.

The perceptually derived blurring masks were
compared with the classical Gaussian mask. The
results presented in this paper clearly demonstrate the
superiority of the former for color texture segmenta-
tion over the latter which is often used in multiscale
schemes. This was verified using segmentation results
based on the new proposed method when compared
against other segmentation techniques. This new
human-perception approach to smoothing is not nec-
essarily limited to color texture segmentation. Its
intrinsic pattern-color separability is also applicable to
color edge detection and color region segmentation.
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